# Scrapegraph-ai **Repository Path**: dkdmg/Scrapegraph-ai ## Basic Information - **Project Name**: Scrapegraph-ai - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-06-09 - **Last Updated**: 2024-06-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # πŸ•·οΈ ScrapeGraphAI: You Only Scrape Once [English](https://github.com/VinciGit00/Scrapegraph-ai/blob/main/README.md) | [δΈ­ζ–‡](https://github.com/VinciGit00/Scrapegraph-ai/blob/main/docs/chinese.md) | [ζ—₯本θͺž](https://github.com/VinciGit00/Scrapegraph-ai/blob/main/docs/japanese.md) [![Downloads](https://static.pepy.tech/badge/scrapegraphai)](https://pepy.tech/project/scrapegraphai) [![linting: pylint](https://img.shields.io/badge/linting-pylint-yellowgreen)](https://github.com/pylint-dev/pylint) [![Pylint](https://github.com/VinciGit00/Scrapegraph-ai/actions/workflows/pylint.yml/badge.svg)](https://github.com/VinciGit00/Scrapegraph-ai/actions/workflows/pylint.yml) [![CodeQL](https://github.com/VinciGit00/Scrapegraph-ai/actions/workflows/codeql.yml/badge.svg)](https://github.com/VinciGit00/Scrapegraph-ai/actions/workflows/codeql.yml) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![](https://dcbadge.vercel.app/api/server/gkxQDAjfeX)](https://discord.gg/gkxQDAjfeX) ScrapeGraphAI is a *web scraping* python library that uses LLM and direct graph logic to create scraping pipelines for websites and local documents (XML, HTML, JSON, etc.). Just say which information you want to extract and the library will do it for you!

