# ABSC_APWEBWAIM **Repository Path**: cppowboy_admin/ABSC_APWEBWAIM ## Basic Information - **Project Name**: ABSC_APWEBWAIM - **Description**: Aspect-based Sentiment Classification Project - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-01 - **Last Updated**: 2025-04-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ABSC_APWEBWAIM This is an aspect-based sentiment analysis project. We implemented many models(LSTM, ATAE-LSTM, BILSTM-ATT-G, GCAE, Memnet, RAM, TNet). If you use this code, please cite the original paper and this project. ## Requirements + python 3.6 + pytorch 1.0 + tensorboardX + tqdm + nltk + absl-py ## Usage ```bash # prepro python -m lstm.main --mode prepro # train python -m lstm.main --mode train # test python -m lstm.main --mode test # You can set different parameters or use different models and datasets. ``` ## Experiment Results | Models | Restaurant | Laptop | Twitter | | ------ | -----:| -----: | ----: | | LSTM | 76.70/63.57 | 69.28/63.30 | 66.04/63.46 | | ATAE-LSTM | 77.23/63.73 | 69.44/63.46 | 71.24/69.19 | | GCAE | 78.12/62.50 | 70.38/64.02 | 72.40/70.89 | | BILSTM-ATT-G | 79.20/67.07 | 71.32/64.88 | 71.68/70.37 | | Memnet | 77.86/64.47 | 68.18/62.46 | 69.80/66.86 | | RAM | 78.30/65.42 | 71.63/66.73 | 71.24/68.75 | | TNet | 78.39/65.37 | 73.98/68.64 | 72.11/70.01 | ## Models **ATAE-LSTM** Wang, Yequan, Minlie Huang, and Li Zhao. "Attention-based LSTM for aspect-level sentiment classification." Proceedings of the 2016 conference on empirical methods in natural language processing. 2016.