# ENAS-pytorch **Repository Path**: cppowboy_admin/ENAS-pytorch ## Basic Information - **Project Name**: ENAS-pytorch - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2018-02-28 - **Last Updated**: 2025-04-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of [Efficient Neural Architecture Search via Parameters Sharing](https://arxiv.org/abs/1802.03268).

ENAS_rnn

**ENAS** reduce the computational requirement (GPU-hours) of [Neural Architecture Search](https://arxiv.org/abs/1611.01578) (**NAS**) by 1000x via parameter sharing between models that are subgraphs within a large computational graph. SOTA on `Penn Treebank` language modeling. ## Prerequisites - Python 3.6+ - [PyTorch](http://pytorch.org/) - tqdm, scipy, imageio, graphviz, tensorboardX ## Usage Install prerequisites with: conda install graphviz pip install -r requirements.txt To train **ENAS** to discover a recurrent cell for RNN: python main.py --network_type rnn --dataset ptb --controller_optim adam --controller_lr 0.00035 \ --shared_optim sgd --shared_lr 20.0 --entropy_coeff 0.0001 python main.py --network_type rnn --dataset wikitext To train **ENAS** to discover CNN architecture (in progress): python main.py --network_type cnn --dataset cifar --controller_optim momentum --controller_lr_cosine=True \ --controller_lr_max 0.05 --controller_lr_min 0.0001 --entropy_coeff 0.1 or you can use your own dataset by placing images like: data ├── YOUR_TEXT_DATASET │ ├── test.txt │ ├── train.txt │ └── valid.txt ├── YOUR_IMAGE_DATASET │ ├── test │ │ ├── xxx.jpg (name doesn't matter) │ │ ├── yyy.jpg (name doesn't matter) │ │ └── ... │ ├── train │ │ ├── xxx.jpg │ │ └── ... │ └── valid │ ├── xxx.jpg │ └── ... ├── image.py └── text.py To generate `gif` image of generated samples: python generate_gif.py --model_name=ptb_2018-02-15_11-20-02 --output=sample.gif More configurations can be found [here](config.py). ## Results Efficient Neural Architecture Search (**ENAS**) is composed of two sets of learnable parameters, controller LSTM *θ* and the shared parameters *ω*. These two parameters are alternatively trained and only trained controller is used to derive novel architectures. ### 1. Discovering Recurrent Cells ![rnn](./assets/rnn.png) Controller LSTM decide 1) what activation function to use and 2) which previous node to connect. The RNN cell **ENAS** discovered for `Penn Treebank` and `WikiText-2` dataset: ptb wikitext Best discovered ENAS cell for `Penn Treebank` at epoch 27: ptb You can see the details of training (e.g. `reward`, `entropy`, `loss`) with: tensorboard --logdir=logs --port=6006 ### 2. Discovering Convolutional Neural Networks ![cnn](./assets/cnn.png) Controller LSTM samples 1) what computation operation to use and 2) which previous node to connect. The CNN network **ENAS** discovered for `CIFAR-10` dataset: (in progress) ### 3. Designing Convolutional Cells (in progress) ## Reference - [Neural Architecture Search with Reinforcement Learning](https://arxiv.org/abs/1611.01578) - [Neural Optimizer Search with Reinforcement Learning](https://arxiv.org/abs/1709.07417) ## Author Taehoon Kim / [@carpedm20](http://carpedm20.github.io/)