From 829a992f3d0dcfd91e92ab9285eadead876794c7 Mon Sep 17 00:00:00 2001 From: zhuyk6 <1773354746@qq.com> Date: Sat, 20 Aug 2022 15:25:15 +0800 Subject: [PATCH 1/3] add lecture2 and lecture4 and solutions --- .gitignore | 1 + images/bloch_sphere.png | Bin 0 -> 40815 bytes lecture2.ipynb | 639 +++++++++++++++++++++++++++++++++++++++ lecture4.ipynb | 538 ++++++++++++++++++++++++++++++++ solutions/lecture2.ipynb | 213 +++++++++++++ solutions/lecture4.ipynb | 176 +++++++++++ 6 files changed, 1567 insertions(+) create mode 100644 .gitignore create mode 100644 images/bloch_sphere.png create mode 100644 lecture2.ipynb create mode 100644 lecture4.ipynb create mode 100644 solutions/lecture2.ipynb create mode 100644 solutions/lecture4.ipynb diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..58461f2 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +.ipynb_checkpoints \ No newline at end of file diff --git a/images/bloch_sphere.png b/images/bloch_sphere.png new file mode 100644 index 0000000000000000000000000000000000000000..e2b1be0f09e86007d00ccc956377211dd7d5c4df GIT binary patch literal 40815 zcmb??g;SMl*S9T*3et@tB?w4MOLquJ3)0;n4N6K2NSA;}mz1V9HaRQzJ$IM1t(_*!O0H#Qd>-{M2|HuS=i3Po<)y) z%0cDAqI-ee)aX}<2#RMYUQc6LD^t-h?g(Hcr=ZvgVBBGO+NgUfm|| zx+{Ru_38iXUq#v<{l$sC`h{JlemSPcM);_*!ZJK1#$Ptmb+P!ZSek0JA-#!-3FW(- zr{7RB;M4gS+3d}W)FpGrB=fp{u&}u7)1#1>KU^C$SFKMzu(459S5r(EeRQwp{6TVZ zGCHr=JvTN-hP$*lg^vlpXfpic_ADWu)n>ZZ#wedZe>M;L@|2OIqLfhxLoyh}u3=L=qIrgh zgW2fVe0?apJ6Me+8y8n}aJf5{%Ysl=R@RN(l9;K#AKj-iDT#!H>*MVDaIUbZDBkeRj$|>NOZFQh zBxYu2AGao3K3`t!m?d@UGyjcYlxveEsdSpVMZ{t5^!T`?`WcO|M!o{ z=WK6va9G}uFV^+FP+vNEkVlB}Mo{pU3MMA0(_~YV_h;|>HhYaCp&}$WIt=){PnNyL z`;1u=>#c9T^WeL&G&L2(JCYf}cw?NSq|)td|8^K1_5+vWb>GYwylTfCaz@5N`#@YD zO!7v}S48kQsngRxPq@z%6j-*9Zfq_F`}*F!ArTOO&MTU&#H_!H5lY70)1Q?U!KjKM z`4t|Oxv>M6rQysS%lpM;W$%jHXt4vUvAh%%6oYsRM7!gaax~+HJqtXHXR4m!qrrz$ z>))_CvFKc~#eN{NcYk^?s^Bjp-;dhb8sq62f_`dQ>-p2Y2wFu9$wYYZyvfSBY z^wEu*Ma9mi{}>#doSpmAjnLE5)5j|uccu>RG{nN)>+*vyM@o8K|7j%M4=YD0r@Dlj zPAO}*eI=?xpVe%dI76Z1^X>b|#u=glG-k+(&@nI&c@uTxhCLSvm&G2MO-5$s?F#RI zy))Ovz3wk*AC#%fc;9T)e@7T zfAV~Dqb`aT$5r#~+b7qE+JLU$htp0Ak6zN#OO+c7&^$wa(D{W8sW)$MZs^LTh#q|H zr#3B%SEQDE7TK|SW$Q>xOdRN5cUa1LyfYyNUx(1wKSq7ZYqv%?7R^wIDspaqUa*j_ zwz#NtQB#xn?R7~(AXMsLYe?3xDg5kUhE$B$$Am;Khd?wuhTZcGs}E*o8n`jfPug!t$}vyjH8yY3#*)C%e|7XzP*Q3RCE->@49c;Z4EU6mva(x_eUYYGsePNC z^*&R!7|V}BLigaOjAor%oZR_wLw|p9aG@YZawrtfOHM8>=Iy~fR*R8u5-FYyjb~`q z_V$b271Q%=cMpnx(Rxhb{^qr}IosFH)~sZHM8xiLIB>)3!yV)?Z1m`-Sa4r0Da$?{ zVP_v38{_$CoC-~a%jqi}DykdT97_$IQ_R~IuiZ`LkIQ8%&Cjo&H@9VGW|UZ%-FbIA zcc4t8Labnl9HmvTM(XYysY`A0RJ9`(306~elOM0`SlUy3EVvKWVP0OhKAO*jhJ~R& zB4T5<=k(fbhL>#Qm2GXtz{3;E>`4;N)qM3LtydFc8y-y~UL^HfIIw;dhFI)4igFS> z>As~?C-QR9-Q@`@9gEA=qxQRVBL5pPJK(=$+>^pDr=#=iLFFxUIds#ZJc+aYrMI*#6WXuH=BHl9W{eGHsv!n-WfNc9xW30V zGYbq1{Mxy6dVW5Tsm)*Yaf7xs0*VIt+z(xNi!){WGgZjG;YzBPS&Af-TfC)>f>s{o zLx;GUuNH};U&NSUrlEy6noC_s8?