# pytorch_Realtime_Multi-Person_Pose_Estimation **Repository Path**: dongda6/pytorch_Realtime_Multi-Person_Pose_Estimation ## Basic Information - **Project Name**: pytorch_Realtime_Multi-Person_Pose_Estimation - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-11-23 - **Last Updated**: 2024-11-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Introduction Multi Person PoseEstimation By PyTorch ## Results

[![License](https://img.shields.io/github/license/mashape/apistatus.svg)](https://opensource.org/licenses/MIT) ## Require 1. [Pytorch](http://pytorch.org/) ## Installation 1. git submodule init && git submodule update ## Demo - Download [converted pytorch model](https://www.dropbox.com/s/ae071mfm2qoyc8v/pose_model.pth?dl=0). - Compile the C++ postprocessing: `cd lib/pafprocess; sh make.sh` - `python demo/picture_demo.py` to run the picture demo. - `python demo/web_demo.py` to run the web demo. ## Evalute - `python evaluate/evaluation.py` to evaluate the model on coco val2017 dataset. - It should have `mAP 0.653` for the rtpose, previous rtpose have `mAP 0.577` because we do left and right flip for heatmap and PAF for the evaluation. c ### Main Results | model name| mAP | Inference Time | | :---------: | :---------: |:---------: | |[original rtpose] | 0.653 |-| Download link: [rtpose](https://www.dropbox.com/s/ae071mfm2qoyc8v/pose_model.pth?dl=0) ## Development environment The code is developed using python 3.6 on Ubuntu 18.04. NVIDIA GPUs are needed. The code is developed and tested using 4 1080ti GPU cards. Other platforms or GPU cards are not fully tested. ## Quick start ### 1. Preparation #### 1.1 Prepare the dataset - `cd training; bash getData.sh` to obtain the COCO 2017 images in `/data/root/coco/images/`, keypoints annotations in `/data/root/coco/annotations/`, make them look like this: ``` ${DATA_ROOT} |-- coco |-- annotations |-- person_keypoints_train2017.json |-- person_keypoints_val2017.json |-- images |-- train2017 |-- 000000000009.jpg |-- 000000000025.jpg |-- 000000000030.jpg |-- ... |-- val2017 |-- 000000000139.jpg |-- 000000000285.jpg |-- 000000000632.jpg |-- ... ``` ### 2. How to train the model - Modify the data directory in `train/train_VGG19.py` and `python train/train_VGG19.py` ## Related repository - CVPR'17, [Realtime Multi-Person Pose Estimation](https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation). ### Network Architecture - testing architecture ![Teaser?](https://github.com/tensorboy/pytorch_Realtime_Multi-Person_Pose_Estimation/blob/master/readme/pose.png) - training architecture ![Teaser?](https://github.com/tensorboy/pytorch_Realtime_Multi-Person_Pose_Estimation/blob/master/readme/training_structure.png) ## Contributions All contributions are welcomed. If you encounter any issue (including examples of images where it fails) feel free to open an issue. ## Citation Please cite the paper in your publications if it helps your research: @InProceedings{cao2017realtime, title = {Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields}, author = {Zhe Cao and Tomas Simon and Shih-En Wei and Yaser Sheikh}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2017} }