# maml **Repository Path**: dong_zhou/maml ## Basic Information - **Project Name**: maml - **Description**: Code for "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks" - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 2 - **Created**: 2020-04-05 - **Last Updated**: 2021-08-11 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Model-Agnostic Meta-Learning This repo contains code accompaning the paper, [Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (Finn et al., ICML 2017)](https://arxiv.org/abs/1703.03400). It includes code for running the few-shot supervised learning domain experiments, including sinusoid regression, Omniglot classification, and MiniImagenet classification. For the experiments in the RL domain, see [this codebase](https://github.com/cbfinn/maml_rl). ### Dependencies This code requires the following: * python 2.\* or python 3.\* * TensorFlow v1.0+ ### Data For the Omniglot and MiniImagenet data, see the usage instructions in `data/omniglot_resized/resize_images.py` and `data/miniImagenet/proc_images.py` respectively. ### Usage To run the code, see the usage instructions at the top of `main.py`. ### Contact To ask questions or report issues, please open an issue on the [issues tracker](https://github.com/cbfinn/maml/issues).