# xgboost **Repository Path**: caliburnus/xgboost ## Basic Information - **Project Name**: xgboost - **Description**: Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Flink and DataFlow - **Primary Language**: C++ - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2018-08-15 - **Last Updated**: 2024-07-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README eXtreme Gradient Boosting =========== [![Build Status](https://travis-ci.org/dmlc/xgboost.svg?branch=master)](https://travis-ci.org/dmlc/xgboost) [![Build Status](https://ci.appveyor.com/api/projects/status/5ypa8vaed6kpmli8?svg=true)](https://ci.appveyor.com/project/tqchen/xgboost) [![Documentation Status](https://readthedocs.org/projects/xgboost/badge/?version=latest)](https://xgboost.readthedocs.org) [![GitHub license](http://dmlc.github.io/img/apache2.svg)](./LICENSE) [![CRAN Status Badge](http://www.r-pkg.org/badges/version/xgboost)](http://cran.r-project.org/web/packages/xgboost) [![PyPI version](https://badge.fury.io/py/xgboost.svg)](https://pypi.python.org/pypi/xgboost/) [Community](https://xgboost.ai/community) | [Documentation](https://xgboost.readthedocs.org) | [Resources](demo/README.md) | [Contributors](CONTRIBUTORS.md) | [Release Notes](NEWS.md) XGBoost is an optimized distributed gradient boosting library designed to be highly ***efficient***, ***flexible*** and ***portable***. It implements machine learning algorithms under the [Gradient Boosting](https://en.wikipedia.org/wiki/Gradient_boosting) framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples. License ------- © Contributors, 2016. Licensed under an [Apache-2](https://github.com/dmlc/xgboost/blob/master/LICENSE) license. Contribute to XGBoost --------------------- XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the [Community Page](https://xgboost.ai/community) Reference --------- - Tianqi Chen and Carlos Guestrin. [XGBoost: A Scalable Tree Boosting System](http://arxiv.org/abs/1603.02754). In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016 - XGBoost originates from research project at University of Washington.