# UGGAT-clean **Repository Path**: chenyan16081215/uggat-clean ## Basic Information - **Project Name**: UGGAT-clean - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-04-29 - **Last Updated**: 2024-04-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # UG-GAT This repository holds the Pytorch implementation of **Uncertainty-guided Graph Attention Network for Parapneumonic Effusion Diagnosis** (UG-GAT). ## Introduction We utilize all the CT images containing uncertainty information of a patient rather than a single 2D slice, and propose a graph-based framework for UPPE and CPPE classification. ## Training BayesianCNN BayesianCNN Training can be done: ``` python trainCNN.py ``` ## Obtaining feature and uncertainty for graph After training the Bayesian, you can generate the image representations and uncertainty by running: ``` python test.py ``` ## Trainging UG-GAT UG-GAT can be trained and tested by running: ``` python trainGraph.py ``` ## Citing This Paper If you use this code,please use the following BibTeX entry. ``` @article{hao2021uncertainty, title={Uncertainty-guided Graph Attention Network for Parapneumonic Effusion Diagnosis}, author={Hao, Jinkui and Liu, Jiang and Pereira, Ella and Liu, Ri and Zhang, Jiong and Zhang, Yangfan and Yan, Kun and Gong, Yan and Zheng, Jianjun and Zhang, Jingfeng and others}, journal={Medical Image Analysis}, pages={102217}, year={2021}, publisher={Elsevier} } ```