# SeqMatchSeq3 **Repository Path**: curtainwang/seq-match-seq3 ## Basic Information - **Project Name**: SeqMatchSeq3 - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-12 - **Last Updated**: 2021-04-12 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SeqMatchSeq in Tensorflow This is a tensorflow implementation of SeqMatchSeq model in [Learning Natural Language Inference with LSTM](https://arxiv.org/abs/1512.08849). ![](README/arch.png) ## Environments * Python 3.x * TensorFlow 1.2.x ## Pre-trained Word Vectors I use glove.6B shared by Jeffrey Pennington et al.. It can be found at [link](https://nlp.stanford.edu/projects/glove/). ## Data The data used is Stanford Natural Language Inference (SNLI) corpus which can be downloaded at [link](https://nlp.stanford.edu/projects/snli/). ## Usage abandoning useless word vectors $ python customize_embedding.py --data_dir DATA_DIR --embedding_path EMBEDDING_PATH training $ python natural_language_inference.py --ARG=VALUE evaluating $ python natural_language_inference.py --forward_only=True --ARG=VALUE visualizing $ tensorboard --logdir=DIR ## Results I achieved 81.7415% correct rate on dev set (\~3 epochs).