# pytorch-ddpg **Repository Path**: cmy_program/pytorch-ddpg ## Basic Information - **Project Name**: pytorch-ddpg - **Description**: Implementation of the Deep Deterministic Policy Gradient (DDPG) using PyTorch - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-12-10 - **Last Updated**: 2022-09-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ====== Deep Deterministic Policy Gradient on PyTorch ====== Overview ====== The is the implementation of `Deep Deterministic Policy Gradient `_ (DDPG) using `PyTorch `_. Part of the utilities functions such as replay buffer and random process are from `keras-rl `_ repo. Contributes are very welcome. Dependencies ====== * Python 3.4 * PyTorch 0.1.9 * `OpenAI Gym `_ Run ====== * Training : results of two environment and their training curves: * Pendulum-v0 .. code-block:: console $ ./main.py --debug .. image:: output/Pendulum-v0-run0/validate_reward.png :width: 800px :align: left :height: 600px :alt: alternate text * MountainCarContinuous-v0 .. code-block:: console $ ./main.py --env MountainCarContinuous-v0 --validate_episodes 100 --max_episode_length 2500 --ou_sigma 0.5 --debug .. image:: output/MountainCarContinuous-v0-run0/validate_reward.png :width: 800px :align: left :height: 600px :alt: alternate text * Testing : .. code-block:: console $ ./main.py --mode test --debug TODO ======