# CenterNet_TensorRT_Nano **Repository Path**: cuglujun/CenterNet_TensorRT_Nano ## Basic Information - **Project Name**: CenterNet_TensorRT_Nano - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-07-30 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CenterNet_TensorRT_Nano Centernet use TensorRT speed up on Nano # TODO - [x] x86 x64 Dockerfile - [x] Nano Dockerfile - [x] Resnet50 to Tensorrt - [x] Centernet backbone to Tensorrt - [x] Centernet inference on nano camera - [ ] upsample for Tensorrt - [ ] CI/CD # Environment I am use the Docker to build Amd(x64/x86) and Arm(Nano) environment so use docker or follow my dockerfile to build the environment ## Dockerfile x64_x86 Dockerfile : CenterNet_TensorRT_Nano -> docker_pytorch_x86_x64 -> Dockerfile DockeImage : bluce54088/tensorrt_pytorch_x86_x64:v0 1. Run docker ``` docker run --shm-size 24G --gpus all -it -p 6667:22 --name tensorrt_pytorch bluce54088/tensorrt_pytorch_x86_x64:v0 ``` 2. check environment ``` python3 import tensorrt ``` ## Dockerfile Nano Dockerfile : CenterNet_TensorRT_Nano -> docker_tensorrt_python_nano_arm -> Dockerfile DockeImage : bluce54088/nano_cuda_pytorch:v0 1. Run docker ``` docker run -it --net=host --runtime nvidia --device /dev/video0 -e DISPLAY=$DISPLAY -v /usr/lib/python3.6/dist-packages/tensorrt:/usr/lib/python3.6/dist-packages/tensorrt bluce54088/nano_cuda_pytorch:v1 ``` 2. check environment ``` python3 import tensorrt ``` # Quick start test tensorrt 1.Pull CenterNet_TensorRT_Nano ``` cd /root/CenterNet_edge/ git pull ``` 2. Run Tesorrt Resnet50 test ``` python3 torch2trt_test.py ``` Model | Device | without TensorRT | with TensorRT --------------|:-----:|-----:| -------------------------- Resnet50 | 1080ti | 0.123ms | 0.051ms Resnet50 | Nano | 0.438ms | 0.200ms # Inference Centernet For CoCo Sampledata ``` python3 inference.py ctdet --exp_id coco_res18 --backbone res_18 --batch_size 1 --load_model ./exp/ctdet/coco_res18/model_best.pth --fix_res --tensorrt ``` Result sample 图片描述文字 图片描述文字 图片描述文字 图片描述文字 # Inference Centernet For Webcam ``` ctdet --exp_id coco_res18 --backbone res_18 --batch_size 1 --load_model ./exp/ctdet/coco_res18/model_best.pth --fix_res --tensorrt --demo Webcam ``` # Reference [CenterNet](https://github.com/xingyizhou/CenterNet) [Tensorrt](https://developer.nvidia.com/tensorrt) [Torch2trt](https://github.com/NVIDIA-AI-IOT/torch2trt)