|pUas0?!7{?Ks;_Bjf~8y}F14gd%55P;9h2g9 z0+Nys0s=-k^ZWk&&E(Y7-u_{0bsER<@#FSIX6y%d zadB}~)zozK^t=_ag{dN+#dN-<{YFD?d3~~=C5IuI07d&9#s$>eXuLm?qYoG00`^^}hgM`S3R zhC;$~X2G`d77>vd+;(dRhnA+M+phQT!;{%Gx3F<=Xd3K96BE1tH;PWo_W{oC;i2#| zKb{Boo=!Um#`T+)Vw(ig$Y;MU^5lQ}R!l-tlKf0wDPO1|jBsRA8&BOUTsl$RMgXNE=wWew4zp1LKetC!Qt3WAQfuA(^73RUWn<#d zDmM=d?1vZT4x64`R?M6oCs^U1tT{nV1@W?TaK!K{UpC|?5_@P=dOg6QoZ!My%>h@Z{LKKl(74$(>gkOQop~s`>Cvq?c>Lf zLpkr!w8^ypR#wfftjKl8v)PJV7vTcl+D)CE8^yi!ksa1_JAN9@71jKa6aj$MhD_Pu;A(1Wt}U}# z!{g&c|Ar80)_Wv%?(HQ8goxx0>zbGZczfUW@bD-#9>*lp*1nZa`P*ZQYo)g>{99sI1{$7(oSaw$h35PBs1F}DS13@z?6dTb z4x&reN z4w`RC=D*D|iM1maIRD=smt5nVoSM}xQ5&NLb}V#3V=ToKT2eoXvM}!77t2vX{nI&- z0N4r>1LKXnHO9LfW%|ANI|o#anohKixAqQDu>t}@Me~)@2iN-6?8PH|LP8#qaM{l$ z%{A>FAB$$or^&a6cP!Ch2P%*qJ(IxXN(vRakG?ql9Hi-q2{{b zzWvt7qe@K%(N2^w%0^9^XbOqRDu*B<4omChLlfDyR!ry9S1}A)f-q#}=05xT-+y=O zHtORCRHf=D4(lUq@gB2H{*RfqBa11hsHQLDGBc@nJWp@(x*Q9q(wte{latCEv^iRT zr<;}z2$0!GS5KlcTu@h+96HE~?GgYlPPkO4XlPBNqj++Rj4)bXF~GR_9i~+%maiNc zo($;KmD6FLqQAc%`VSlw4ALJ48_KMvV_yi_%;d9e4d9Ld0A#BgNvCMY*QnUOh|?;} zbU9iV#qxXLd&|?)6LERjZ_JAPVqIO*p(MP2*9MD;`9B7~=XU%>Pku{`n)=qQTgH9g zZypg2QL|EDQyWpIpY38ll=7*xR)KamQ7&q|x~roLrF_=abJN^@?y~;z=FIh**v!n#l7$(PJ9qCBW#!DPsjAMdue+RRc}r%HKj-yETVb?D zoH7BLZ4FpxdyPpDkefhs^XiJ#s^9Bpcf11q%dXXHUY`NVDm5*6$8(!9b$VxK=a*_V zu~Bp?NFpUo)dZahzL#h)vBbeLeNlNCdp7O|OG}1AbV6xq>8{&hmDSZH*L@AtTD^!K z`A%rx`nH@SBO_2q)t3j3eyY(wx!HbXW-z&qygc3>mx3wGm4u6iCS^LB-IST)?w3+e z79AaJVCyOPih;aK`;D)!uV#%?`07F%=f};{Dcrow80z6%73xxTw)N3MxuhxwnUBt6 zP@Bw~Nsb+zovy13GuNlLleio`%x5Jcn&D^Fjyn~~Ma(l2gXnf@E*?)+Ij)T4YYb(cn+HwrwUI$BhyCXofRiz(hchgcNi!#llD_OVw%A z;^KUib44q*r^vWdvsqVZdWFU_qG&EGyPI1@yef7tX zkNFcYe@q5SUqC~OWMV2cn@RrBEUc@ihnkQ3m*ZghiG0T2=RyqhY$0fPJ&M(`B<2JH&T3t29MZ8X-Qz>{F(+QKBvc~4Mx3+7@r%yLtcAK}R%4X`# zdEIs6J)xsj&TAi98&oZ`#i@4O(j8ju_wn)D?Y~b(9@!DguE({-ZSS;L`-z+WjJwU4 zjgaAe6_D!d<*B(QYg=2|Tq##wXk~eMFGmXBOEr(66uhsO)v{#h>5+wgl*H$LA>ZG2 zKfx%`gbtsYDZZr(&b%j?v#G)R{&=k&UOy9)s)kyBnt>D{hlzAZJR9nxM{E<_!B&O_ zHi$7Bmnf{fTI`XO>{$1O`6HR?B^y5`1}w-;l^A9*)-h)mE{{y+~t|AYlRYJdcLbgy<0gvE-dH` zrva}xY}7-dzkS2LQm;?0=dh%B_UtAwzxCn5w%ptI2jKKd9`CxsAY;(_{VApbucR*V zz4@&AgzCZHKc5qWIXi&;I6KVdwj4XpRNA=h{<#T*+Wq|a@|poJA2&(X@q{Y3Sb+xn z_3PKOv$KD)nDmSX%jrF>Cfn;LDoPxCNsqUtq(&{@uMJj^>F5j>;m|uoQZ!Bqui0}c zC@PHCn&IUt=g$wc1ij|s8Ypmgy;rmUfX!^=PecEnuc^h-%F+`@hER?f7r=^bVx&Yc zLF;c`j#nEo!f>G}&lLb*ZMCEIGCyy%uXw?|zPH4v=WBGdZ0<5mXM_eQ);*mDG^GT(a%(*4#7` ze~fNCdY{~25jI9;!WMtu{q*X-Lga4ifQsF+q_#9d^8p%aRP;+NbM|`2S}n$Gw4s3&EUHO&tGjoV!t1WL zxl1ZV?Won4sovx(+ig#BvR{>b2DbF+PT9sts>WzR%}_oO0|SE}L;oxgFqs4n*Tt)Z zh^vOTzuDQ@eRzMo^EgH$0?