24 Star 104 Fork 59

DeepSpark/DeepSparkHub

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
Apache-2.0

DeepSparkHub

Homepage

DeepSparkHub甄选上百个应用算法和模型,覆盖AI和通用计算各领域,支持主流市场智能计算场景,包括智慧城市、数字个人、医疗、教育、通信、能源等多个领域。

模型库

大语言模型(LLM)

Model Framework ToolBox Dataset/Weight IXUCA SDK
Aquila2-34B PyTorch Megatron-DeepSpeed Bookcorpus 3.4.0
Baichuan2-7B PyTorch DeepSpeed baichuan2-7b-base 3.4.0
Bloom-7B1 PyTorch Firefly school_math_0.25M 3.4.0
ChatGLM-6B PyTorch DeepSpeed ADGEN & chatglm-6b 3.1.0
ChatGLM2-6B SFT PyTorch DeepSpeed ADGEN & chatglm2-6b 3.4.0
ChatGLM3-6B PyTorch DeepSpeed ADGEN & chatglm3-6b 4.1.1
DeepSeekMoE 7B PyTorch ColossalAI deepseek-moe-16b-base 4.1.1
GLM-4 PyTorch Torchrun glm-4-9b-chat 4.2.0
Llama-7B PyTorch ColossalAI llama-7b-hf 3.1.0
Llama2-7B PyTorch Megatron-DeepSpeed Bookcorpus 3.1.0
Llama2-7B RMF PyTorch DeepSpeed Dahoas/rm-static 3.1.1
Llama2-7B RLHF PyTorch Megatron-DeepSpeed llama2-7b&tiny-llama 3.4.0
Llama2-7B SFT PyTorch Megatron-DeepSpeed GPT Small-117M 3.1.1
Llama2-13B PyTorch Megatron-DeepSpeed Bookcorpus 3.4.0
Llama2-34B PyTorch Megatron-DeepSpeed Bookcorpus 3.4.0
Llama3-8B PyTorch Megatron-DeepSpeed Bookcorpus 4.1.1
Llama3-8B SFT PyTorch ColossalAI school_math_0.25M 4.1.1
Mamba-2 PyTorch Megatron-LM GPT Small-117M 4.1.1
MiniCPM PyTorch DeepSpeed MiniCPM-2B-sft-bf16 4.2.0
Mixtral 8x7B PyTorch Megatron-LM GPT Small-117M 4.1.1
Phi-3 PyTorch Torchrun Phi-3-mini-4k-instruct 4.2.0
QWen-7B PyTorch Firefly qwen-7b 3.4.0
QWen1.5-7B PyTorch Firefly school_math 4.1.1
QWen1.5-14B PyTorch Firefly school_math 4.1.1
Qwen2.5-7B SFT PyTorch LLaMA-Factory qwen2.5-7b 4.1.1
Yi-6B PyTorch DeepSpeed Yi-6B 4.2.0
Yi-1.5-6B PyTorch DeepSpeed Yi-1.5-6B 4.2.0
Yi-VL-6B PyTorch LLaMA-Factory Yi-VL-6B-hf 4.2.0

计算机视觉(CV)

