# Python Machine Learning book code **Repository Path**: diator/Python-Machine-Learning-book-code ## Basic Information - **Project Name**: Python Machine Learning book code - **Description**: No description available - **Primary Language**: Python - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-14 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Table of Contents and Code Notebooks Simply click on the `ipynb`/`nbviewer` links next to the chapter headlines to view the code examples (currently, the internal document links are only supported by the NbViewer version). **Please note that these are just the code examples accompanying the book, which I uploaded for your convenience; be aware that these notebooks may not be useful without the formulae and descriptive text.** - [Instructions for setting up Python and the Jupiter Notebook](./ch01/README.md)
1. Machine Learning - Giving Computers the Ability to Learn from Data [[dir](./ch01)] [[ipynb](./ch01/ch01.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch01/ch01.ipynb)] 2. Training Machine Learning Algorithms for Classification [[dir](./ch02)] [[ipynb](./ch02/ch02.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch02/ch02.ipynb)] 3. A Tour of Machine Learning Classifiers Using Scikit-Learn [[dir](./ch03)] [[ipynb](./ch03/ch03.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch03/ch03.ipynb)] 4. Building Good Training Sets – Data Pre-Processing [[dir](./ch04)] [[ipynb](./ch04/ch04.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch04/ch04.ipynb)] 5. Compressing Data via Dimensionality Reduction [[dir](./ch05)] [[ipynb](./ch05/ch05.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch05/ch05.ipynb)] 6. Learning Best Practices for Model Evaluation and Hyperparameter Optimization [[dir](./ch06)] [[ipynb](./ch06/ch06.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch06/ch06.ipynb)] 7. Combining Different Models for Ensemble Learning [[dir](./ch07)] [[ipynb](./ch07/ch07.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch07/ch07.ipynb)] 8. Applying Machine Learning to Sentiment Analysis [[dir](./ch08)] [[ipynb](./ch08/ch08.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch08/ch08.ipynb)] 9. Embedding a Machine Learning Model into a Web Application [[dir](./ch09)] [[ipynb](./ch09/ch09.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch09/ch09.ipynb)] 10. Predicting Continuous Target Variables with Regression Analysis [[dir](./ch10)] [[ipynb](./ch10/ch10.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch10/ch10.ipynb)] 11. Working with Unlabeled Data – Clustering Analysis [[dir](./ch11)] [[ipynb](./ch11/ch11.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch11/ch11.ipynb)] 12. Training Artificial Neural Networks for Image Recognition [[dir](./ch12)] [[ipynb](./ch12/ch12.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch12/ch12.ipynb)] 13. Parallelizing Neural Network Training via Theano [[dir](./ch13)] [[ipynb](./ch13/ch13.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/ch13/ch13.ipynb)]
**Bonus Notebooks (not in the book)** - Logistic Regression Implementation [[dir](./bonus)] [[ipynb](./bonus/logistic_regression.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/logistic_regression.ipynb)] - A Basic Pipeline and Grid Search Setup [[dir](./bonus)] [[ipynb](./bonus/svm_iris_pipeline_and_gridsearch.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/svm_iris_pipeline_and_gridsearch.ipynb)] - An Extended Nested Cross-Validation Example [[dir](./bonus)] [[ipynb](./bonus/nested_cross_validation.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/nested_cross_validation.ipynb)] - A Simple(r) Barebones Flask Webapp Template [[view directory](./bonus/flask_webapp_ex01)][[download as zip-file](https://github.com/rasbt/python-machine-learning-book/raw/master/code/bonus/flask_webapp_ex01/flask_webapp_ex01.zip)] - Reading handwritten digits from MNIST into NumPy arrays [[GitHub ipynb](./bonus/reading_mnist.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/reading_mnist.ipynb)] - Scikit-learn Model Persistence using JSON [[GitHub ipynb](./bonus/scikit-model-to-json.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/scikit-model-to-json.ipynb)] - Multinomial logistic regression / softmax regression [[GitHub ipynb](./bonus/softmax-regression.ipynb)] [[nbviewer](http://nbviewer.ipython.org/github/rasbt/python-machine-learning-book/blob/master/code/bonus/softmax-regression.ipynb)] ## Contact I am happy to answer questions! Just write me an [email](mailto:mail@sebastianraschka.com) or consider asking the question on the [Google Groups Email List](https://groups.google.com/forum/#!forum/python-machine-learning-book). If you are interested in keeping in touch, I have quite a lively twitter stream ([@rasbt](https://twitter.com/rasbt)) all about data science and machine learning. I also maintain a [blog](http://sebastianraschka.com/articles.html) where I post all of the things I am particularly excited about.