# phasen **Repository Path**: doibest/phasen ## Basic Information - **Project Name**: phasen - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-10-15 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # PHASEN --- Unofficial PyTorch implementation of MSRA's: [PHASEN: A Phase-and-Harmonics-Aware Speech Enhancement Network](https://arxiv.org/abs/1911.04697). ![](./figs/phasen-net.png) --- ## My resutls on real-world test ![Noisy](./figs/noisy.png) ![enh](./figs/phasen.png) Maybe there is something different with the paper, but it worked not bad. --- ## how to use it? 1. install dependency: ```bash pip install -r requirements.txt ``` 2. download datasets if you don't have WSJ0, you can follow this use aishell-1 by following this [se-cldnn-torch](https://github.com/huyanxin/se-cldnn-torch) ### Attetion There is something different from [se-cldnn-torch](https://github.com/huyanxin/se-cldnn-torch): the two list for train (tr.lst, cv.lst ...) need duration information, but [se-cldnn-torch](https://github.com/huyanxin/se-cldnn-torch) dose not need it (because the two dataset.py are different). So, in this repo, train and cross-validation list nead to be like this ``` /path/noisy1.wav /path/ref1.wav 3.0233 /path/noisy2.wav /path/ref2.wav 2.3213 /path/noisy2.wav /path/ref2.wav 8.8127 ... ``` To add duration information, you can use `tools/add_duration.py` like: ``` python tools/add_duration.py data/tr_wsj0.lst ``` As for inference stage (decode stage, eval stage), the list only need the path of noisy path: ``` /path/noisy1.wav /path/noisy2.wav /path/noisy2.wav ... ``` 3. run. before you run it, please set the correct params in `./run_phasen.sh` ```bash bash run_phasen.sh ``` ## Reference: funcwj's [voice-filter](https://github.com/funcwj/voice-filter) wangkenpu's [Conv-Tasnet](https://github.com/wangkenpu/Conv-TasNet-PyTorch) pseeth's [torch-stft](https://github.com/pseeth/torch-stft)