视觉分类

Model Framework Dataset IXUCA SDK
ACmix PyTorch ImageNet 2.2.0
ACNet PyTorch ImageNet 3.1.0
AlexNet PyTorch ImageNet 2.2.0
AlexNet TensorFlow ImageNet 3.1.0
BYOL PyTorch ImageNet 3.1.0
CBAM PyTorch ImageNet 3.0.0
ConvNext PyTorch ImageNet 2.2.0
CspDarknet53 PyTorch ImageNet 3.0.0
DenseNet PaddlePaddle ImageNet 3.1.0
DenseNet PyTorch ImageNet 2.2.0
DPN92 PyTorch ImageNet 2.2.0
DPN107 PyTorch ImageNet 2.2.0
ECA-MobileNetV2 PyTorch ImageNet 2.2.0
ECA-ResNet152 PyTorch ImageNet 2.2.0
EfficientNetB0 PaddlePaddle ImageNet 3.1.0
EfficientNetB4 PyTorch ImageNet 2.2.0
FasterNet PyTorch ImageNet 3.0.0
GoogLeNet PyTorch ImageNet 2.2.0
GoogLeNet PaddlePaddle ImageNet 2.3.0
InceptionV3 MindSpore ImageNet 3.1.0
InceptionV3 PyTorch ImageNet 2.2.0
InceptionV3 TensorFlow ImageNet 3.1.0
InceptionV4 PyTorch ImageNet 2.2.0
InternImage PyTorch ImageNet 3.1.0
LeNet PyTorch ImageNet 2.2.0
MobileNetV2 PyTorch ImageNet 2.2.0
MobileNetV3 MindSpore ImageNet 3.1.0
MobileNetV3 PyTorch ImageNet 2.2.0
MobileNetV3 PaddlePaddle ImageNet 2.3.0
MobileNetV3_Large1.0 PaddlePaddle ImageNet 3.1.0
MobileOne PyTorch ImageNet 3.1.0
MoCoV2 PyTorch ImageNet 3.1.0
PP-LCNet PaddlePaddle ImageNet 3.1.0
RepMLP PyTorch ImageNet 3.1.0
RepVGG PyTorch ImageNet 3.0.0
RepVGG PaddlePaddle ImageNet 3.0.0
RepViT PyTorch ImageNet 3.1.0
Res2Net50_14w_8s PaddlePaddle ImageNet 3.1.0
ResNeSt14 PyTorch ImageNet 2.2.0
ResNeSt50 PyTorch ImageNet 2.2.0
ResNeSt50 PaddlePaddle ImageNet 3.0.0
ResNeSt101 PyTorch ImageNet 2.2.0
ResNeSt269 PyTorch ImageNet 2.2.0
ResNet18 PyTorch ImageNet 2.2.0
ResNet50 PyTorch ImageNet 2.2.0
ResNet50 PaddlePaddle ImageNet 2.3.0
ResNet50 TensorFlow ImageNet 3.0.0
ResNet101 PyTorch ImageNet 2.2.0
ResNet152 PyTorch ImageNet 2.2.0
ResNeXt50_32x4d MindSpore ImageNet 3.1.0
ResNeXt50_32x4d PyTorch ImageNet 2.2.0
ResNeXt101_32x8d PyTorch ImageNet 2.2.0
SE_ResNet50_vd PaddlePaddle ImageNet 3.1.0
SEResNeXt PyTorch ImageNet 2.2.0
ShuffleNetV2 PaddlePaddle ImageNet 3.1.0
ShuffleNetV2 PyTorch ImageNet 2.2.0
SqueezeNet PyTorch ImageNet 2.2.0
Swin Transformer PaddlePaddle ImageNet 3.0.0
Swin Transformer PyTorch ImageNet 2.2.0
VGG16 PaddlePaddle ImageNet 2.3.0
VGG16 PyTorch ImageNet 2.2.0
VGG16 TensorFlow ImageNet 3.1.0
Wave-MLP PyTorch ImageNet 2.2.0
Wide_ResNet101_2 PyTorch ImageNet 2.2.0
Xception PaddlePaddle ImageNet 3.1.0
Xception PyTorch ImageNet 2.2.0

人脸检测

Model Framework Dataset IXUCA SDK
RetinaFace PyTorch WIDER FACE 3.0.0

人脸识别

Model Framework Dataset IXUCA SDK
ArcFace PyTorch CASIA-WebFaces&LFW 3.0.0
BlazeFace PaddlePaddle WIDER FACE 3.1.0
CosFace PyTorch CASIA-WebFaces&LFW 3.0.0
FaceNet PyTorch CASIA-WebFaces&LFW 3.0.0
FaceNet TensorFlow CASIA-WebFaces&LFW 3.1.0

