# YoloV4-ncnn-Raspberry-Pi-4 **Repository Path**: chaucerg/YoloV4-ncnn-Raspberry-Pi-4 ## Basic Information - **Project Name**: YoloV4-ncnn-Raspberry-Pi-4 - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-03-02 - **Last Updated**: 2024-12-13 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # YoloV4-ncnn-Raspberry-Pi-4 ![output image]( https://qengineering.eu/images/Mumbai_YoloV4.jpg ) ## YoloV4 with the ncnn framework.

[![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)

The frame rate is about 3 FPS (RPi 64 bit OS, overclocked to 1950 MHz)
Paper: https://arxiv.org/pdf/2004.10934.pdf
Size: 608x608

Special made for a bare Raspberry Pi see [Q-engineering deep learning examples](https://qengineering.eu/deep-learning-examples-on-raspberry-32-64-os.html)
## Dependencies. To run the application, you have to: - A raspberry Pi 4 with a 32 or 64-bit operating system. It can be the Raspberry 64-bit OS, or Ubuntu 18.04 / 20.04. [Install 64-bit OS](https://qengineering.eu/install-raspberry-64-os.html)
- The Tencent ncnn framework installed. [Install ncnn](https://qengineering.eu/install-ncnn-on-raspberry-pi-4.html)
- OpenCV 64 bit installed. [Install OpenCV 4.3](https://qengineering.eu/install-opencv-4.3-on-raspberry-64-os.html)
- Code::Blocks installed. (```$ sudo apt-get install codeblocks```) ## Running the app. To extract and run the network in Code::Blocks
$ mkdir *MyDir*
$ cd *MyDir*
$ wget https://github.com/Qengineering/YoloV4-ncnn-Raspberry-Pi-64-bit/archive/master.zip
$ unzip -j master.zip
Remove master.zip and README.md as they are no longer needed.
$ rm master.zip
$ rm README.md

Your *MyDir* folder must now look like this:
dog.jpg
mumbai.jpg
YoloV4.cpb
yoloV4.cpp
yolov4-tiny-opt.bin
yolov4-tiny-opt.param

If you want to run the full YoloV4 version you need:
yolov4.bin (download this 245 MB file from [Gdrive](https://drive.google.com/file/d/1dtkgOUKIeNdKRH5z9uTm-A6SUewjiBrj/view?usp=sharing))
yolov4.param

Many thanks to [nihui](https://github.com/nihui/) again!