# TensorRT_yolo3 **Repository Path**: dcctt/TensorRT_yolo3 ## Basic Information - **Project Name**: TensorRT_yolo3 - **Description**: use TensorRT accelerate yolo3 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-01-03 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Update on 2019-04-19 - I have optimized and upgraded this project. So: - If you see this project for the first time, you can jump to [This project](https://github.com/Cw-zero/TensorRT_yolo3_module) directly. - If you meet some bug on this project,you can try [This project](https://github.com/Cw-zero/TensorRT_yolo3_module). # Use TensorRT accelerate yolo3 --- ## 1. How to run this project - a. Download yolo3.weight from [this](https://pjreddie.com/media/files/yolov3.weights), and change the name to **yolov3-608.weights**. - b. `python yolov3_to_onnx.py`, you will have a file named **yolov3-608.onnx** - c. `python onnx_to_tensorrt.py`,you can get the result of detections. ## 2. Performance compare - a.You can download and run [this project](https://github.com/ayooshkathuria/pytorch-yolo-v3), which our project is changed from it. It detection speed is about **100ms** per image. - b.Our project speed is about **62ms** per image ## 3.Others - If you are more familiar with Chinese, you can refer to this blog(https://www.cnblogs.com/justcoder/), which has more details.