实例分割

Model Framework Dataset IXUCA SDK
SOLO PyTorch COCO 3.0.0
SOLOv2 PaddlePaddle COCO 3.0.0
SOLOv2 PyTorch COCO 3.1.0
YOLACT++ PyTorch COCO 3.0.0

图像生成

Model Framework Dataset IXUCA SDK
DCGAN MindSpore ImageNet 3.0.0
Pix2Pix PaddlePaddle facades 3.1.0

知识蒸馏

Model Framework Dataset IXUCA SDK
CWD PyTorch Cityscapes 3.0.0
RKD PyTorch CUB-200-2011 3.0.0
WSLD PyTorch ImageNet 3.1.0

目标检测

Model Framework Dataset IXUCA SDK
ATSS PyTorch (MMDetection) COCO 3.0.0
AutoAssign PyTorch COCO 2.2.0
Cascade R-CNN PyTorch (MMDetection) COCO 3.0.0
CenterMask2 PyTorch COCO 4.1.1
CenterNet PyTorch COCO 2.2.0
CenterNet PaddlePaddle COCO 3.0.0
Co-DETR PyTorch COCO 3.1.0
CornerNet PyTorch (MMDetection) COCO 3.0.0
DCNV2 PyTorch (MMDetection) COCO 3.0.0
DETR PaddlePaddle COCO 3.0.0
Faster R-CNN PyTorch COCO 2.2.0
FCOS PaddlePaddle COCO 3.0.0
FCOS PyTorch COCO 3.0.0
Mamba-YOLO PyTorch COCO 4.1.1
Mask R-CNN PyTorch COCO 2.2.0
Mask R-CNN PaddlePaddle COCO 2.3.0
OC_SORT PaddlePaddle MOT17 3.1.0
Oriented RepPoints PyTorch DOTA 3.1.0
PP-PicoDet PaddlePaddle COCO 3.1.0
PP-YOLOE PaddlePaddle COCO 2.3.0
PP-YOLOE+ PaddlePaddle COCO 3.1.1
PVANet PyTorch COCO 2.2.0
RepPoints PyTorch (MMDetection) COCO 3.0.0
RetinaNet PyTorch COCO 2.2.0
RetinaNet PaddlePaddle COCO 3.0.0
RT-DETR PyTorch COCO 4.1.1
RTMDet PyTorch COCO 3.1.0
SSD PyTorch COCO 2.2.0
SSD PaddlePaddle COCO 2.3.0
SSD TensorFlow VOC 3.0.0
SSD MindSpore COCO 3.0.0
YOLOF PyTorch COCO 2.2.0
YOLOv3 PyTorch COCO 2.2.0
YOLOv3 PaddlePaddle COCO 2.3.0
YOLOv3 TensorFlow VOC 3.0.0
YOLOv5 PaddlePaddle COCO 3.1.1
YOLOv5 PyTorch COCO 2.2.0
YOLOv6 PyTorch COCO 3.0.0
YOLOv7 PyTorch COCO 3.0.0
YOLOv8 PyTorch COCO 3.0.0
YOLOv9 PyTorch COCO 4.1.1
YOLOv10 PyTorch COCO 4.1.1

三维目标检测

Model Framework Dataset IXUCA SDK
BEVFormer PyTorch nuScenes&CAN bus 3.0.0
CenterPoint PyTorch nuScenes 3.1.1
PAConv PyTorch S3DIS 3.1.1
Part-A2-Anchor PyTorch KITTI 4.1.1
Part-A2-Free PyTorch KITTI 4.1.1
PointNet++ PyTorch S3DIS 3.0.0
PointPillars PyTorch KITTI 3.0.0
PointRCNN PyTorch KITTI 3.1.1
PointRCNN-IoU PyTorch KITTI 4.1.1
SECOND PyTorch KITTI 4.1.1
SECOND-IoU PyTorch KITTI 4.1.1

