# pytorch_Realtime_Multi-Person_Pose_Estimation
**Repository Path**: dongda6/pytorch_Realtime_Multi-Person_Pose_Estimation
## Basic Information
- **Project Name**: pytorch_Realtime_Multi-Person_Pose_Estimation
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2024-11-23
- **Last Updated**: 2024-11-23
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## Introduction
Multi Person PoseEstimation By PyTorch
## Results
[](https://opensource.org/licenses/MIT)
## Require
1. [Pytorch](http://pytorch.org/)
## Installation
1. git submodule init && git submodule update
## Demo
- Download [converted pytorch model](https://www.dropbox.com/s/ae071mfm2qoyc8v/pose_model.pth?dl=0).
- Compile the C++ postprocessing: `cd lib/pafprocess; sh make.sh`
- `python demo/picture_demo.py` to run the picture demo.
- `python demo/web_demo.py` to run the web demo.
## Evalute
- `python evaluate/evaluation.py` to evaluate the model on coco val2017 dataset.
- It should have `mAP 0.653` for the rtpose, previous rtpose have `mAP 0.577` because we do left and right flip for heatmap and PAF for the evaluation.
c
### Main Results
| model name| mAP | Inference Time |
| :---------: | :---------: |:---------: |
|[original rtpose] | 0.653 |-|
Download link:
[rtpose](https://www.dropbox.com/s/ae071mfm2qoyc8v/pose_model.pth?dl=0)
## Development environment
The code is developed using python 3.6 on Ubuntu 18.04. NVIDIA GPUs are needed. The code is developed and tested using 4 1080ti GPU cards. Other platforms or GPU cards are not fully tested.
## Quick start
### 1. Preparation
#### 1.1 Prepare the dataset
- `cd training; bash getData.sh` to obtain the COCO 2017 images in `/data/root/coco/images/`, keypoints annotations in `/data/root/coco/annotations/`,
make them look like this:
```
${DATA_ROOT}
|-- coco
|-- annotations
|-- person_keypoints_train2017.json
|-- person_keypoints_val2017.json
|-- images
|-- train2017
|-- 000000000009.jpg
|-- 000000000025.jpg
|-- 000000000030.jpg
|-- ...
|-- val2017
|-- 000000000139.jpg
|-- 000000000285.jpg
|-- 000000000632.jpg
|-- ...
```
### 2. How to train the model
- Modify the data directory in `train/train_VGG19.py` and `python train/train_VGG19.py`
## Related repository
- CVPR'17, [Realtime Multi-Person Pose Estimation](https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation).
### Network Architecture
- testing architecture

- training architecture

## Contributions
All contributions are welcomed. If you encounter any issue (including examples of images where it fails) feel free to open an issue.
## Citation
Please cite the paper in your publications if it helps your research:
@InProceedings{cao2017realtime,
title = {Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields},
author = {Zhe Cao and Tomas Simon and Shih-En Wei and Yaser Sheikh},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2017}
}