# MemSeg
**Repository Path**: chuanOO/MemSeg
## Basic Information
- **Project Name**: MemSeg
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: MIT
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2023-12-07
- **Last Updated**: 2023-12-07
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# MemSeg
Unofficial re-implementation for [MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities](https://arxiv.org/abs/2205.00908)
# Environments
- Docker image: nvcr.io/nvidia/pytorch:20.12-py3
```
einops==0.5.0
timm==0.5.4
wandb==0.12.17
omegaconf
imgaug==0.4.0
```
# Process
## 1. Anomaly Simulation Strategy
- [notebook](https://github.com/TooTouch/MemSeg/blob/main/%5Bexample%5D%20anomaly_simulation_strategy.ipynb)
- Describable Textures Dataset(DTD) [ [download](https://www.google.com/search?q=dtd+texture+dataset&rlz=1C5CHFA_enKR999KR999&oq=dtd+texture+dataset&aqs=chrome..69i57j69i60.2253j0j7&sourceid=chrome&ie=UTF-8) ]
## 2. Model Process
- [notebook](https://github.com/TooTouch/MemSeg/blob/main/%5Bexample%5D%20model%20overview.ipynb)
# Run
**Example**
```bash
python main.py configs=configs.yaml DATASET.target=bottle
```
## Demo
```
voila "[demo] model inference.ipynb" --port ${port} --Voila.ip ${ip}
```

# Results
- **Backbone**: ResNet18
| target | AUROC-image | AUROC-pixel | AUPRO-pixel |
|:---------------|--------------:|--------------:|--------------:|
| leather | 100 | 98.31 | 99.05 |
| pill | 96.21 | 88 | 90.23 |
| carpet | 98.72 | 94.1 | 95.31 |
| hazelnut | 97.89 | 89.28 | 94.86 |
| tile | 100 | 98.97 | 98.84 |
| cable | 83.71 | 74.69 | 73.21 |
| toothbrush | 100 | 98.67 | 97.13 |
| transistor | 92.42 | 75 | 79.41 |
| zipper | 99.63 | 93.94 | 93 |
| metal_nut | 90.42 | 80.99 | 90.62 |
| grid | 99.92 | 96.48 | 95.87 |
| bottle | 100 | 94.67 | 92.61 |
| capsule | 92.34 | 83.45 | 84.34 |
| screw | 81.64 | 83.04 | 82.93 |
| wood | 99.74 | 94.9 | 94.45 |
| **Average** | 95.51 | 89.63 | 90.79 |
# Citation
```
@article{DBLP:journals/corr/abs-2205-00908,
author = {Minghui Yang and
Peng Wu and
Jing Liu and
Hui Feng},
title = {MemSeg: {A} semi-supervised method for image surface defect detection
using differences and commonalities},
journal = {CoRR},
volume = {abs/2205.00908},
year = {2022},
url = {https://doi.org/10.48550/arXiv.2205.00908},
doi = {10.48550/arXiv.2205.00908},
eprinttype = {arXiv},
eprint = {2205.00908},
timestamp = {Tue, 03 May 2022 15:52:06 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2205-00908.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```