# AutoTrans **Repository Path**: canleng/AutoTrans ## Basic Information - **Project Name**: AutoTrans - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-11-20 - **Last Updated**: 2024-11-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # AutoTrans: A Complete Planning and Control Framework for Autonomous UAV Payload Transportation [![AutoTrans](imgs/cover.png)](https://youtu.be/X9g-ivBqy5g) **Video**: [YouTube](https://youtu.be/X9g-ivBqy5g) | [Bilibili](https://www.bilibili.com/video/BV1aM4y1a7c9) ## Introduction **AutoTrans** presents a real-time and robust planning and control framework for quadrotor with payload. It can generate the dynamic feasible trajectory considering the time-varying shape and deal with the disturbance while executing trajectory. ![System](imgs/system.png) This repo includes a real-time motion planning, a disturbance-aware NMPC and a simple simulation for a quadrotor with a suspended payload. **Authors**: Haojia Li, Haokun Wang, [Chen Feng](https://chen-albert-feng.github.io/AlbertFeng.github.io/), [Fei Gao*](http://zju-fast.com/fei-gao/), [Boyu Zhou*](http://sysu-star.com/), and [Shaojie Shen](https://uav.hkust.edu.hk/group/). **Institutions**: [HKUST Aerial Robotics Group](https://uav.hkust.edu.hk/), [SYSU STAR Group](http://sysu-star.com/), and [ZJU FAST Lab](http://zju-fast.com/). **Paper**: [AutoTrans: A Complete Planning and Control Framework for Autonomous UAV Payload Transportation](https://doi.org/10.1109/LRA.2023.3313010), IEEE Robotics and Automation Letters (RA-L), 2023. [IEEE Spectrum](https://spectrum.ieee.org/video-friday-reflex-grasping) ```bibtex @article{li2023autotrans, title={AutoTrans: A Complete Planning and Control Framework for Autonomous UAV Payload Transportation}, author={Li, Haojia and Wang, Haokun and Feng, Chen and Gao, Fei and Zhou, Boyu and Shen, Shaojie}, journal={IEEE Robotics and Automation Letters}, year={2023}, volume={8}, number={10}, pages={6859-6866}, doi={10.1109/LRA.2023.3313010}} ``` If you find this work useful or interesting, please kindly give us a star ⭐, thanks!😀 ## Setup Compiling tests passed on Ubuntu 20.04/18.04 with ROS installed. ### Prerequisites - [ROS](http://wiki.ros.org/ROS/Installation) (tested with Noetic) ```bash sudo apt install ros-"${ROS_DISTRO}"-mavros-msgs ``` ### Compiling and Running ```bash # Compile the code mkdir -p autotrans_ws/src cd autotrans_ws/src git clone https://github.com/HKUST-Aerial-Robotics/AutoTrans cd .. catkin_make -DCMAKE_BUILD_TYPE=Release # Run the simulation with planner and controller source devel/setup.bash roslaunch payload_planner simple_run.launch ``` You should see the simulation in rviz. You can use the `2D Nav Goal` to set the goal position. The red arrow on the quadrotor represents the estimated disturbance force (like rotor drag). ![Simulation](imgs/simulation.gif) ### Tip: Boost Your Computer This can make the MPC solve faster in each iteration. ```bash sudo apt install cpufrequtils sudo cpufreq-set -g performance ``` ## Acknowledgements We use [MINCO](https://github.com/ZJU-FAST-Lab/GCOPTER) as our trajectory representation. We borrow the framework from [Fast-Planner](https://github.com/HKUST-Aerial-Robotics/Fast-Planner) and [Ego-Planner-v2](https://github.com/ZJU-FAST-Lab/EGO-Planner-v2) Thanks to [rpg_mpc](https://github.com/uzh-rpg/rpg_mpc) for a good reference. ## Maintaince For any technical issues, please contact Haojia Li(hlied@connect.ust.hk).