# iris_tableau_python **Repository Path**: denhill/iris_tableau_python ## Basic Information - **Project Name**: iris_tableau_python - **Description**: leverage the power of python and tableau to build real-time ML data analysis based on Iris dataset. - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-30 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # iris_tableau_python ### leverage the power of python and tableau to build up real-time ML data analysis solution based on Iris dataset. _Python version_: 2.7 _Tableau Desktop_: 10.3 Before you run the twbx file, you need to prepare your enviroment as below: 1. download iris_classiffier2.ipynb and dataset files; 2. config jupyter notebook enviroment on your machine; 3. install tabpy_server and tabpy_client then startup the server; 4. run ipynb file and deploy the function to tabpy server; 5. open twbx file, config tabpy server address, then enjoy it! ![image could be find in github page](/Iris_analysis_and_prediction.gif "Iris_analysis_and_prediction") #### References: [Tableau Tabpy Github page](https://github.com/tableau/TabPy) [Building advanced analytics applications with TabPy](https://www.tableau.com/about/blog/2017/1/building-advanced-analytics-applications-tabpy-64916)