# RL-Adventure-2 **Repository Path**: cmy_program/RL-Adventure-2 ## Basic Information - **Project Name**: RL-Adventure-2 - **Description**: PyTorch0.4 implementation of: actor critic / proximal policy optimization / acer / ddpg / twin dueling ddpg / soft actor critic / generative adversarial imitation learning / hindsight experience replay - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-10 - **Last Updated**: 2021-12-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # RL-Adventure-2: Policy Gradients PyTorch tutorial of: actor critic / proximal policy optimization / acer / ddpg / twin dueling ddpg / soft actor critic / generative adversarial imitation learning / hindsight experience replay The deep reinforcement learning community has made several improvements to the [policy gradient](http://rll.berkeley.edu/deeprlcourse/f17docs/lecture_4_policy_gradient.pdf) algorithms. This tutorial presents latest extensions in the following order: 1. Advantage Actor Critic (A2C) - [actor-critic.ipynb](https://github.com/higgsfield/RL-Adventure-2/blob/master/1.actor-critic.ipynb) - [A3C Paper](https://arxiv.org/pdf/1602.01783.pdf) - [OpenAI blog](https://blog.openai.com/baselines-acktr-a2c/#a2canda3c) 2. High-Dimensional Continuous Control Using Generalized Advantage Estimation - [gae.ipynb](https://github.com/higgsfield/RL-Adventure-2/blob/master/2.gae.ipynb) - [GAE Paper](https://arxiv.org/abs/1506.02438) 3. Proximal Policy Optimization Algorithms - [ppo.ipynb](https://github.com/higgsfield/RL-Adventure-2/blob/master/3.ppo.ipynb) - [PPO Paper](https://arxiv.org/abs/1707.06347) - [OpenAI blog](https://blog.openai.com/openai-baselines-ppo/) 4. Sample Efficient Actor-Critic with Experience Replay - [acer.ipynb](https://github.com/higgsfield/RL-Adventure-2/blob/master/4.acer.ipynb) - [ACER Paper](https://arxiv.org/abs/1611.01224) 5. Continuous control with deep reinforcement learning - [ddpg.ipynb](https://github.com/higgsfield/RL-Adventure-2/blob/master/5.ddpg.ipynb) - [DDPG Paper](https://arxiv.org/abs/1509.02971) 6. Addressing Function Approximation Error in Actor-Critic Methods - [td3.ipynb](https://github.com/higgsfield/RL-Adventure-2/blob/master/6.td3.ipynb) - [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) 7. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor - [soft actor-critic.ipynb](https://github.com/higgsfield/RL-Adventure-2/blob/master/7.soft%20actor-critic.ipynb) - [Soft Actor-Critic Paper](https://arxiv.org/abs/1801.01290) 8. Generative Adversarial Imitation Learning - [gail.ipynb](https://github.com/higgsfield/RL-Adventure-2/blob/master/8.gail.ipynb) - [GAIL Paper](https://arxiv.org/abs/1606.03476) 9. Hindsight Experience Replay - [her.ipynb](https://github.com/higgsfield/RL-Adventure-2/blob/master/9.her.ipynb) - [HER Paper](https://arxiv.org/abs/1707.01495) - [OpenAI Blog](https://blog.openai.com/ingredients-for-robotics-research/#understandingher) # If you get stuck… - Remember you are not stuck unless you have spent more than a week on a single algorithm. It is perfectly normal if you do not have all the required knowledge of mathematics and CS. - Carefully go through the paper. Try to see what is the problem the authors are solving. Understand a high-level idea of the approach, then read the code (skipping the proofs), and after go over the mathematical details and proofs. # RL Algorithms Deep Q Learning tutorial: [DQN Adventure: from Zero to State of the Art](https://github.com/higgsfield/RL-Adventure) [![N|Solid](https://planspace.org/20170830-berkeley_deep_rl_bootcamp/img/annotated.jpg)]() Awesome RL libs: rlkit [@vitchyr](https://github.com/vitchyr), pytorch-a2c-ppo-acktr [@ikostrikov](https://github.com/ikostrikov), ACER [@Kaixhin](https://github.com/Kaixhin) # Best RL courses - Berkeley deep RL [link](http://rll.berkeley.edu/deeprlcourse/) - Deep RL Bootcamp [link](https://sites.google.com/view/deep-rl-bootcamp/lectures) - David Silver's course [link](http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) - Practical RL [link](https://github.com/yandexdataschool/Practical_RL)