三维重建

Model Framework Dataset IXUCA SDK
HashNeRF PyTorch fox 2.2.0

图神经网络(GNN)

Model Framework Dataset IXUCA SDK
GAT PaddlePaddle CORA 3.1.0
GCN MindSpore CORA & Citeseer 3.0.0
GCN PaddlePaddle CORA & PubMed & Citeseer 3.1.0
GraphSAGE PaddlePaddle Reddit 3.1.0

光学字符识别(OCR)

Model Framework Dataset IXUCA SDK
CRNN MindSpore OCR_Recog 3.1.0
CRNN PaddlePaddle LMDB 2.3.0
DBNet PyTorch ICDAR2015 3.0.0
DBNet++ PaddlePaddle ICDAR2015 3.1.1
DBNet++ PyTorch ICDAR2015 3.1.0
PP-OCR-DB PaddlePaddle ICDAR2015 2.3.0
PP-OCR-EAST PaddlePaddle ICDAR2015 3.1.1
PSE PaddlePaddle OCR_Recog 2.3.0
SAR PyTorch OCR_Recog 2.2.0
SAST PaddlePaddle ICDAR2015 3.1.1
SATRN PyTorch OCR_Recog 2.2.0

点云

Model Framework Dataset IXUCA SDK
Point-BERT PyTorch ShapeNet55 & processed ModelNet 2.2.0

姿态估计

Model Framework Dataset IXUCA SDK
AlphaPose PyTorch COCO 3.0.0
HRNet PyTorch COCO 2.2.0
HRNet-W32 PaddlePaddle COCO 3.1.0
OpenPose MindSpore COCO 3.1.0

自监督学习

Model Framework Dataset IXUCA SDK
MAE PyTorch ImageNet 3.0.0

语义分割

Model Framework Dataset IXUCA SDK
3D-UNet PyTorch kits19 2.2.0
APCNet PyTorch Cityscapes 2.2.0
Attention U-net PyTorch Cityscapes 3.0.0
BiSeNet PyTorch COCO 2.2.0
BiSeNetV2 PaddlePaddle Cityscapes 3.0.0
BiSeNetV2 PyTorch Cityscapes 3.1.1
CGNet PyTorch COCO 2.2.0
ContextNet PyTorch COCO 2.2.0
DabNet PyTorch COCO 2.2.0
DANet PyTorch COCO 2.2.0
DDRnet PyTorch Cityscapes 3.0.0
DeepLabV3 PyTorch COCO 2.2.0
DeepLabV3 PaddlePaddle Cityscapes 2.3.0
DeepLabV3 MindSpore VOC 3.0.0
DeepLabV3+ PaddlePaddle Cityscapes 3.0.0
DeepLabV3+ TensorFlow Cityscapes 3.1.0
DenseASPP PyTorch COCO 2.2.0
DFANet PyTorch COCO 2.2.0
DNLNet PaddlePaddle Cityscapes 2.3.0
DUNet PyTorch COCO 2.2.0
EncNet PyTorch COCO 2.2.0
ENet PyTorch COCO 2.2.0
ERFNet PyTorch COCO 2.2.0
ESPNet PyTorch COCO 2.2.0
FastFCN PyTorch ADE20K 3.1.0
FastSCNN PyTorch COCO 2.2.0
FCN PyTorch COCO 2.2.0
FPENet PyTorch COCO 2.2.0
GCNet PyTorch Cityscapes 2.2.0
HardNet PyTorch COCO 2.2.0
ICNet PyTorch COCO 2.2.0
LedNet PyTorch COCO 2.2.0
LinkNet PyTorch COCO 2.2.0
Mask2Former PyTorch Cityscapes 3.1.0
MobileSeg PaddlePaddle Cityscapes 3.1.0
OCNet PyTorch COCO 2.2.0
OCRNet PaddlePaddle Cityscapes 3.1.0
OCRNet PyTorch Cityscapes 2.2.0
PP-HumanSegV1 PaddlePaddle PP-HumanSeg14K 3.1.0
PP-HumanSegV2 PaddlePaddle PP-HumanSeg14K 3.1.0
PP-LiteSeg PaddlePaddle Cityscapes 3.1.0
PSANet PyTorch COCO 2.2.0
PSPNet PyTorch Cityscapes 2.2.0
RefineNet PyTorch COCO 2.2.0
SegNet PyTorch COCO 2.2.0
STDC PaddlePaddle Cityscapes 3.1.0
STDC PyTorch Cityscapes 3.0.0
UNet PyTorch COCO 2.2.0
UNet PaddlePaddle Cityscapes 2.3.0
UNet++ PyTorch DRIVE 3.0.0
VNet TensorFlow Hippocampus 3.0.0

