# IFCNN **Repository Path**: change__zh/IFCNN ## Basic Information - **Project Name**: IFCNN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-06 - **Last Updated**: 2025-09-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # IFCNN Project page of "[IFCNN: A General Image Fusion Framework Based on Convolutional Neural Network](https://www.sciencedirect.com/science/article/pii/S1566253518305505), Information Fusion, 54 (2020) 99-118". ### Requirements - pytorch=0.4.1 - python=3.x - torchvision - numpy - opencv-python - jupyter notebook (optional) - anaconda (suggeted) ### Configuration ```bash # Create your virtual environment using anaconda conda create -n IFCNN python=3.5 # Activate your virtual environment conda activate IFCNN # Install the required libraries conda install pytorch=0.4.1 cuda80 -c pytorch conda install torchvision numpy jupyter notebook pip install opencv-python ``` ### Usage ```bash # Clone our code git clone https://github.com/uzeful/IFCNN.git cd IFCNN/Code # Remember to activate your virtual enviroment before running our code conda activate IFCNN # Replicate our image method on fusing multiple types of images python IFCNN_Main.py # Or run code part by part in notebook jupyter notebook IFCNN_Notebook.ipynb ``` ### Typos 1. Eq. (4) in our paper is wrongly written, the correct expression can be referred to the official expression in [OpenCV document](https://docs.opencv.org/3.4.2/d4/d86/group__imgproc__filter.html#gac05a120c1ae92a6060dd0db190a61afa), i.e., , where , , , and is the scale factor chosen for achieving . 2. Stride and padding parameters of CONV4 are respectively 1 and 0, rather than both 0. ### Highlights - Propose a general image fusion framework based on convolutional neural network - Demonstrate good generalization ability for fusing various types of images - Perform comparably or even better than other algorithms on four image datasets - Create a large-scale and diverse multi-focus image dataset for training CNN models - Incorporate perceptual loss to boost the model’s performance ### Architecture of our image fusion model ![flowchart](https://github.com/uzeful/IFCNN/blob/master/flowchart.png) ### Comparison Examples 1. Multi-focus image fusion ![CMF05](https://github.com/uzeful/IFCNN/blob/master/Comparisons/CMF05.png) 2. Infrared and visual image fusion ![CMF05](https://github.com/uzeful/IFCNN/blob/master/Comparisons/IVroad.png) 3. Multi-modal medical image fusion ![MDc02](https://github.com/uzeful/IFCNN/blob/master/Comparisons/MDc02.png) 4. Multi-exposure image fusion ![MEdoor](https://github.com/uzeful/IFCNN/blob/master/Comparisons/MEdoor.png) ### Other Results of Our Model 1. Multi-focus image dataset: [Results/CMF](https://github.com/uzeful/IFCNN/tree/master/Results/CMF) 2. Infrared and visual image dataset: [Results/IV](https://github.com/uzeful/IFCNN/tree/master/Results/IV) 3. Multi-modal medical image dataset: [Results/MD](https://github.com/uzeful/IFCNN/tree/master/Results/MDDataset) 4. Multi-exposure image dataset: [Results/ME](https://github.com/uzeful/IFCNN/tree/master/Results/ME) ### Citation If you find this code is useful for your research, please consider to cite our paper. Yu Zhang, Yu Liu, Peng Sun, Han Yan, Xiaolin Zhao, Li Zhang, [IFCNN: A General Image Fusion Framework Based on Convolutional Neural Network](https://authors.elsevier.com/a/1ZTXt5a7-GbZZX), Information Fusion, 54 (2020) 99-118. ``` @article{zhang2020IFCNN, title={IFCNN: A General Image Fusion Framework Based on Convolutional Neural Network}, author={Zhang, Yu and Liu, Yu and Sun, Peng and Yan, Han and Zhao, Xiaolin and Zhang, Li}, journal={Information Fusion}, volume={54}, pages={99--118}, year={2020}, publisher={Elsevier} } ```