Scrapegraph-ai Logo

## πŸš€ Quick install The reference page for Scrapegraph-ai is available on the official page of PyPI: [pypi](https://pypi.org/project/scrapegraphai/). ```bash pip install scrapegraphai ``` **Note**: it is recommended to install the library in a virtual environment to avoid conflicts with other libraries 🐱 ## πŸ” Demo Official streamlit demo: [![My Skills](https://skillicons.dev/icons?i=react)](https://scrapegraph-ai-web-dashboard.streamlit.app) Try it directly on the web using Google Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1sEZBonBMGP44CtO6GQTwAlL0BGJXjtfd?usp=sharing) ## πŸ“– Documentation The documentation for ScrapeGraphAI can be found [here](https://scrapegraph-ai.readthedocs.io/en/latest/). Check out also the Docusaurus [here](https://scrapegraph-doc.onrender.com/). ## πŸ’» Usage There are three main scraping pipelines that can be used to extract information from a website (or local file): - `SmartScraperGraph`: single-page scraper that only needs a user prompt and an input source; - `SearchGraph`: multi-page scraper that extracts information from the top n search results of a search engine; - `SpeechGraph`: single-page scraper that extracts information from a website and generates an audio file. - `SmartScraperMultiGraph`: multiple page scraper given a single prompt It is possible to use different LLM through APIs, such as **OpenAI**, **Groq**, **Azure** and **Gemini**, or local models using **Ollama**. ### Case 1: SmartScraper using Local Models Remember to have [Ollama](https://ollama.com/) installed and download the models using the **ollama pull** command. ```python from scrapegraphai.graphs import SmartScraperGraph graph_config = { "llm": { "model": "ollama/mistral", "temperature": 0, "format": "json", # Ollama needs the format to be specified explicitly "base_url": "http://localhost:11434", # set Ollama URL }, "embeddings": { "model": "ollama/nomic-embed-text", "base_url": "http://localhost:11434", # set Ollama URL }, "verbose": True, } smart_scraper_graph = SmartScraperGraph( prompt="List me all the projects with their descriptions", # also accepts a string with the already downloaded HTML code source="https://perinim.github.io/projects", config=graph_config ) result = smart_scraper_graph.run() print(result) ``` The output will be a list of projects with their descriptions like the following: ```python {'projects': [{'title': 'Rotary Pendulum RL', 'description': 'Open Source project aimed at controlling a real life rotary pendulum using RL algorithms'}, {'title': 'DQN Implementation from scratch', 'description': 'Developed a Deep Q-Network algorithm to train a simple and double pendulum'}, ...]} ``` ### Case 2: SearchGraph using Mixed Models We use **Groq** for the LLM and **Ollama** for the embeddings. ```python from scrapegraphai.graphs import SearchGraph # Define the configuration for the graph graph_config = { "llm": { "model": "groq/gemma-7b-it", "api_key": "GROQ_API_KEY", "temperature": 0 }, "embeddings": { "model": "ollama/nomic-embed-text", "base_url": "http://localhost:11434", # set ollama URL arbitrarily }, "max_results": 5, } # Create the SearchGraph instance search_graph = SearchGraph( prompt="List me all the traditional recipes from Chioggia", config=graph_config ) # Run the graph result = search_graph.run() print(result) ``` The output will be a list of recipes like the following: ```python {'recipes': [{'name': 'Sarde in SaΓ²re'}, {'name': 'Bigoli in salsa'}, {'name': 'Seppie in umido'}, {'name': 'Moleche frite'}, {'name': 'Risotto alla pescatora'}, {'name': 'Broeto'}, {'name': 'Bibarasse in Cassopipa'}, {'name': 'Risi e bisi'}, {'name': 'Smegiassa Ciosota'}]} ``` ### Case 3: SpeechGraph using OpenAI You just need to pass the OpenAI API key and the model name. ```python from scrapegraphai.graphs import SpeechGraph graph_config = { "llm": { "api_key": "OPENAI_API_KEY", "model": "gpt-3.5-turbo", }, "tts_model": { "api_key": "OPENAI_API_KEY", "model": "tts-1", "voice": "alloy" }, "output_path": "audio_summary.mp3", } # ************************************************ # Create the SpeechGraph instance and run it # ************************************************ speech_graph = SpeechGraph( prompt="Make a detailed audio summary of the projects.", source="https://perinim.github.io/projects/", config=graph_config, ) result = speech_graph.run() print(result) ``` The output will be an audio file with the summary of the projects on the page. ## Sponsors
SerpAPI Stats
## 🀝 Contributing Feel free to contribute and join our Discord server to discuss with us improvements and give us suggestions! Please see the [contributing guidelines](https://github.com/VinciGit00/Scrapegraph-ai/blob/main/CONTRIBUTING.md). [![My Skills](https://skillicons.dev/icons?i=discord)](https://discord.gg/uJN7TYcpNa) [![My Skills](https://skillicons.dev/icons?i=linkedin)](https://www.linkedin.com/company/scrapegraphai/) [![My Skills](https://skillicons.dev/icons?i=twitter)](https://twitter.com/scrapegraphai) ## πŸ“ˆ Roadmap Check out the project roadmap [here](https://github.com/VinciGit00/Scrapegraph-ai/blob/main/docs/README.md)! πŸš€ Wanna visualize the roadmap in a more interactive way? Check out the [markmap](https://markmap.js.org/repl) visualization by copy pasting the markdown content in the editor! ## ❀️ Contributors [![Contributors](https://contrib.rocks/image?repo=VinciGit00/Scrapegraph-ai)](https://github.com/VinciGit00/Scrapegraph-ai/graphs/contributors) ## πŸŽ“ Citations If you have used our library for research purposes please quote us with the following reference: ```text @misc{scrapegraph-ai, author = {Marco Perini, Lorenzo Padoan, Marco Vinciguerra}, title = {Scrapegraph-ai}, year = {2024}, url = {https://github.com/VinciGit00/Scrapegraph-ai}, note = {A Python library for scraping leveraging large language models} } ``` ## Authors

Authors_logos

| | Contact Info | |--------------------|----------------------| | Marco Vinciguerra | [![Linkedin Badge](https://img.shields.io/badge/-Linkedin-blue?style=flat&logo=Linkedin&logoColor=white)](https://www.linkedin.com/in/marco-vinciguerra-7ba365242/) | | Marco Perini | [![Linkedin Badge](https://img.shields.io/badge/-Linkedin-blue?style=flat&logo=Linkedin&logoColor=white)](https://www.linkedin.com/in/perinim/) | | Lorenzo Padoan | [![Linkedin Badge](https://img.shields.io/badge/-Linkedin-blue?style=flat&logo=Linkedin&logoColor=white)](https://www.linkedin.com/in/lorenzo-padoan-4521a2154/) | ## πŸ“œ License ScrapeGraphAI is licensed under the MIT License. See the [LICENSE](https://github.com/VinciGit00/Scrapegraph-ai/blob/main/LICENSE) file for more information. ## Acknowledgements - We would like to thank all the contributors to the project and the open-source community for their support. - ScrapeGraphAI is meant to be used for data exploration and research purposes only. We are not responsible for any misuse of the library.