# LatticeLSTM **Repository Path**: curtainwang/LatticeLSTM ## Basic Information - **Project Name**: LatticeLSTM - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-03-25 - **Last Updated**: 2021-03-25 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Chinese NER Using Lattice LSTM ==== Lattice LSTM for Chinese NER. Character based LSTM with Lattice embeddings as input. Models and results can be found at our ACL 2018 paper [Chinese NER Using Lattice LSTM](https://arxiv.org/pdf/1805.02023.pdf). It achieves 93.18% F1-value on MSRA dataset, which is the state-of-the-art result on Chinese NER task. Details will be updated soon. Requirement: ====== Python: 2.7 PyTorch: 0.3.0 (for PyTorch 0.3.1, please refer [issue#8](https://github.com/jiesutd/LatticeLSTM/issues/8) for a slight modification.) Input format: ====== CoNLL format (prefer BIOES tag scheme), with each character its label for one line. Sentences are splited with a null line. 美 B-LOC 国 E-LOC 的 O 华 B-PER 莱 I-PER 士 E-PER 我 O 跟 O 他 O 谈 O 笑 O 风 O 生 O Pretrained Embeddings: ==== The pretrained character and word embeddings are the same with the embeddings in the baseline of [RichWordSegmentor](https://github.com/jiesutd/RichWordSegmentor) Character embeddings (gigaword_chn.all.a2b.uni.ite50.vec): [Google Drive](https://drive.google.com/file/d/1_Zlf0OAZKVdydk7loUpkzD2KPEotUE8u/view?usp=sharing) or [Baidu Pan](https://pan.baidu.com/s/1pLO6T9D) Word(Lattice) embeddings (ctb.50d.vec): [Google Drive](https://drive.google.com/file/d/1K_lG3FlXTgOOf8aQ4brR9g3R40qi1Chv/view?usp=sharing) or [Baidu Pan](https://pan.baidu.com/s/1pLO6T9D) How to run the code? ==== 1. Download the character embeddings and word embeddings and put them in the `data` folder. 2. Modify the `run_main.py` or `run_demo.py` by adding your train/dev/test file directory. 3. `sh run_main.py` or `sh run_demo.py` Resume NER data ==== Crawled from the Sina Finance, it includes the resumes of senior executives from listed companies in the Chinese stock market. Details can be found in our paper. Cite: ======== Please cite our ACL 2018 paper: @article{zhang2018chinese, title={Chinese NER Using Lattice LSTM}, author={Yue Zhang and Jie Yang}, booktitle={Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL)}, year={2018} }