# ChineseTrafficPolicePose **Repository Path**: chde222/ChineseTrafficPolicePose ## Basic Information - **Project Name**: ChineseTrafficPolicePose - **Description**: Detects Chinese traffic police commanding poses 检测中国交警指挥手势 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 0 - **Created**: 2020-02-20 - **Last Updated**: 2024-04-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ChineseTrafficPolicePose is a network that classify **8 kinds of Chinese traffic police commanding poses** by analyzing visual information. ChineseTrafficPolicePose 是一个仅依靠视觉信息区分8种中国交警指挥手势的网络 # Police Gesture Dataset We publish the **Police Gesture Dataset**, which contains the videos of Chinese traffic police commanding gestures, and ground truth gesture labels for each video frame. Police Gesture Dataset Download link: [Google Drive](https://drive.google.com/drive/folders/13KHZpweTE1vRGAMF7wqMDE35kDw40Uym?usp=sharing) # Police Gesture Recognizer **Notice: This gif is outdated. current version support prediction for FULL BODY, include legs. Check the videos in our dataset for examples of supported videos.**

**Watch Videos**: - [Frame by frame detection - Youtube Video](https://youtu.be/DmKFpD1K7gQ) - [Realtime detection - Youtube Video](https://youtu.be/EjHp2RPuZqc) **Environment** - Only support `Python3` - Use `Tensorflow` with GPU support **Training** - Download keypoint dataset from AI Challenger (~20GB). - Rename the downloaded 4 folders to `"train", "test_a", "test_b", "val"`. - Extract downloaded dataset to `parameters.TRAIN_FOLDER`. You may change the content of this parameter according to your path. - Run `python3 PAF_train.py` to train the keypoint network. - Download our **Traffic Police Gesture** dataset (~2GB) according to **Dataset** section. - Extract .csv files to `dataset/csv_train` and `dataset/csv_test`. - Extract .mp4 files to `dataset/policepose_video`. - Run `python3 PAF_detect.py dataset/policepose_video -a` to parse videos to skeletal data. - Run `python3 rnn_train.py` to train LSTM using labels from `dataset/csv_train` and skeletal data from `./dataset/gen/rnn_saved_joints`. - Run `python3 rnn_detect.py -p` to predict test videos using name list from `dataset/csv_test` and skeletal data from `./dataset/gen/rnn_saved_joints`. - Run `Python3 rnn_detect.py -e` to print **Edit Distance** of predicted labels with ground truth labels from `dataset/csv_test`.