# PLRDiff **Repository Path**: code_godtao/PLRDiff ## Basic Information - **Project Name**: PLRDiff - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-04-12 - **Last Updated**: 2024-04-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Unsupervised Hyperspectral Pansharpening via Low-rank Diffusion Model (Information Fusion 2024)
Xiangyu Rui, Xiangyong Cao, Li Pang, Zeyu Zhu, Zongsheng Yue, Deyu Meng
[[Draft arxiv](https://arxiv.org/pdf/2305.10925.pdf)] [[Main formal](https://www.sciencedirect.com/science/article/abs/pii/S1566253524001039)] ## Load pretrained Model Pretrained diffusion model can be downloaded from [https://github.com/wgcban/ddpm-cd#arrow_forwardpre-trained-models--trainvaltest-logs](https://github.com/wgcban/ddpm-cd#arrow_forwardpre-trained-models--trainvaltest-logs) ## Download Dataset Chikusei: [https://naotoyokoya.com/Download.html](https://naotoyokoya.com/Download.html) Houston: [https://hyperspectral.ee.uh.edu/?page id=459](https://hyperspectral.ee.uh.edu/?page_id=459) Pavia: [https://github.com/liangjiandeng/HyperPanCollection](https://github.com/liangjiandeng/HyperPanCollection) ## Prepare test dataset Use data/generate_data.m to generate test data for Chikusei and Houston. Pavia can be directly downloaded for use. ## Testing ### Single HSI testing run ``python3 demo_syn.py -res opt`` Before you running the script, please first download the pre-trained diffusion model, put it to your file and change the --resume in demo_syn.py. there are several options you can set: -gpu: int -dn: dataname,str. e.g. 'Chikusei_test'. The dataset should contain "HRMS", "LRMS" and "PAN". -krtype: int. Set 0 for the first time in order to estimate kernel and srf. Set 1 if you have already save them in './estKR'. -res: str. Set 'opt' for estimating the residual and 'no' for R=0. Other options include eta1, eta2, scale, ks, step, accstep. Please refer to demo_syn.py. ## Connections xyrui.aca@gmail.com