-6m~M9W%4e*-`C8aU4h8HlbtY_KG-Xo8bdqt>iewIkM@HU8k9!Aic=4wfI>YK{ zJz0Teg(EJlN&)c#|HU_-PE=$CFKp;VSKoSp{UDyrN)}oQ;4;Il__EEZ5`R0JNaKOu zOy1g_Apq<3bUqOjHl_zqyi!>Ax^;Ewcs~e_ety0sXzbs=-Q%y%YPfda0j6&jl#~-V zw|dJ2@N1xH0PzeO^$wbIoU|Ww=dz6omiHV86j0YzeI+pr?@3LRKK$IFk$yF&7xOeB?U1pPgebbQ~g9wg^hxu7W z7_-|{osE$t6&0Cg6_%_I(2b6})HY8~w4)IS7G#eei7A1DYW(|GvW77P6yN7CKRF_- ziWX)()yhmMV-^-r(Q;)o8Isl}E77#3wbCfBg17CXf*k0QLjZA1O(j)od$t@~Oq{tc zh(0FaY5(MLxyJwD1`P5{mq!cZy9*+ejgu(MloXO&f*vvKfD) zx_?V&TOOoX1WXs(ZGs{b)j6tri?@`nd5yS$~D|FZ( zI3Jl178age{m@%6tyUI9ggL)|1hdVpk-O{H$5< z>Mzb?nYi3sIu^rj{RKbKm)cd|9Lz>-_7^4m!te!xqUl@wjR>%GEN=i`DKi`SWjZW5 z-_!E8R@CAAXh-hic*_QN!AWXzD}?-+cbYmuDN0_@l6_6%~AN#gN^p?LsP4M$u@NNu5y%K# z*D0w;*ErcW4;_k$4$y5b(m|B0k+BkntbTlt}Qx+5)NS-5NrEuMU$^MXQ4@f`ki4 z73Jlhs(al77**tG{avg#St(2Yvl@#bW-*)B;tvWcxg^Q5qE|vO#{0q?QmB0!M-0Bj3cWDbFTPfLFfVs?}Gu(7)yRBJe?=BHc!hv~y9W8^MZ@cg`vIFJu zV?%fbhh(ol9Uj_Kc`^mOqf<#6T!Yu?z%)5X1k4`G>3*-cI1_0qz!;s~*q~Ei@Y+Rz zOP}-kGm>#Ssbu{bwX2_>aGr@sj&23qP=w7*z{~bzxmP@M@CoqE6gLFwnu!VY^Y9mg zKj+}UR|kCjzjo;BdPP66wfzWAJdm%;Cb{rKi56f9`pAf~+rjYY%f$Lm!KDvH zLp{({R8)jwjF^RE`C*QBR+X8Zon^Lwz5@1xJn||pb;fYmn+P(!{3Z!kz}EM-h&~LJ zyw#~p^z!m@x05Z$Jhc+Scb^02p8F{RHH8<$gcr+@@x1O1&K~TO!elY*Ni#bsxTY_r zRd;J$zgCgKz7}mQ(94wl=IDrg0&4Y^BrjgPkWOO9nURco_&&ZLOD2l?sRSmFz&!QJ zh%kNx3dm`qA*3=fFJSh=M0PH zMK(!p1xw$!fvZt~1m7202gI7R|-@(M}AK$-Qzs9c70~P%S}a>ldb3MYPdeknCkh2ia%u=CMFW5 zsy{O8{j;~6{H?S4D>wq>Ko=;@NS;>rp~;}Nz3n`R?yF

8YKV$^Nl7Ol{%tZ@$aj zU+_8`%2)Iky8oE@q?0oZ{qmV`ES}y@a;+Q3jt1zVdTk*YGoP-;g6@_`N6Tg|Kx6b{ z5ONZImYOOZ&*e)cLsW8>;u(u*!TXW%ld$S#I`B$Q(1fpQFHY?zRY7)ivO1)J>n?N{ zp76R>D@-y2bE71d2EMht^{aIL(;L^HZhYLCZi0>std|82Tgc~(7v9+)okVw&I^}!J zhq2wc8ZPVaWAcs7I3}#0RN4B6I`o-A6lw*c9hjRy*BL`^w3n6wqTMU__X0j=o`9y> z!bps!IS$07q|#M(rVqDfIm(W&Hp=w4@= z_a=O@>c-)B}L9wBUKNTuC-8R&g+GWgp>5o$FAOqYy(7a;6e&&B%I z?OBccZh$ehxG(0J3{+J>;AXf#ddcDnWg?%$17AUbjdF{u%@q||hxq5krfFy4olA$S z!i9f)6xc+l*=NY>Q>D?b*z;;!%0DNxQm(;KEGCnw*{k^kJUCyGUksbFg5v$&|g z?8fQe+$^kKYAmqB=Wg6r)bJc{zTWzZCs(1qOrBJQv=7k#Hf3@v(gUaYF2v_gKgh!!|@6u#u?8G66eZF#NmN1 zhz1%tDXXB-7`FF40|`Ij>MG%xRc*^RiAb{ZVfhFO4~;9LTCMF4tNJTREiKZ61M(-e z|H}f@U4)(m;SO9bZR=7;XMWJxo5=~-$15y5CI?Gz4tTT4Sk{yK=)|)nHVcp5M+neR z$;7jE^oigL9tL1ZC%%62sd%Ba|EEQQf~QQJv?x?3qk}tY?GI`;%Bc2s@y8@wKI!SV zx3{-d)zxkH8t>xLtNv-ci&j+n>xaxlxpV?wh+%g^(8vrdDYWXf=1-nHKttms!}Cu_(1<(M0PmZp zwkB(Jp$WWFnC}ny>gw*?zaOLa$nUtZHg|AvK&@t#dcG$q{oTe$4YymYKx0p9s~=3m zGu?gt))2BVfPtR*8ofSp{0ozncC1#@!G-l_@jdUk7Ut*on?3QfUu1Ws@TWM=IQ#D` zyLa}Ga7&#@-ckH!yKoQY_g>cu9>>F7Fij3TPs1abs8h}=Q=*^~OAJy4<1=~H)bP~B zv-q1u~uBmkM_ax3lj4i9xVPxmP6D!z-R>oZq8JMg%Gj#rK>P<*&E9( z{f!F88yt0~VvkP2rPtLEz5`hXRyT9>_s*po`9J@RMIo*8I9 zqoIGf3ZfM#{F~#o3BCt-yK`b>3Oy|uU1l$&7^PFrT7qKmFZQSxbCn(vF(twyj5+NV zhE7suI^1U*_=ShK1JqVd=Y0ykIz9kZb9GiX;0;-61LIf>t#|(jn2r`S{oY$}%GOY! zRm%Ei^n9%>j~KaWkD?frFd>(2rg%t<)W7xB)2Jh<&HdX&p215p>y=`S; z&gXXk@u}#pRYk;&X<%sR_2u4<+g-~%$!