# embedding-atlas **Repository Path**: cpgithub/embedding-atlas ## Basic Information - **Project Name**: embedding-atlas - **Description**: apple官方开源:Embedding Atlas 是一种为大型嵌入提供交互式可视化的工具。它允许您可视化、交叉筛选和搜索嵌入和元数据。 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-08-16 - **Last Updated**: 2025-08-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Embedding Atlas Embedding Atlas is a tool that provides interactive visualizations for large embeddings. It allows you to visualize, cross-filter, and search embeddings and metadata. **Features** - 🏷️ **Automatic data clustering & labeling:** Interactively visualize and navigate overall data structure. - 🫧 **Kernel density estimation & density contours:** Easily explore and distinguish between dense regions of data and outliers. - 🧊 **Order-independent transparency:** Ensure clear, accurate rendering of overlapping points. - 🔍 **Real-time search & nearest neighbors:** Find similar data to a given query or existing data point. - 🚀 **WebGPU implementation (with WebGL 2 fallback):** Fast, smooth performance (up to few million points) with modern rendering stack. - 📊 **Multi-coordinated views for metadata exploration:** Interactively link and filter data across metadata columns. Please visit for a demo and documentation. screenshot of Embedding Atlas ## Get started To use Embedding Atlas with Python: ```bash pip install embedding-atlas embedding-atlas ``` In addition to the command line tool, Embedding Atlas is also available as a Jupyter widget: ```python from embedding_atlas.widget import EmbeddingAtlasWidget # Show the Embedding Atlas widget for your data frame: EmbeddingAtlasWidget(df) ``` Finally, components from Embedding Atlas are also available in an npm package: ```bash npm install embedding-atlas ``` ```js import { EmbeddingAtlas, EmbeddingView, Table } from "embedding-atlas"; // or with React: import { EmbeddingAtlas, EmbeddingView, Table } from "embedding-atlas/react"; // or Svelte: import { EmbeddingAtlas, EmbeddingView, Table } from "embedding-atlas/svelte"; ``` For more information, please visit . ## BibTeX For the Embedding Atlas tool: ```bibtex @misc{ren2025embedding, title={Embedding Atlas: Low-Friction, Interactive Embedding Visualization}, author={Donghao Ren and Fred Hohman and Halden Lin and Dominik Moritz}, year={2025}, eprint={2505.06386}, archivePrefix={arXiv}, primaryClass={cs.HC}, url={https://arxiv.org/abs/2505.06386}, } ``` For the algorithm that automatically produces clusters and labels in the embedding view: ```bibtex @misc{ren2025scalable, title={A Scalable Approach to Clustering Embedding Projections}, author={Donghao Ren and Fred Hohman and Dominik Moritz}, year={2025}, eprint={2504.07285}, archivePrefix={arXiv}, primaryClass={cs.HC}, url={https://arxiv.org/abs/2504.07285}, } ``` ## Development This repo contains multiple sub-packages: Frontend: - `packages/component`: The `EmbeddingView` and `EmbeddingViewMosaic` components. - `packages/table`: The `Table` component. - `packages/viewer`: The frontend application for visualizing embedding and other columns. It also provides the `EmbeddingAtlas` component that can be embedded in other applications. - `packages/density-clustering`: The density clustering algorithm, written in Rust. - `packages/umap-wasm`: An implementation of UMAP algorithm in WebAssembly (with the [umappp](https://github.com/libscran/umappp) C++ library). - `packages/embedding-atlas`: The `embedding-atlas` package that get published. It imports all of the above and exposes their API in a single package. Python: - `packages/backend`: A Python package named `embedding-atlas` that provides the `embedding-atlas` command line tool. Documentation: - `packages/docs`: The documentation website. For more information, please visit . ## License This code is released under the [`MIT license`](LICENSE).