# MAESTER **Repository Path**: diidid/MAESTER ## Basic Information - **Project Name**: MAESTER - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-29 - **Last Updated**: 2025-01-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CVPR2023 Highlight | MAESTER: Masked Autoencoder Guided Segmentation at Pixel Resolution for Accurate, Self-Supervised Subcellular Structure Recognition Check out the [Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Xie_MAESTER_Masked_Autoencoder_Guided_Segmentation_at_Pixel_Resolution_for_Accurate_CVPR_2023_paper.pdf)! and our [Youtube Talk](https://youtu.be/MB2J9eeR0zc)! ## 💥 Introduction We introduce MAESTER (**M**asked **A**uto**E**ncoder guided **S**egmen**T**ation at pix**E**l **R**esolution), a self-supervised method for accurate, subcellular structure segmentation at pixel resolution. MAESTER treats volume electron microscopy(vEM) image segmentation as a representation learning and clustering problem. Specifically, MAESTER learns semantically meaningful token representations of multi-pixel image patches while simultaneously maintaining a sufficiently large field of view for contextual learning. We also develop a _cover-and-stride_ inference strategy to achieve pixel-level subcellular strueture segmentation. ![](./figs/intro.jpeg) ## ⚙️ Installation - Clone the repository: ``` git clone https://github.com/bowang-lab/MAESTER ``` - Set up the environment: ``` poetry install poetry shell pip install torch==2.0.1 torchvision==0.15.2 ``` - Download the trained model for demo - Google drive: `https://drive.google.com/drive/folders/143W_VSl5ONE3NGbnI0i19S8lBRml7lRz?usp=sharing` - Put it under `./MAESTER/model_weights/` - Dataset: - Download the [betaSeg](https://rupress.org/jcb/article/220/2/e202010039/211599/3D-FIB-SEM-reconstruction-of-microtubule-organelle) dataset by: ``` wget https://cloud.mpi-cbg.de/index.php/s/UJopHTRuh6f4wR8/download ``` - and unzip the dataset, put it under `./MAESTER/data/` ## 🎉 Example - Check out our detailed demo: - Inference with MAESTER `./examples/inference_demo.ipynb`. ## 📝 To-do - [x] Add inference demo - [ ] Add scalable inference example - [ ] Add DDP training example ## 📄 Citation ``` @InProceedings{Xie_2023_CVPR, author = {Xie, Ronald and Pang, Kuan and Bader, Gary D. and Wang, Bo}, title = {MAESTER: Masked Autoencoder Guided Segmentation at Pixel Resolution for Accurate, Self-Supervised Subcellular Structure Recognition}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2023}, pages = {3292-3301} } ``` ## Acknowledgement - This repository is built upon [MAE](https://github.com/facebookresearch/mae).