{PA{iH)%dj7O{!H47V3gF)U?>a)jL)ZT0 z6V13?(APz|jh7fPri5I7J6P$RIZ>~ytn5l;PkQ@&<~ajHXlN2w@#g3f&=ov%^e{Zz zf#&p8doE~)+NUpOdULaiP%;E1S^{wbk@<{)>nN4iggCzH`3z0#S1E$2;Eej*4Z@1YYn2jbA}?(OM}Y>sy&@}lv3dOn#)w^^C?r3h$=O^#82kMy;+NlC+a7-(L9 zX%u9G_y_*s?NXaas)xj^U%q`)s*8OUUOJ>ya`}ei!ZI4GE$jeXIb8#bmLU_x?6>Kn zakb@O)}#*SJi)~DQqNyL-CGbAB?TpJqC>nF3EbUw=kB8?6R23(~BL+0nMSbKYWKJN-;JC*50IM8~hy8$Nm zQreKGfS)YKD4#;zvbAMFs?FYBbkJa*d)r84WKBMoi1x z4jb-MP*Sq!E{eyqTBt9xLHi$|;YrLM%w%y}L_s>dHOXH<%)dN80bh0_e8tt-nQ88z zcWu0y!>Bje;418Z6Rc{`)D4dlIU$*%c^HC5NlVS`&##g{Ka{PAKDpWjDW#r~W6Q6Z zlfN6n+r@!cY;*TCHhQ(n5ZX~4KRi1-Gf=*0g5qZert^()r*+wry#&O&5>4h&^Cr!x z!ui3y1qsj=Ea5 zUS9#tV>f=q)X#K60vr+rEjP3z5(}))D78!U=aC&*@2c4gYtCsw*Mm_Wzho^^B7Lh? ztGCYGb-YZEnv|6EAt6FN?l6)+m_kC|z<^2bA8V+nNPqczZrsb7SlJ|Q(4d+4&S!<# z5oM`kOlxs*acdDDTuKn_>q$D6T z)Ua>1VJJtD2x2HHo>$H%Hc7H=*^!yMzcV#n(NN$U85t>9^89Z26_krM+}Jo)Wf0Ub zllj2ct76(CVVlvB`ur5tL+#h%XDh6qJujOO=Vco&&zw;qqVUjTiw!`EUJ?I%;->j> zPh3+py+-!?YWDOQGNCQ5vbfW;m4}2pvBAL)4ZC9-_6<7QySr<5CKJ@ux{_G@qv{L) zK;~=Qu5R%_Lc6bAh6t>=w#~SbfO`FD$5kmW!R$9wkpa{z#5W8sy)#>4Tg#hNxSK8%=c(TO&vQQ}m`#tjB^ySYbFel0_^afk&tr&;Trd^ft z)o}m;IXgP?oiFOOh7w6BE91_1u!Mcd*Vsu;NJ;5!M#WM)STO}nK8|-q3h4%f6*96I z_JZCPjn!>G%hY6_Pw`2kRki0^yuN8rx1$cu$=txhpupvcNz5g zQq!sPI=}GR+S{K61e9`=)>3;lGECoTYEGT%4d)Ehexgo8r~0uLLEA3e_LCs#oAK?{)4k-SNMJRN${vEBAe; zbwr#zz|2E>=ZuVu0HDUpEr{kqh-S7F-sTR2ZwuBz{zZ=>PF9vuN5xoNE2!dtqHOrK zdBFC|@E{3$9@Duto{N{n?I@a|uy^KzI$7g9I6L)*vLUY#A-ezQr)<2mmIrC=`C%*n zpP3J3KYsq$-Kwz?myudYa`f-7(60CQD1y91pVglmd;}bi<>ch*&erMpT&{0>TpV!# z(rGIt7zD$n`#V%PV#O@8(p)0g3wWpHLl3F2+KSh_ME z$jshgwzJeH%1pT&k-Ct;@LldsIM^=IfpU+2c@+m~rS3G}XZXsCbK)Qg!1Sq|`0_h0 z%J-W0a>Y?o;tD>bxeeaeuQIv>r^j zKaQY4`X9X2Cm)QA+K8-bO^VoRzzNP(&eI2~hwOXDeW|~r99=h^LBf*ComgmDvgHJR z1yWSlCSP$;(Ram_9;BxXBItf6WBr#aySYkAN=jWLBma_vt@>vY5pcg-mXd3c4l^V^ zz6N$*5GDW4O z`pdy_#5_*B;a1Gh(U3+qoYEcNok1>r~{B>v7_}3ORG0X zH8w3Rv@cg~N4NfFW<~}wfeLo&JHs-5NHX+*tWbA8izRue%dr`MiWd-nlC!R3eq%?eTp zFKB3Hd-<L^FzVkR0$J3LCXmdQfg{YzEJv0wQ|Bs6v z84rtSV7hKhdvvryLO9n_tn6 z{;)Iq=FOWMc#K+$#!A>gURWPm+0UF#UoUNM_jKpIM5Zo3ONvZ<+>+e?CH)VHS(CWM z`_ONLzngq#34BE;g(}vP%0cnijvCtngJ;(WKCkBzb|6J?^Mi`NjJ<_hf?`! zAQhA5+#JjXk*xFM4Y8A$>V*}n-*0(ZS7kY(phx7V*~?uC2%$u8`*#7MCi-7TKOhQ)e>M$yHC-S{5ICCZqvXX}xT5FxqL65AZY}~K zPMkzcfcW=;hqUBnCKH5#1~X;%wm1&@j7txR`cl-dS^P$)nvw#v-9o`k1daN#oxluk zBZxvjr4w2;tm@zYTS~wVS^gNiaWt>hI0zahm`&gNO^yH6Z~_^ZaGkHPF4hyu3kqWrSRD2l!na`(B_o?+JJ4Z&M9sM6QL4_gZjLjLwM#PI3QIhb$jhN?jU&4UC3Ul_H zmdaN?IB5+5pqd!Shd%RsNOk<*zkzH!qZ&G;r{uasaQ~@}91SCMJU(1|l$%dWg9CwV z#baDcy-jVS{wMs1uRwfw-{!XU_J%!qE*1fR;p*~2#=}cUO@U?