# Auto_painter **Repository Path**: cocoon_zz/Auto_painter ## Basic Information - **Project Name**: Auto_painter - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-01-09 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Auto_painter It is the original implementation of the journal article: Auto-painter: Cartoon image generation from sketch by using conditional Wasserstein generative adversarial networks https://www.sciencedirect.com/science/article/pii/S0925231218306209?via%3Dihub This project mean to make an end-to-end network for the sketch of cartoon to have color automatically. More results can be seen here: https://irfanicmll.github.io/work-page/ Try our demo here: http://103.202.133.77:10086/ Since the lab's server has temporarily expired, the demo is now unavailable. You can see the demo video and train your own model. New model has been updated!~ The performance is much better than in the orginal paper! See the demo video:https://youtu.be/g9rf-YFGgbg Have a try~ The pre-train model can be download here: http://dsd.future-lab.cn\members\2016\Yifan\export_out3\model.rar My homepage: http://dsd.future-lab.cn/members/2016/Yifan%20Liu.html Welcome to contact me~ ### Dependencies python3.5 tensorflow1.4 Vgg model from:https://github.com/machrisaa/tensorflow-vgg(optional, if you use the loss_f) ### Data Color images: Collected on the Internet Sketch: Generated from the preprocessing/gen_sketch/sketch.py ### Quick start Put you orginal data in the folder preprocessing/gen_sketch/pic_org Run the sketch.py and you will get the training set in the preprocessing/gen_sketch/pic_sketch folder Download the pre-train weight of Vgg16, and put the model and the pretrian weight uder the folder of training&test/my_vgg Run the training command as: python auto-painter.py --mode train --input_dir $TRAINING_SET --output_dir $OUTPUT --checkpoint None Run the testing command as: python auto-painter.py --mode test --input_dir $TESTING_SET --output_dir $OUTPUT_TEST --checkpoint $OUTPUT