# meta-tegra **Repository Path**: dingslord/meta-tegra ## Basic Information - **Project Name**: meta-tegra - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2019-11-19 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README OpenEmbedded/Yocto BSP layer for NVIDIA Jetson TX1/TX2/AGX Xavier/Nano ====================================================================== Linux4Tegra release: R32.4.2 JetPack release: 4.4 Developer Preview Boards supported: * Jetson-TX1 development kit * Jetson-TX2 development kit * Jetson AGX Xavier development kit * Jetson Nano development kit * Jetson Nano eMMC module with rev B01 carrier board Experimental support: * Jetson Xavier NX eMMC module in Nano carrier board Also supported thanks to community support: * Jetson-TX2i module * Jetson-TX2 4GB module * Jetson AGX Xavier 8GB module This layer depends on: URI: git://git.openembedded.org/openembedded-core branch: master LAYERSERIES_COMPAT: dunfell PLEASE NOTE ----------- * NVIDIA recommends using L4T R32.3.1/JetPack 4.3 for production use. The JetPack release supported here is labeled a "developer preview". * Some packages outside the L4T BSP can only be downloaded with an NVIDIA Developer Network login - in particular, the CUDA host-side tools. To use any packages that require a Devnet login, you must create a Devnet account and download the JetPack packages you need for your builds using NVIDIA SDK Manager. You must then set the variable NVIDIA_DEVNET_MIRROR to "file://path/to/the/downloads" in your build configuration (e.g., local.conf) to make them available to your bitbake builds. This can be the NVIDIA SDK Manager downloads directory, `/home/$USER/Downloads/nvidia/sdkm_downloads` * The SDK Manager downloads a different package of CUDA host-side tools depending on whether you are running Ubuntu 16.04 or 18.04. If you downloaded the Ubuntu 16.04 package, you should add CUDA_BINARIES_NATIVE = "cuda-binaries-ubuntu1604-native" to your build configuration so the CUDA recipes can find them. Otherwise, the recipes will default to looking for the Ubuntu 18.04 package. * CUDA 10.2 supports up through gcc 8 only. Pre-built binaries in the BSP appear to be compatible with gcc 7 and 8 **only**. So use only gcc 7 or gcc 8 if you intend to use CUDA. Recipes for gcc 8 have been imported from the OE-Core warrior branch (the last version of OE-Core to supply gcc 8) to make it easier to use this older toolchain. See [this wiki page](https://github.com/madisongh/meta-tegra/wiki/Using-gcc-from-the-contrib-layer) for information on adding the `meta-tegra/contrib` layer to your builds and configuring them for GCC 8. Contributing ------------ Please use GitHub (https://github.com/madisongh/meta-tegra) to submit issues or pull requests, or add to the documentation on the wiki. Contributions are welcome!