# MemSeg **Repository Path**: chuanOO/MemSeg ## Basic Information - **Project Name**: MemSeg - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-12-07 - **Last Updated**: 2023-12-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # MemSeg Unofficial re-implementation for [MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities](https://arxiv.org/abs/2205.00908) # Environments - Docker image: nvcr.io/nvidia/pytorch:20.12-py3 ``` einops==0.5.0 timm==0.5.4 wandb==0.12.17 omegaconf imgaug==0.4.0 ``` # Process ## 1. Anomaly Simulation Strategy - [notebook](https://github.com/TooTouch/MemSeg/blob/main/%5Bexample%5D%20anomaly_simulation_strategy.ipynb) - Describable Textures Dataset(DTD) [ [download](https://www.google.com/search?q=dtd+texture+dataset&rlz=1C5CHFA_enKR999KR999&oq=dtd+texture+dataset&aqs=chrome..69i57j69i60.2253j0j7&sourceid=chrome&ie=UTF-8) ]

## 2. Model Process - [notebook](https://github.com/TooTouch/MemSeg/blob/main/%5Bexample%5D%20model%20overview.ipynb)

# Run **Example** ```bash python main.py configs=configs.yaml DATASET.target=bottle ``` ## Demo ``` voila "[demo] model inference.ipynb" --port ${port} --Voila.ip ${ip} ``` ![](https://github.com/TooTouch/MemSeg/blob/main/assets/memseg.gif) # Results - **Backbone**: ResNet18 | target | AUROC-image | AUROC-pixel | AUPRO-pixel | |:---------------|--------------:|--------------:|--------------:| | leather | 100 | 98.31 | 99.05 | | pill | 96.21 | 88 | 90.23 | | carpet | 98.72 | 94.1 | 95.31 | | hazelnut | 97.89 | 89.28 | 94.86 | | tile | 100 | 98.97 | 98.84 | | cable | 83.71 | 74.69 | 73.21 | | toothbrush | 100 | 98.67 | 97.13 | | transistor | 92.42 | 75 | 79.41 | | zipper | 99.63 | 93.94 | 93 | | metal_nut | 90.42 | 80.99 | 90.62 | | grid | 99.92 | 96.48 | 95.87 | | bottle | 100 | 94.67 | 92.61 | | capsule | 92.34 | 83.45 | 84.34 | | screw | 81.64 | 83.04 | 82.93 | | wood | 99.74 | 94.9 | 94.45 | | **Average** | 95.51 | 89.63 | 90.79 | # Citation ``` @article{DBLP:journals/corr/abs-2205-00908, author = {Minghui Yang and Peng Wu and Jing Liu and Hui Feng}, title = {MemSeg: {A} semi-supervised method for image surface defect detection using differences and commonalities}, journal = {CoRR}, volume = {abs/2205.00908}, year = {2022}, url = {https://doi.org/10.48550/arXiv.2205.00908}, doi = {10.48550/arXiv.2205.00908}, eprinttype = {arXiv}, eprint = {2205.00908}, timestamp = {Tue, 03 May 2022 15:52:06 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2205-00908.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```