+YAiiY*79Lqz6Er6 z=S}|vzz(0U>FbUtAQb|N8PflYyr7~0B&n6o1&aHEp)xK6h~)L}Y;^Fv7(BPQjl_Q! zJ9R?9nrg++X_fMfS0j=G1XF1~25&dDFWG|djtUtOb90gU)4|^*SdmcN*Y6Iq+pC-W zdD**C%6lhThNBp%WE!`hG#Q7)rKdk9^Emu3kbSf<0wnLYdWDG|=FF;efdTSs!ccq$ zAVE1_J@spXRxUyfY|ej<=5oNjrMF2xf6!dCb zY%71N%jYsv|FQmF;gT6A}5rCMm?|WCBh7tO|lfS$8d`u zCCPTS>9qxttU>Y}@&&NQaOyD5e0AlD1?b?UtXVFJtHrOLeRgR{WajD;sn$dI#gJ$n zVDmA_zY?>R$0G%5Lf0zyFmQ1Vhepkqr(Qznjhu=r{?DJMkeIMqwY}4j*PO)N*4#_A zyRom`(beu`90L{?*e?f7jx#Lo>#POZEZrtMa)MNmZ);r~xE$7jAiPvV9Ncz2BqWMN zJ*d?7kN{mYsmlH*BuxAm#9lE)P^7*Xz^{6k{tc>Z^+eR>v@ezVp9lCCzuYI-rwO=* z7O6&f9)XGxq)cxE&c{%8WFo)kbk+_LzI&`xL^H50koJT@;{XveLn4$851_zs#2Nql z`;A*quk8^|n3$N!retc+fPD{E;yB%_I)aa#aA6%JT_Tc-f|?S^!&nIyEHK~&SC*EF z=TC4z+vRfDmLC3-5);jW_bC;X-*f-xDQAfGrts#LmbfkdAF#xb-WuHc z_irHmwK)~%i;g}@oX)H!%?Jui2JPj|I2J%=eR*;C+VniN-1#qRRd1c#L`s2xoO<0n z6cjLx^m=0te?AUd*x8XQoUW~e+}3jy1~%4oSy7miAtA896Y%HzQ!hc%y3y}Xc>?3u z2~#v+`2e!6yrTmcz$|}cWW-r?B0@(j{>{#>OG21ve}Dhs`yL?z2gu=NlsI%M-+=57 zeQOk2uShEPiTZX_bhM~~!oD4UZ&a=d4Qnc!bg~F!v$NinP}$hnK<1#YZ;9vITmQ4q zw=V*?Y<-TmxaBitNrYma$G-Aakl-{bHl45C?%H+J;tCnr)K~@y1Im>Q;>8PL{K3C8 zI*k9*ISdYP^YZddX7(D~AKaajc(G`^$Q&1Ie9W(@sVS)+TNqPOF@9|cDH7v}Iub1{ zEfA@(oKK5VrCdJs`<=nV;siNGd+D!_G8)VQFVvFKn%cvBV~ok(>1k3ctHKpRr4Kqf zpR4^Z(3mvGpjk!dtB1SN#dua&aa28v6D3*(Wiw1Y|EKbnI#6%ID&mH3Q>ZrKOX$X9 zMg5BOEr|M>np)IHY~53vDIzHz?ntsm#pU;(XP$V0zf}JxWKka;h%Y$e5IbuA_wQdH zC90R2XKNovoJVTDf=Zy6Bmlj0CqoVb;v zoC?AUV;7OgD|A>Mg1c!8_}?u0Y9Fn_a*EkrqQ%z6MrR&RdvS)izg-$hmvxeuG((v+3O&aC9q&3m^s*AtHA+}21QO9lBTP(0){=Yz#4Oq z(i}1*wHcEk%6WeCdsflc#6)v@b$Z)ML;#^Ipm$pEk1o;qXZ3V1+@gIzPKWN$(pt~{ zH6;bE`!;jcD>+%odACVtVC`8Ng~_R%PkgAs>wN8jcpZexp#O*NHj33GJ{}$(EF3iT zkX%Q^#u~3;l6{SdX*+k=INS9`hh!dbi4ZtL9U~)+O-`VYHIoYlV5SS!-h1@7NPXdL zPm3=|2H^<_ojFl-kKXsZ7v(@(0Ro3yM~F0($yTcT1#jHtb7$2dW0b2$y!S)Le2dcY zL8eKGp`)jzk(C(4J|R}ScXUKwHtLBRgm>Bef6U#Wx&28EuRRT zetvX_pyURjF@pAbee*Wh8O;D{`<94;!TLs8`hznGW2d9qhueeqSBzGF(we}NoT#vZ z?ES0V;m?fC*3_xykmws29F(%K?F@e|1|iK}?k2w}4n?(r4KTr|JH&B~Ar1!+7z__O zetLBuh`gk?1eq_Qb{lR@6_fG;oTA4<~PH)HfcPfuur-Qwn#fB-6L>b5^P1aD(kR#vcZ9KP8yFo41v z#DJUHJZZriCAjc{n>&GCqhfY(QMg@5`H08mkOrbtK<=UtLHxd_QZY_er`E`TZhm~3 z+EE*s4~He9QTq7BBYO36_$q#5kYnbvZ|_^emy4yQps?m+c#Q7oNPD4zYsH+}93^`D z*$bxdX0y@a(qHqfA=qi5!ZsB9C}QNuM5E4QGA^J0V)ao{h_V!<1vgP)u}~)94ND&x zt|!}FXD$p&ntus?klLlm(>N^+t911AEQ3vQZ%2|P{&6vY;qa7{Fu*@JbjqyIqT=2{ z8jzDa>hw-2=(X06r}e6-t&EBky5co^-=-Z(O-C10b+kUOk*yF=w;c&!$^2@CtnT`l zo0*xJ;I;8ntGc7;hI-1_$j~J2Vu)Ml%C#xT%YOnDqQR6Y@YU#=J#j!yt;0LWXBAge za9E3YafWvq0Ak9^ldQ9Py?5>aICgES0-e|O@b`sXEydnoqc6CTO@1Lozkbo~je2~W zgpek*!r-2wdz*CF*bOV97{B67R zz$DwGx2&i8fZ0hK7QdR4`MSqTR^(}-Kpq#9p23qGN?KA|qD0gUtl7gzf}FZBF=?o8 z#?sU^4lXVx*?