# NN4ABSA **Repository Path**: cppowboy_admin/NN4ABSA ## Basic Information - **Project Name**: NN4ABSA - **Description**: Neural Network based models for Aspect-Based Sentiment Analysis - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-01 - **Last Updated**: 2025-04-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # NN4ABSA Neural Network based model for Aspect-Based Sentiment Analysis. * NOTE: it is **NOT** related to our finished or ongoing research projects. # Model 1 * Word embeddings: [stanford GloVe](https://nlp.stanford.edu/projects/glove/) * Ctx Feat Extractor: CNN + Multi-Channel * Target Feat Extractor: Weighted sum of word vectors making up the target phrase # Performance (accuracy & macro-F1) | | 14semval-restaurant | 14semeval-laptop | Twitter | |---|---|---|---| |ATAE-LSTM [1] | 77.2/- | 68.7/ | - | |MemNet [2] | 78.16/65.83 | 70.33/64.09 | 68.50/66.91 | |IAN [3] | 78.6/- | 72.1/- | - | |RAM [4] | 80.23/70.80 | 74.49/71.35 | 69.36/67.30 | |Model 1 | 79.43/69.49 | 74.65/69.27 | 71.10/69.32 | # References 1. Attention-based LSTM for Aspect-level Sentiment Classification. EMNLP 2016 2. Aspect Level Sentiment Classification with Deep Memory Network. EMNLP 2016 3. Interactive Attention Networks for Aspect-Level Sentiment Classification. IJCAI 2017 4. Recurrent Attention Network on Memory for Aspect Sentiment Analysis. EMNLP 2017