# PCT_Pytorch **Repository Path**: comewei/PCT_Pytorch ## Basic Information - **Project Name**: PCT_Pytorch - **Description**: Pytorch implementation of PCT: Point Cloud Transformer - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-03 - **Last Updated**: 2021-04-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer. Paper link: https://arxiv.org/pdf/2012.09688.pdf ### Requirements python >= 3.7 pytorch >= 1.6 h5py scikit-learn and ```shell script pip install pointnet2_ops_lib/. ``` The code is from https://github.com/erikwijmans/Pointnet2_PyTorch https://github.com/WangYueFt/dgcnn and https://github.com/MenghaoGuo/PCT ### Models We get an accuracy of 93.2% on the ModelNet40(http://modelnet.cs.princeton.edu/) validation dataset The path of the model is in ./checkpoints/train/models/model.t7 ### Example training and testing ```shell script # train python main.py --exp_name=train --num_points=1024 --use_sgd=True --batch_size 32 --epochs 250 --lr 0.0001 # test python main.py --exp_name=test --num_points=1024 --use_sgd=True --eval=True --model_path=checkpoints/best/models/model.t7 --test_batch_size 8 ``` ### Citation If it is helpful for your work, please cite this paper: ```latex @misc{guo2020pct, title={PCT: Point Cloud Transformer}, author={Meng-Hao Guo and Jun-Xiong Cai and Zheng-Ning Liu and Tai-Jiang Mu and Ralph R. Martin and Shi-Min Hu}, year={2020}, eprint={2012.09688}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```