(43cRYtHA~FgCn0Hr~KIF4rs{h6iyMLd`jW4{y|Dp5zQ~!zlbJ%P{ zR+elM*SkQR1a?TLd)@LDmz5;H8ldzZ(Z$yBSYLb*fr*7`HG~4)M<|9OmO$-Aemr0y zunAg+hoc^x*gpbORo#>pH3ln7G4nAfQ z*H9ijaGCYH1cD#|2J)ioPSm)0$Jm%^Yt0EMY#oqOuzs_uzfO*EtwBf&p$`rWjFs+L z%`b$Q8NAWM#v}}c;?bxuXIdrXxrctx*eF<_T^|bF;^sBWoFGPUTu45>Y)=n*-fJh< zn7nRez|VBJNwRiA9(p}waz#V%JI)U9kjZ^*&x1#>&D+bfCRR8YUZ}u3YS_ydI6M1+ zkj>Nw*w96}#l2kkB7pmPj+%wR&J;H&#tr%)2u|2;!K}OXEF@vCrs|STPo1hxoGOQm zYfkduhc3qLFWKba7XotEsCi^kxqqaP+lP?XMS&9}@s3G5=k zRNFr%vce=JRL{xZhav?$+L?A24Ox+pcF}F;7LwBMr-t4gCMN=MQqd^dcaq=L4=6#w zMn!D^as>7~nDx=^(>ZdTvpRLID-1x1;B&LvzwnA1*f@e^Rn zR_PE1vo*}GOX-jR^)j=!B_HYQ&P^Ev1O%Y3!~*?Ms1-d@AhAn?ev2UU&>#LAwR*$_ zIjzT5=mZM7mj|%u#Zj>j{t}1yt2jb*IXNJd5;79dclKJ)>;QExdtNo<*G#yl-@KE` z3Q7*Rix6b_k(mier%$3KDLD1lejy=jP(hiXS2;Pm0u&63so*FNBha>hm?%UXsMp({ zfB+Q7Z1CW*YzD`OY6QgqSi7&T#ULT#4dwD&EF|sv(-q}87g$;ZpaGAK{ri&IDEDV# zf(X`y7!vvAY;Bp@%!X+XW)cLN5M67k%q%R%qp7?%Z{GBKDe}tbn!aZs$AJ#ELqn06 zeXeG~wWU(6+6f`cj8j~}*$rTiHg!3E{gbhtnyeb*Y|7k)uOQpHlz(0`C?tPKX@ zny_a|F!&RTfI!07m}bZG@Yy3tok$cZDJf0OmREDsORKBmA3nT8Zhk=XfZVcPTp^=D z->aEQJ1su6iT`B*?lV^s^Yinkt4_Xu1y6f|gNB5d1T{I^u`T#_BA%8yXr)O-7@kdCa{}^%5u$fSa=9VVP8$#=_i^@K0GU}s;YP_qSK{U_RY%|r?`Y>uPx z42HwP@J*l{?j4+D3V7dxiUJfce%_0VdtDO?x#v()-oJ&N(FY*69Ip1?hV?9cX0I~NuqDPB_nkTM<-L2v@v-2q zj}~gT{rg8qMn?8zSuopm;3O9I{W?2?IQ(lwnvX5I&iAGMIT(kjzi)@mMQ}OoiYT)r zAs`^g(A?XKi$&(p+vl1<)68&8;d`lGg93YkPZmW*ft^88Ucqv5)=*hFuD-58eHm7` zz{mlJ<`22c)V~;77_c^EWVDj`_zg8RHPWR9wFKGmk!M`uiU+Gmn^VI2VrR>#Wv^W}vG#;qhw9CEsX;Wef+T@&IranJ=*Qm;4(LnX zJVkx>xmm6I4?(%m{8({Pvn#qejxoCsgz2}#pFTa0p~Me z7aH^zHqKA6{;4eG1SMuYN4b@nnu=67@wCrb>aUwhPS4Nwj?Rw|^K}<$2WNP-eC%Di z#k&JRjQg1@$!*50w%51oXSZFqZ8SO(XadK!K0dtX-R53(9}~_2s3K@FJI8vi!d(-N zOF^#)Ltqg^^7%Z)Id-Aq(L&66JPpdN>FH@r_bs-Xi)q)Fnx$XQ&s~z85H_T)hoj$O zVzg~fQaYE?>Iy=sNiQBD8FM4Pz9vy4`%Tr_+Ol6gbDb>aQ5GLN zrdoH3u=6-MWPt@;%|o*)O$KNxXWe@BV0ZExshZN(J0onC>0@_}5x>XHm-|x5UVn2$ ziR@S$(L>i4^zsJ${JknCetq4vf^_1!?zH^OpW;SA;kWv*ww#P2AUGefhmP`LDd!#H zGUfWiz@mh{#dzboKWW{n#wG&cM(Q?uv)s@Cz<8IPr%N*D!Lp0Ki;Ro|o3`5(fe7jG zDyeZ68{y$+7gIB{?3_H?jbdK%W#B&8*u)}*qmDL-kzet}L7aI)M%G*6iFl5NN1s+x zlc-@?6=zjB7)Ot=0+vblgJDe*(DR2?0jy`jiSmkWz8Y3)17 zXCy=;p6)$0*&X`x-q#5K;V>RSA)(u&`8AOh-!#@2@ZWb$-=UyJBb{vikV>InVE6V!Hc5=&yXjvZ-w%Vdd(SSdRDVj%ie&^TA5W-s|*! z_*%|>jP<9O0-yN#u8D(i8MhNv)=lmRyeUN2hgC{=85gd^nJuaTh<<#$y_zey`S zb8_;8bBE^_wzlA?H2q!^KPKED0u8K&`x`BeRN-&01j{;t>Zu+@Ii8N_?gX3H#9z|H zZETq2c=xbVJdZj1nfeh&JDz%LzYH!#+i#}9ZsbA_cRT(x$D_BGByX{8xDxRk>L@6v zFo>~(hjmkbrKO>#ZID(Jb|uMD`;92WIwPeDJ8H$OZ6$`tlU$`!MsXAsWOUs{d z<7&0!zUsR$&fPOFKMs5tvpQ{~1tWFRZl_k${b(3c(+6$*Je^4uGd&QUie)vyWUM*8 z1)6>&mHE;0_4Ret`j5!4D^!@2=M_uHBct=Y&CZ@>j@BpZRhbj? z*6vbAOl{^++kDhyz@u!T{9*Ki1wwuH>Le{9ZCUxbTW-NLfv^~K*S{&C(5hER95XV) zx>A#sot3=Ggeq&Ir6xcBQF^~PxGIw9tU}_NbtudyD;^VF7Mo*rNxyzEySclo)#-8~ zj~CXUI+^jNQkV!rlvGrn0KDxsT-co>+dVpJ+F^bE2g36nukF7S70G*fRsB@u5+{hi zRcb^Y{Qqcr>$oc0rEOSm6;Koeq)R|bO1eQwk&AbgySv|6 z`}w~8-~HR7i)&ryoHIv_<;D*Ox4vnkl6h+`lqV0XOcp5~`k{(4#w^0zsC>6DiK#VC-;n3N9XB%0IfsrG01q$hJ>gnDYeesUObw!oE9-qd=bKbf@inVE6f<ryIN!