超分辨率

Model Framework Dataset IXUCA SDK
basicVSR++ PyTorch REDS 2.2.0
basicVSR PyTorch REDS 2.2.0
ESRGAN PyTorch DIV2K 2.2.0
LIIF PyTorch DIV2K 2.2.0
RealBasicVSR PyTorch REDS 2.2.0
TTSR PyTorch CUFED 2.2.0
TTVSR PyTorch REDS 2.2.0

多目标跟踪

Model Framework Dataset IXUCA SDK
ByteTrack PaddlePaddle MOT17 3.1.0
DeepSORT PyTorch Market-1501 3.0.0
FairMOT PyTorch MOT17 2.2.0

多模态

Model Framework Dataset IXUCA SDK
BLIP PyTorch COCO 3.1.1
CLIP PyTorch CIFAR100 2.2.0
ControlNet PyTorch Fill50K 3.1.0
DDPM PyTorch CIFAR-10 3.1.0
LLaVA 1.5 PyTorch LLaVA-Pretrain 4.1.1
L-Verse PyTorch ImageNet 2.2.0
MoE-LLaVA-Phi2-2.7B PyTorch MoE-LLaVA 4.2.0
MoE-LLaVA-Qwen-1.8B PyTorch MoE-LLaVA 4.2.0
MoE-LLaVA-StableLM-1.6B PyTorch MoE-LLaVA 4.2.0
Stable Diffusion 1.4 PyTorch pokemon-images 3.0.0
Stable Diffusion 1.5 PyTorch pokemon-images 4.1.1
Stable Diffusion 2.1 PyTorch pokemon-images 4.1.1
Stable Diffusion 3 PyTorch dog-example 4.1.1
Stable Diffusion XL PyTorch pokemon-images 4.1.1

自然语言处理(NLP)

完形填空

Model Framework Dataset IXUCA SDK
GLM PyTorch GLMForMultiTokenCloze 2.2.0

对话生成

Model Framework Dataset IXUCA SDK
CPM PyTorch STC 2.2.0

语言建模

Model Framework Dataset IXUCA SDK
BART PyTorch (Fairseq) RTE 3.0.0
BERT NER PyTorch CoNLL-2003 3.0.0
BERT Pretraining PyTorch MLCommon Wikipedia 2.2.0
BERT Pretraining PaddlePaddle MNLI 2.3.0
BERT Pretraining TensorFlow MNLI 3.0.0
BERT Pretraining MindSpore SQuAD 3.0.0
BERT Text Classification PyTorch GLUE 3.0.0
BERT Text Summerization PyTorch cnn_dailymail 3.0.0
BERT Question Answering PyTorch SQuAD 3.0.0
GPT2-Medium-EN PaddlePaddle SST-2 3.1.0
RoBERTa PyTorch (Fairseq) RTE 3.0.0
XLNet PaddlePaddle SST-2 3.1.0

