diff --git a/cv/detection/yolov10/pytorch/README.md b/cv/detection/yolov10/pytorch/README.md new file mode 100644 index 0000000000000000000000000000000000000000..81aa174bc8a250036c1497820e5a9b0ca3ffa6b2 --- /dev/null +++ b/cv/detection/yolov10/pytorch/README.md @@ -0,0 +1,65 @@ +# YOLOv10 + +## Model description + +YOLOv10, built on the Ultralytics Python package by researchers at Tsinghua University, introduces a new approach to real-time object detection, addressing both the post-processing and model architecture deficiencies found in previous YOLO versions. By eliminating non-maximum suppression (NMS) and optimizing various model components, YOLOv10 achieves state-of-the-art performance with significantly reduced computational overhead. Extensive experiments demonstrate its superior accuracy-latency trade-offs across multiple model scales. + +## Step 1: Installation + +```bash +# CentOS +yum install -y mesa-libGL +# Ubuntu +apt install -y libgl1-mesa-glx +``` + +## Step 2: Preparing datasets + +Go to visit [COCO official website](https://cocodataset.org/#download), then select the COCO dataset you want to download. + +Take coco2017 dataset as an example, specify `/path/to/coco2017` to your COCO path in later training process, the unzipped dataset path structure sholud look like: + +```bash +coco2017 +├── annotations +│   ├── instances_train2017.json +│   ├── instances_val2017.json +│ └── ... +├── train2017 +│ ├── 000000000009.jpg +│ ├── 000000000025.jpg +│ └── ... +├── val2017 +│ ├── 000000000139.jpg +│ ├── 000000000285.jpg +│ └── ... +├── train2017.txt +├── val2017.txt +└── ... +``` + +```bash +# make soft link to coco dataset +mkdir -p datasets/ +ln -s /PATH/TO/COCO ./datasets/coco +``` + +## Step 3: Training + +```bash +# get yolov10 code +git clone https://github.com/THU-MIG/yolov10.git +cd yolov10 +sed -i 's/^torch/# torch/g' requirements.txt +pip install -r requirements.txt +``` + +### Multiple GPU training + +```bash +yolo detect train data=coco.yaml model=yolov10n.yaml epochs=500 batch=256 imgsz=640 device=0,1,2,3,4,5,6,7 +``` + +## Reference + +[YOLOv10](https://github.com/THU-MIG/yolov10)