`q9Il~uIik|i*2Y5bpt`zB?oaO4Fc$zG$DUYb zV~={Vbm*P*N+y2SuJktev660H7j#dmcYaf8Cq{KE7L1ehf+2E(b2#bUqC>> zgpB}_WpInIM8j5AjJn=Qa@#E2Ze-V5Dv{2yL4$#rcuoS;ON}Go=+r zBTfDN`%XZsKbSCisN%tJ4sMeH!y(Z4>b}Cu{*_10#2KUi{d;VWQRGX?0l9$}=+bS2 zqoX$;=6hDl%FE^Dv}HVRc2N_!Nl!#r*pC^-=v_R8nDQz$w{cG(Uz4t+&McxXEEq_ z+SJrMux>x&=+8rh2BktK3kwDjco?9DuF{+}#{I-m5=Y?^@*5-vKV=dosoU2IRr8h0 z!OXNZQ35!~`c+k{-aKd}L`1|wVT3-xID{{34z~SAqW{KDH?HFSs8Xrx2TZbf9v>y zhHHN#Er(vnWJN53#%sGx`s%ddwpFj_Io5sh^t6t*{m%`@e_Ng!LHTHxe0R1>of7V} z_B6Vj173X~sHdIgJm5H_Z~n~bUADEka(;O0dhLLKY$PR7(R{xC`SBWlk+b=~=xprl z%tl*yo`*|VkBNCo4?SKo(Jkh4&gqTa-uMidh&&S&5)!Ihk4{i4HjoH$x~rt5`jgm+u2qoJ5C5?(H*et-hWP(of(v!3P_0&5zY5NWWgvnVMO=;Gse) z9FnJpQU~`Hv)9d)-A~`^t80|Mn>hu)TKModUyI6Rl#P6<2tg;44?1@lu;HC6ve~ld z;k_L(Vap!buvF<_j0yPJCgvX?+0l2CoY$+t1*%D$fbW%+TtE908@rTpef|A6Z26!p z8X8ibiwD2gRFqOsz=CT95+8UemXSG)nJ=Ut+^_lJS_( zvCU|3o#xpiqn^aZz&KXMwd?(Z1HIvFxj+JT|B;ZJU+rT%JH{~7=`Cf;;o9?^=SUYr zkAW7@I#^{kTXyJGd%i-5Cr!1|m(Wg{d@UTKRHvLv$;^yVGZWmseE&WOLwth*gwsbH zF$|$@b(&<9|BQyF)6C4=#N1pscVJ<2bBgl&$mbc$tY5|9iC?+h_gis^cUplCNj^3h(!n#Wx=xENtTKKH*bBo_hBz zuZM2&2aNvYXf@lUX-iUOG-nLVpRYMt&p9++a7M@B{< z@(RwYq=>*KbnagK6n2jT;ZqpPqrp|ffTGE2G*MiO4z7CylmzMUy2(~;UzD0 zob;-{KQ(<3g02MOFN{`$iSu+Cfa?InXt96O!M(N)%55ouI|0+e4Z(7 zL=zK{Ytbuuucag{EzQorz`(}Isb8Y*C;JwVTkk)A{#ZJ-ng7Z?pX<9V^1Agru(c~v z&tJQDPeM|b+QS)X9%G)Sw)z%jN+qUY<9qZAkpP#yM}9=)F`bYrg2tk z>gUrrml&s67i3W9$wJ3sdDSWFYC(l@Kh=Zvluw)l7;ZN8Cj{Hyx0!NA%-W2NSRAJ- z`>xS)TfbC~dU}{c#!}Q|%2Z=n zt62eoz<#3s*dqP+FQaIbUVm; zWo(4yyyhQ}3w9Bpj061<009tordDiE+x`gE<+kor?YA{q1eNT@zDvFs1@Z~$hxU{0 z($dm9pl6u$y!$@42Kyiw{|{JHoBHQMfG&d9=Tb@B*}{VUbk>Q~v4%KKstqnP=hf{B zwMuIUs@SR37AAf6t$Vr2(&@;ibi0zXcW@foIFf{9+amaYhyf};KeH+)E;`!CLYWXF z4CAq1NPBxbvX#{?BekWS9V_z5F7<5(MpJXMYOTRT&l}Ij_?Tdgp@pV9`M7&`dwV8x zLwI2UCKfhMcAbMw_*?yhvG@DEuD%A%xi|lfd`9B6@Q^A|oW$Wd1`bJI*_f8(IJa^t zg?R8%p_khOxo6A?Ql)s0xrou=ELLm%W@qOp29IaC)sz?nij=XJfskN@NwdQryIVq9 z64Fm9x`kRTE8u>9kb3PlfZN36PY%YC+LH})sd&D)l<6ZZL}*J)063-QcX#`h#4uYZSM zDw!`%=jz}t=(HvR22Rj<1{qcZo};YQ*45Fmr`Mol4M~`r(^1PNE=@@ja@!odxO;OKo^yCum<%Mr6gr&vr@aM19H4?dNt_jj zs}plx{Xc^U&pV|#F)%P}W(#q%(eDpb?b(DKVK8GC};@=!a+P`|teeD`$P4V>=%S^4=vpn}>v(Xg^P?5%j^rQ2`# zV+I3rRA9K-vZSU}d=72|(~{@@{Q7@;RD3ypnB9MDAJ9)V9S;c&mO0zxRZ}LUq(w z(Zzsx|3*CZ0PBpOqb#lnOhu5>fyZh|-!`iJ80p^e@e>r5&mA2djO)?C-zUKmaqhXR z4JQUl(0#aa$?56y+P`avKL)}sb>zdp^VMYWXIgN4RxA4XnnTHi8P9efKQYBU1R@RE z^^{$#YNfcm@)OhL)tb-NMfRFeQ|7`Y=V$358+XJ25AM+SN1-Lk zG|%AjuQ+#kd&G}h@(G-=E8TF$PF1uUp@W**uCP1IuXro8BL;JL)==uuI?5AN3fijG zcK@`FPAuwk+uj&JaNcVuG{cl40xw?3&Ba(C9`{0?lRQ{)MJ1zun{}>)<3nX?