# pytorch-classification **Repository Path**: cmy_program/pytorch-classification ## Basic Information - **Project Name**: pytorch-classification - **Description**: Classification with PyTorch. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-12-10 - **Last Updated**: 2021-12-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # pytorch-classification Classification on CIFAR-10/100 and ImageNet with PyTorch. ## Features * Unified interface for different network architectures * Multi-GPU support * Training progress bar with rich info * Training log and training curve visualization code (see `./utils/logger.py`) ## Install * Install [PyTorch](http://pytorch.org/) * Clone recursively ``` git clone --recursive https://github.com/bearpaw/pytorch-classification.git ``` ## Training Please see the [Training recipes](TRAINING.md) for how to train the models. ## Results ### CIFAR Top1 error rate on the CIFAR-10/100 benchmarks are reported. You may get different results when training your models with different random seed. Note that the number of parameters are computed on the CIFAR-10 dataset. | Model | Params (M) | CIFAR-10 (%) | CIFAR-100 (%) | | ------------------- | ------------------ | ------------------ | ------------------ | | alexnet | 2.47 | 22.78 | 56.13 | | vgg19_bn | 20.04 | 6.66 | 28.05 | | ResNet-110 | 1.70 | 6.11 | 28.86 | | PreResNet-110 | 1.70 | 4.94 | 23.65 | | WRN-28-10 (drop 0.3) | 36.48 | 3.79 | 18.14 | | ResNeXt-29, 8x64 | 34.43 | 3.69 | 17.38 | | ResNeXt-29, 16x64 | 68.16 | 3.53 | 17.30 | | DenseNet-BC (L=100, k=12) | 0.77 | 4.54 | 22.88 | | DenseNet-BC (L=190, k=40) | 25.62 | 3.32 | 17.17 | ![cifar](utils/images/cifar.png) ### ImageNet Single-crop (224x224) validation error rate is reported. | Model | Params (M) | Top-1 Error (%) | Top-5 Error (%) | | ------------------- | ------------------ | ------------------ | ------------------ | | ResNet-18 | 11.69 | 30.09 | 10.78 | | ResNeXt-50 (32x4d) | 25.03 | 22.6 | 6.29 | ![Validation curve](utils/images/imagenet.png) ## Pretrained models Our trained models and training logs are downloadable at [OneDrive](https://mycuhk-my.sharepoint.com/personal/1155056070_link_cuhk_edu_hk/_layouts/15/guestaccess.aspx?folderid=0a380d1fece1443f0a2831b761df31905&authkey=Ac5yBC-FSE4oUJZ2Lsx7I5c). ## Supported Architectures ### CIFAR-10 / CIFAR-100 Since the size of images in CIFAR dataset is `32x32`, popular network structures for ImageNet need some modifications to adapt this input size. The modified models is in the package `models.cifar`: - [x] [AlexNet](https://arxiv.org/abs/1404.5997) - [x] [VGG](https://arxiv.org/abs/1409.1556) (Imported from [pytorch-cifar](https://github.com/kuangliu/pytorch-cifar)) - [x] [ResNet](https://arxiv.org/abs/1512.03385) - [x] [Pre-act-ResNet](https://arxiv.org/abs/1603.05027) - [x] [ResNeXt](https://arxiv.org/abs/1611.05431) (Imported from [ResNeXt.pytorch](https://github.com/prlz77/ResNeXt.pytorch)) - [x] [Wide Residual Networks](http://arxiv.org/abs/1605.07146) (Imported from [WideResNet-pytorch](https://github.com/xternalz/WideResNet-pytorch)) - [x] [DenseNet](https://arxiv.org/abs/1608.06993) ### ImageNet - [x] All models in `torchvision.models` (alexnet, vgg, resnet, densenet, inception_v3, squeezenet) - [x] [ResNeXt](https://arxiv.org/abs/1611.05431) - [ ] [Wide Residual Networks](http://arxiv.org/abs/1605.07146) ## Contribute Feel free to create a pull request if you find any bugs or you want to contribute (e.g., more datasets and more network structures).