文本纠错

Model Framework Dataset IXUCA SDK
ERNIE PaddlePaddle corpus 2.3.0

翻译

Model Framework Dataset IXUCA SDK
Convolutional PyTorch (Fairseq) WMT14 3.0.0
T5 PyTorch WMT14 2.2.0
Transformer PaddlePaddle WMT14 2.3.0
Transformer PyTorch (Fairseq) IWSLT14 3.0.0

强化学习

Model Framework Dataset IXUCA SDK
DQN PaddlePaddle CartPole-v0 3.1.0

语音

语音识别

Model Framework Dataset IXUCA SDK
Conformer PyTorch (WeNet) AISHELL 2.2.0
Efficient Conformer v2 PyTorch (WeNet) AISHELL 3.1.0
PP-ASR-Conformer PaddlePaddle AISHELL 3.1.0
RNN-T PyTorch LJSpeech 2.2.0
Transformer PyTorch (WeNet) AISHELL 3.0.0
U2++ Conformer PyTorch (WeNet) AISHELL 3.0.0
Unified Conformer PyTorch (WeNet) AISHELL 3.0.0

语音合成

Model Framework Dataset IXUCA SDK
PP-TTS-FastSpeech2 PaddlePaddle CSMSC 3.1.0
PP-TTS-HiFiGAN PaddlePaddle CSMSC 3.1.0
Tacotron2 PyTorch LJSpeech 2.2.0
VQMIVC PyTorch VCTK-Corpus 2.2.0
WaveGlow PyTorch LJSpeech 2.2.0

其他

图机器学习

Model Framework Dataset IXUCA SDK
Graph WaveNet PyTorch METR-LA & PEMS-BAY 2.2.0

柯尔莫哥洛夫-阿诺德网络(KAN)

Model Framework Dataset IXUCA SDK
KAN PyTorch - 4.1.1

模型剪枝

Model Framework Dataset IXUCA SDK
Network Slimming PyTorch CIFAR-10/100 3.0.0

推荐系统

Model Framework Dataset IXUCA SDK
DeepFM PaddlePaddle Criteo_Terabyte 2.3.0
DLRM PyTorch Criteo_Terabyte 2.2.0
DLRM PaddlePaddle Criteo_Terabyte 3.1.0
FFM PaddlePaddle Criteo_Terabyte 3.1.0
NCF PyTorch movielens 2.2.0
Wide&Deep PaddlePaddle Criteo_Terabyte 2.3.0
xDeepFM PaddlePaddle Criteo_Terabyte 3.1.0

容器镜像构建方式

社区用户可参考容器镜像构建说明在本地构建出能够运行DeepSparkHub仓库中模型的容器镜像。


社区

治理

请参见 DeepSpark Code of Conduct on Gitee or on GitHub

交流

请联系 contact@deepspark.org.cn

贡献

请参见 DeepSparkHub Contributing Guidelines

免责声明

DeepSparkHub仅提供公共数据集的下载和预处理脚本。这些数据集不属于DeepSparkHub,DeepSparkHub也不对其质量或维护负责。请确保 您具有这些数据集的使用许可,基于这些数据集训练的模型仅可用于非商业研究和教育。

致数据集所有者:

如果不希望您的数据集公布在DeepSparkHub上或希望更新DeepSparkHub中属于您的数据集,请在Gitee或Github上提交issue,我们将按您 的issue删除或更新。衷心感谢您对我们社区的支持和贡献。

许可证

本项目许可证遵循Apache-2.0

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

简介

DeepSparkHub甄选上百个应用算法和模型,覆盖AI和通用计算各领域,支持主流市场智能计算落地应用场景。 展开 收起
Python 等 6 种语言
Apache-2.0
取消

发行版 (10)

全部

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/deep-spark/deepsparkhub.git
git@gitee.com:deep-spark/deepsparkhub.git
deep-spark
deepsparkhub
DeepSparkHub
master

搜索帮助