# CLCFormer **Repository Path**: diidid/CLCFormer ## Basic Information - **Project Name**: CLCFormer - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-22 - **Last Updated**: 2025-02-22 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CLCFormer Official Pytorch Code base for [Integrating spatial details with long-range contexts for semantic segmentation of very high resolution remote sensing images] [Project](https://github.com/long123524/CLCFormer) ## Introduction This paper presents a cross-learning network (i.e., CLCFormer) integrating fine-grained spatial details within long-range global contexts based upon convolutional neural network (CNN) and transformer, for semantic segmentation of very high-resolution (VHR) remote sensing images.

## Using the code: The code is stable while using Python 3.7.0, CUDA >=11.0 - Clone this repository: ```bash git clone https://github.com/long123524/CLCFormer cd CLCFormer ``` To install all the dependencies using conda or pip: ``` PyTorch timm OpenCV numpy tqdm PIL ``` ## Datasets Inria building dataset:https://project.inria.fr/aerialimagelabeling/ WHU building dataset:http://gpcv.whu.edu.cn/data/building_dataset.html Potsdam dataset:https://www.isprs.org/education/benchmarks/UrbanSemLab/Default.aspx ## Pretrained weight Efficientnet & SwinV2: 链接:https://pan.baidu.com/s/1zBmHtnpafVjstgdLUO7DJA 提取码:qv8z link: https://drive.google.com/file/d/1arfOBeQWZLUStvc64MkgtG3nQesG2Ini/view?usp=sharing ## Training and testing 1. Train the model python train_isic.py 2. Evaluate python accuracy_evaluation.py (binary classfication, e.g., building extracting) or python accuracy_multi_class.py (multi-class classification) ## Acknowledgement We are very grateful for these excellent works [ST-UNet](https://github.com/XinnHe/ST-UNet), [TransFuse](https://github.com/Rayicer/TransFuse) and [BuildFormer](https://github.com/WangLibo1995/BuildFormer), which have provided the basis for our framework. ### Citation: ``` Citation: { Authors: Long Jiang (龙江), Li Mengmeng* (李蒙蒙), Wang Xiaoqin (汪小钦); Institute: The Academy of Digital China (Fujian), Fuzhou University, Article Title: Integrating spatial details with long-range contexts for semantic segmentation of very high resolution remote sensing images, Publication title: IEEE Geoscience and Remote Sensing Letters, Year: 2023, volume: 20 Page:1-5, DOI: 10.1109/LGRS.2023.3262586 } ```