# KCFpy **Repository Path**: dong_zhou/KCFpy ## Basic Information - **Project Name**: KCFpy - **Description**: Python implementation of KCF tracking algorithm - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-01-18 - **Last Updated**: 2022-01-18 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # KCF tracker in Python Python implementation of > [High-Speed Tracking with Kernelized Correlation Filters](http://www.robots.ox.ac.uk/~joao/publications/henriques_tpami2015.pdf)
> J. F. Henriques, R. Caseiro, P. Martins, J. Batista
> TPAMI 2015 It is translated from [KCFcpp](https://github.com/joaofaro/KCFcpp) (Authors: Joao Faro, Christian Bailer, Joao F. Henriques), a C++ implementation of Kernelized Correlation Filters. Find more references and code of KCF at http://www.robots.ox.ac.uk/~joao/circulant/ ### Requirements - Python 2.7 - NumPy - Numba (needed if you want to use the hog feature) - OpenCV (ensure that you can `import cv2` in python) Actually, I have installed Anaconda(for Python 2.7), and OpenCV 3.1(from [opencv.org](http://opencv.org/)). ### Use Download the sources and execute ```shell git clone https://github.com/uoip/KCFpy.git cd KCFpy python run.py ``` It will open the default camera of your computer, you can also open a different camera or a video ```shell python run.py 2 ``` ```shell python run.py ./test.avi ``` Try different options (hog/gray, fixed/flexible window, singlescale/multiscale) of KCF tracker by modifying the arguments in line `tracker = kcftracker.KCFTracker(False, True, False) # hog, fixed_window, multiscale` in run.py. ### Peoblem I have struggled to make this python implementation as fast as possible, but it's still 2 ~ 3 times slower than its C++ counterpart, furthermore, the use of Numba introduce some unpleasant delay when initializing tracker (***NEW:*** the problem has been solved in [KCFnb](https://github.com/uoip/KCFnb) by using AOT compilation). ***NEWER:*** I write a python wrapper for KCFcpp, see [KCFcpp-py-wrapper](https://github.com/uoip/KCFcpp-py-wrapper), so we can benefit from C++'s speed in python now.