# SAR.AI **Repository Path**: chenlei2013/SAR.AI ## Basic Information - **Project Name**: SAR.AI - **Description**: :satellite: Multi-Level Pattern Histogram for Synthetic-Aperture Radar (SAR) image classification into terrain classes. - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 1 - **Forks**: 2 - **Created**: 2019-06-16 - **Last Updated**: 2024-04-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SAR Image Classification with MLPH Modified Multi-Level Pattern Histograms (MLPH) for SAR image classification. Some results for different regions in and around New York City area: ![](./report_images/34.png) ![](./report_images/40.png) ![](./report_images/33.png) ## Dependencies Platform tested on: **Ubuntu 16.04** Softwares/Packages required: - Python >2.6 - pickle - numpy - sklearn - skimage - scipy ## Instructions to Run the Application - Open the terminal inside the directory “IP_Project_Group23” - To run MLPH on training images and train SVM & test on hold-out set: $ python -m sarclf -run_mlph 1 -train_svm 1 - To run pretrained SVM on test image pixels: $ python -m sarclf - To run pretrained SVM to classify an image: $ python -m sarclf -test 0 -clfimg - For example, for image 2.tif in test_images folder, use: $ python -m sarclf -test 0 -clfimg ./test_images/2.tif - To do any of the above steps with our modified MLPH: Add “-modified 1” Example: $ python -m sarclf -test 0 -clfimg ./test_images/2.tif -modified 1 ## Methodology Following the research on MLPH, we derive a pattern matrix for each pixel based on a threshold value, use these matrices varying bin lengths to get local pattern sub-histograms, concatenated to give local pattern histogram. With multiple thresholds, the concatenation of local pattern histograms gives MLPH for each pixel. ![](./report_images/1.png) ![](./report_images/2.png) ![](./report_images/3.png)