# PyTorch_TextGCN **Repository Path**: chengsen/PyTorch_TextGCN ## Basic Information - **Project Name**: PyTorch_TextGCN - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-12 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Graph Convolutional Networks for Text Classification in PyTorch PyTorch 1.6 and Python 3.7 implementation of Graph Convolutional Networks for Text Classification [1]. Tested on the 20NG/R8/R52/Ohsumed/MR data set, the code on this repository can achieve the effect of the paper. ## Benchmark | dataset | 20NG | R8 | R52 | Ohsumed | MR | |---------------|----------|------|--------|--------|--------| | TextGCN(official) | 0.8634 | 0.9707 | 0.9356 | 0.6836 | 0.7674 | | This repo. | 0.8618 | 0.9704 | 0.9354 | 0.6827 | 0.7643 | NOTE: The result of the experiment is to repeat the run 10 times, and then take the average of accuracy. ## Requirements * fastai==2.0.15 * PyTorch==1.6.0 * scipy==1.5.2 * pandas==1.0.1 * spacy==2.3.1 * nltk==3.5 * prettytable==1.0.0 * numpy==1.18.5 * networkx==2.5 * tqdm==4.49.0 * scikit_learn==0.23.2 ## Usage 1. Process the data first, run `data_processor.py` (Already done) 2. Generate graph, run `build_graph.py` (Already done) 3. Training model, run `trainer.py` ## References [1] [Yao, L. , Mao, C. , & Luo, Y. . (2018). Graph convolutional networks for text classification.](https://arxiv.org/abs/1809.05679)