# S2D
**Repository Path**: cnyan/S2D
## Basic Information
- **Project Name**: S2D
- **Description**: 从静态到动态:调整地标感知图像模型以识别视频中的面部表情
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-12-26
- **Last Updated**: 2024-12-26
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos
[](https://paperswithcode.com/sota/dynamic-facial-expression-recognition-on?p=from-static-to-dynamic-adapting-landmark-1)
[](https://paperswithcode.com/sota/dynamic-facial-expression-recognition-on-dfew?p=from-static-to-dynamic-adapting-landmark-1)
[](https://paperswithcode.com/sota/dynamic-facial-expression-recognition-on-mafw?p=from-static-to-dynamic-adapting-landmark-1)
[](https://paperswithcode.com/sota/facial-expression-recognition-on-affectnet?p=from-static-to-dynamic-adapting-landmark-1)
[](https://paperswithcode.com/sota/facial-expression-recognition-on-raf-db?p=from-static-to-dynamic-adapting-landmark-1)
>[From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos](https://ieeexplore.ieee.org/document/10663980)
>Yin Chen$^{†}$, Jia Li$^{†∗}$, Shiguang Shan, Meng Wang, and Richang Hong
## 📰 News
**[2024.9.5]** The fine-tuned checkpoints are available.
**[2024.9.2]** The code and pre-trained models are available.
**[2024.8.28]** The paper is accepted by IEEE Transactions on Affective Computing.
**[2023.12.5]** ~~Code and pre-trained models will be released here~~.
## 🚀 Main Results
### Dynamic Facial Expression Recognition
### Static Facial Expression Recognition
### Visualization
## Fine-tune with pre-trained weights
1、 Download the pre-trained weights from [baidu drive](https://pan.baidu.com/s/1J5eCnTn_Wpn0raZTIUCfgw?pwd=dji4) or [google drive](https://drive.google.com/file/d/1Y9zz8z_LwUi-tSFBAwDPZkVoyY6mhZlu/view?usp=drive_link) or [onedrive](https://mailhfuteducn-my.sharepoint.com/:f:/g/personal/2022111029_mail_hfut_edu_cn/EgKQNq8Y2chKl2TSoYf_OA0BQpCwx-FDw2ksPaMxBntZ8A), and move it to the ckpts directory.
2、 Run the following command to fine-tune the model on the target dataset.
```bash
conda create -n s2d python=3.9
conda activate s2d
pip install -r requirements.txt
bash run.sh
```
## 📋 Reported Results and Fine-tuned Weights
The fine-tuned checkpoints can be downloaded from [here](https://pan.baidu.com/s/1Xz5j8QW32x7L0bnTEorUbA?pwd=5drk).
| Datasets | w/o oversampling | w/ oversampling | ||
|---|---|---|---|---|
| UAR | WAR | UAR | WAR | |
| FERV39K | ||||
| FERV39K | 41.28 | 52.56 | 43.97 | 46.21 |
| DFEW | ||||
| DFEW01 | 61.56 | 76.16 | 64.80 | 75.35 |
| DFEW02 | 59.93 | 73.99 | 62.54 | 72.53 |
| DFEW03 | 61.33 | 76.41 | 66.47 | 75.87 |
| DFEW04 | 62.75 | 76.31 | 66.03 | 74.48 |
| DFEW05 | 63.51 | 77.27 | 67.43 | 76.80 |
| DFEW | 61.82 | 76.03 | 65.45 | 74.81 |
| MAFW | ||||
| MAFW01 | 32.78 | 46.76 | 36.16 | 44.21 |
| MAFW02 | 40.43 | 55.96 | 41.94 | 51.22 |
| MAFW03 | 47.01 | 62.08 | 48.08 | 61.48 |
| MAFW04 | 45.66 | 62.61 | 47.67 | 60.64 |
| MAFW05 | 43.45 | 59.42 | 43.16 | 58.55 |
| MAFW | 41.86 | 57.37 | 43.40 | 55.22 |