# torch-gpu **Repository Path**: damone/torch-gpu ## Basic Information - **Project Name**: torch-gpu - **Description**: Torch GPU docker 环境的创建及快速使用 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2021-12-04 - **Last Updated**: 2023-04-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Pytorch 快速使用的容器案例 1. 创建 ```sh bash ./create.sh ``` 2. 进入容器 ```sh bash ./entry.sh ``` 3. 启动容器 容器创建自带了自动重启功能,一般不需要 ```sh bash ./start.sh ``` 4. 销毁容器 ```sh bash ./clear.sh ``` 5. 运行测试 默认进入容器后进入conda 的base环境,该环境安装了需要的pytorch 软件 运行如下进行测试 ``` (base) root@8d326a869c84:~/example# python test.py 99 1994.056396484375 199 1330.2864990234375 299 888.8197021484375 399 595.0929565429688 499 399.5873107910156 599 269.404296875 699 182.68043518066406 799 124.8812026977539 899 86.34074401855469 999 60.628963470458984 1099 43.46638870239258 1199 32.00395202636719 1299 24.344066619873047 1399 19.222064971923828 1499 15.794866561889648 1599 13.500123977661133 1699 11.962587356567383 1799 10.931628227233887 1899 10.23979377746582 1999 9.775188446044922 Result: y = 0.01719123311340809 + 0.8311278820037842 x + -0.0029657729901373386 x^2 + -0.08968716859817505 x^3 ```