# VMA **Repository Path**: chenchunguang/VMA ## Basic Information - **Project Name**: VMA - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-12-05 - **Last Updated**: 2024-12-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

VMA: Divide-and-Conquer Vectorized Map Annotation System for Large-Scale Driving Scene

ArXiv Preprint ([arXiv 2304.09807](https://arxiv.org/pdf/2304.09807.pdf))
### News * **`Aug. 30th, 2023`:** We release an initial version of VMA. * **`Aug. 9th, 2023`:** Code will be released in around 3 weeks. ![framework](assets/framework.png "framework") https://github.com/hustvl/VMA/assets/40697001/ec099b41-835a-409d-a007-9766c414a483 **TL;DR** VMA is a general map auto annotation framework based on MapTR, with high flexibility in terms of spatial scale and element type. ## Getting Started - [Installation](docs/install.md) - [Prepare Dataset](docs/prepare_dataset.md) - [Inference on SD data](demo/README.md) (we only provide some samples of SD data for inference, since SD data is owned by Horizon) - [Train and Eval on NYC data](docs/train_eval.md) ## Auto Annotation Results Remote sensing: ![vis_aerial](assets/NYC.jpg "vis_aerial") Urban scene: ![vis_urban](assets/urban.jpg "vis_urban") Highway scene: ![vis_highway](assets/highway.jpg "vis_highway") ## Citation If you find VMA is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry. ```bibtex @inproceedings{VMA, title={VMA: Divide-and-Conquer Vectorized Map Annotation System for Large-Scale Driving Scene}, author={Chen, Shaoyu and Zhang, Yunchi and Liao, Bencheng, Xie, Jiafeng and Cheng, Tianheng and Sui, Wei and Zhang, Qian and Liu, Wenyu and Huang, Chang and Wang, Xinggang}, booktitle={arXiv preprint arXiv:2304.09807}, year={2023} } ```