# Mask-Predict **Repository Path**: dasdsadasdas/Mask-Predict ## Basic Information - **Project Name**: Mask-Predict - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-10-30 - **Last Updated**: 2024-10-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Mask-Predict ### Download model Description | Dataset | Model ---|---|--- MASK-PREDICT | [WMT14 English-German] | [download (.tar.bz2)](http://dl.fbaipublicfiles.com/fairseq/models/maskPredict_en_de.tar.gz) MASK-PREDICT | [WMT14 German-English] | [download (.tar.bz2)](http://dl.fbaipublicfiles.com/fairseq/models/maskPredict_de_en.tar.gz) MASK-PREDICT | [WMT16 English-Romanian] | [download (.tar.bz2)](http://dl.fbaipublicfiles.com/fairseq/models/maskPredict_en_ro.tar.gz) MASK-PREDICT | [WMT16 Romanian-English] | [download (.tar.bz2)](http://dl.fbaipublicfiles.com/fairseq/models/maskPredict_ro_en.tar.gz) MASK-PREDICT | [WMT17 English-Chinese] | [download (.tar.bz2)](http://dl.fbaipublicfiles.com/fairseq/models/maskPredict_en_zh.tar.gz) MASK-PREDICT | [WMT17 Chinese-English] | [download (.tar.bz2)](http://dl.fbaipublicfiles.com/fairseq/models/maskPredict_zh_en.tar.gz) ### Preprocess text=PATH_YOUR_DATA output_dir=PATH_YOUR_OUTPUT src=source_language tgt=target_language model_path=PATH_TO_MASKPREDICT_MODEL_DIR python preprocess.py --source-lang ${src} --target-lang ${tgt} --trainpref $text/train --validpref $text/valid --testpref $text/test --destdir ${output_dir}/data-bin --workers 60 --srcdict ${model_path}/maskPredict_${src}_${tgt}/dict.${src}.txt --tgtdict ${model_path}/maskPredict_${src}_${tgt}/dict.${tgt}.txt ### Train model_dir=PLACE_TO_SAVE_YOUR_MODEL python train.py ${output_dir}/data-bin --arch bert_transformer_seq2seq --share-all-embeddings --criterion label_smoothed_length_cross_entropy --label-smoothing 0.1 --lr 5e-4 --warmup-init-lr 1e-7 --min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates 10000 --optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 --task translation_self --max-tokens 8192 --weight-decay 0.01 --dropout 0.3 --encoder-layers 6 --encoder-embed-dim 512 --decoder-layers 6 --decoder-embed-dim 512 --fp16 --max-source-positions 10000 --max-target-positions 10000 --max-update 300000 --seed 0 --save-dir ${model_dir} ### Evaluation python generate_cmlm.py ${output_dir}/data-bin --path ${model_dir}/checkpoint_best_average.pt --task translation_self --remove-bpe --max-sentences 20 --decoding-iterations 10 --decoding-strategy mask_predict # License MASK-PREDICT is CC-BY-NC 4.0. The license applies to the pre-trained models as well. # Citation Please cite as: ```bibtex @inproceedings{ghazvininejad2019MaskPredict, title = {Mask-Predict: Parallel Decoding of Conditional Masked Language Models}, author = {Marjan Ghazvininejad, Omer Levy, Yinhan Liu, Luke Zettlemoyer}, booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing}, year = {2019}, } ```