# STDN **Repository Path**: crchen/STDN ## Basic Information - **Project Name**: STDN - **Description**: Code for our Spatiotemporal Dynamic Network - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-11 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # STDN (Spatial-Temporal Dynamic Network) ## About Source code of the paper [Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction](https://arxiv.org/abs/1803.01254) If you find this repository useful in your research, please cite the following paper: ``` @inproceedings{yao2019revisiting, title={Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic Prediction}, author={Yao, Huaxiu and Tang, Xianfeng and Wei, Hua and Zheng, Guanjie and Li, Zhenhui}, booktitle={2019 AAAI Conference on Artificial Intelligence (AAAI'19)}, year={2019} } ``` ## Installation Requirements - Python 3.6 (Recommend Anaconda) - Ubuntu 16.04.3 LTS - Keras >= 2.0.8 - tensorflow-gpu (or tensorflow) == 1.3.0 ([install guide](https://www.tensorflow.org/versions/r1.0/install/install_linux)) ## Usage - Download all codes (*\*.py*) and put them in the same folder (let's name it "stdn") (*stdn/\*.py*) - Create "data" folder in the same folder (*stdn/data/*) - Create "hdf5s" folder for logs (if not exist) (*stdn/hdf5s/*) - Download and extract all data files (*\*.npz*) from data.zip and put them in "data" folder (*stdn/data/\*.npz*) - Open terminal in the same folder (*stdn/*) - Run with "python main.py" for NYC taxi dataset, or "python main.py --dataset=bike" for NYC bike dataset ``` python main.py ``` ``` python main.py --dataset=bike ``` - Check the output results (RMSE and MAPE). Models are saved to "hdf5s" folder for further use. ## Hyperparameters: Please check the hyperparameters defined in main.py