#^SZj=GJlFmFj@E#{lx`N zoMv$0?)O#Yl-tEai^;PmX*36CShBCI8r@A5s!2g8ju*`n*pdAf?kW>g(^P0F0iCtC zw^zA*7!v^DAHmo-m>Bq?dh&XO`9B`K0crHW@G#riAU&~4mSnzex$5K)RM+ZDBf=Qp z=N)(gdM|P+0*;gQk(S-0I1{YytEqp_^UXm%?-hN|i>0fLJ;s(}2> z$60x_7X+u}hbb4Q?%n=8LzEnZhRe&5N%W$t`4lWHm~)mqTRfq3lY~a{L-KB9W`3W8 z59ka01lyKv!@ORkG}IkD(kLm$i;nMV4&m#G%!!Gahy?iUXh~w!vn(25Ef$OMSF%3C z)NmF>6cKHT*lK?Iue2|aJU~D|_*<2J&AwU^(+)1x35~(AO6eX^xh=)R!>S-?>WP@R zWh`aTxVgC_W1><=)+<*g%~4R%1vkwfM=E{$=C;PC(zjR&AS@?S!x4+m!9naR-TxZg z*WN&7a+#Q!P|H__tjmtc;_qSUVolGn;a?F0C|*U!?n!q+<(FSw@A5bZnVFfjwiuzI zhbHK8e*W6=h25jN*EKj*(@V&^%FIql)gL1|U2*haMt~7l+v}R$7JcQthDLxU$y4pa?v6>(`uiZ2zm;X&b|vxGVU!bV0L)wR zIy(K3cyqp#9swStSz_j)>%OsnKU zR$!ZES~o*U%Zw)540BQXrWFi&<_%Z=h4mNV;PqDKv!gU!Uxyy{v~qx!%qAyRit6Tg z!`%IB-Um7m61BQ`!|uYh^3&IPdkTO*Xnka8mRG2;H-orU(BO+hnkNh@=@}W{LPMV( zxn6S*GVBa6R`|KN#mQWfF7tgf9-Fs*FRv-pIPf3zT_Jhe((0}k+%fr2h4JKSu#6JXW2xZpCQDS8V7N570^HtBg}9$;iS6^xHy1 zWB;nP(IaTGCzQZO0t7a0!BMLI@l@TROH3%VbDDh368kW?;7LsPgj&vmHJ6E{8I=Ip z=TutZOf*Tq`t)=RP|{{+|BIUw=pD_Yhe(;T?IBrKkG97W9f(*{-{4@~n=cPqs9!kq z5LLi|1SFs*o;4wM9MAJ|*ve%&N(JJDmVYLAHmw!u4^+ri&F`AnKjk8VX;?+Yr+NOv(wf|L*Nwd1-n>1JDSP>XJr96o^SgytLHTNG z&~5K^6e_biOtQ)Pj2EIjer#}(I3d!mnJjF8iHYTMQYCl*DS|LrxO$!prG!N%_ce*4 zO33y<=U|M6lEGNLY|X_LpVAMnFuDKsy@r{x*L!dKrVUsC*BCG>%Z_{}(Ls3;**6kC z0EElb*%V!&HQOys01m@~vD0sXg#X}wzVW9p&{&*ZY&tT%ENf$+)vxfc5*qOQ z&f~K1;@II>L`)(n4$~u~cXTJdlHHt+ki+5!umqw3xNynoV0gwwlO&_A^P9G}kHx6j z8L__bMDcPtH{|#@{Z>f{8^&h?uasW6B093=(p6nsS*T><5!r^&Ci7ivibIYW-uDL& z>Wl{57^mr1w$CZweA+|F(bi0}G9`UJ`%W_8?x*5n`8#bv{RV*PC(ROLVy+6^S1wTh z-aOB@JR+PWegpmuVBD$r_!9Ty7S$?EFmg;yr`>kzroHAo&XDg{if&H7Tp>Pz=nb{W zwa7I)fa#nMgE+aI|NX%ioNL&1v#eS-LKmfE{*6(?kY7Hv9T^=huddz&UkHoMf=HWj zF!FO68k0Rg7jf=42^0MHWGMM0r5&Dtr2ZjTZE_2$;sM+^K}vGigunCo&`)Xoo!Y97 z%YRLlW$G^H{Y*thy#!m1yt?!AkeZ4GuFF~P?Vpo6evP8~3RrWyGedFJm(0+!uY(10 zWJCp!pNFLy^JqNGW61|B*}1uyX=w|^AEQXN0H95+)esy z(NRz?Hv#b4-i$8r)>MtQV%AZkZ~`MB&A0KxKPINSo_10X5qtY*C@i4N>ib1#^@5ps zKhSQ+e%B4gbpVloYm1X|R7*)9-VNwp2KA)Y39Vc}Yt!sZ&H1*Kmz#GeD!_)hlrLZU zcSca#%ydOT^9cDEXICZtcSBQJ>oYiQa%06sO0AqnhlfM2uTSZUI(r>&OO^-&(-L#aW;Mz-~_)HW?rL%5H zro(gN6v&TkDJ1bIy++L%eLCBVA_zaNZ3(&t%cb!mp~!dGrlvW8_`K0TlWUhZOYoTO zbAFueC^a3DcqemU|CS^*{o6$nkoUc~=Gi$pcPFWzQ&Lf}2(U)@MNqNWuf2z;$$lDP z3zKZ|r}w{EZb@GJSK;sSCnx9*h-n+V?xblDp}v^*8(Mz>_}{md7S^BprEyc)dD#Xl zJ#jGP4-O7N+u9z-Wje?$sldy}+E*qITEvxO6`jS+<4uXTZ~p;)8^>(7qLu=z->kqa zO_a7Oy)q0kh)7y+={SszH z!Uz_6=Io8$|H0jeO1~|T3{bcB!{VwOh>u5F@8V;D@6cP|eZOxQMTYd>H}8bx$)Qpu zQM-6(@l(qtzhK}`%3eF6iuCP3DX6~KIEm`!7MTP9^%Y*9nfu7_aLZzYXCN`JBb4hu z4L8S3W3CzjHFv!(J)~jw1M&A z7J$Hb1cweW_R$`pK6*tUJ>y?Bw4RYy8i}jp9JW1G0e(xAWakaqG=2Sk-jyMZl75Z{ z-Rt&))6+e`gScGga{@#r702@ZAr|#3Hp)!nkl?$%Ge+qJ^~vSs-4PYMum687K(1;d z+>3y31Ci7@8Qu!rDog>i>0%)}CnXL%NnA-X(8#=u+6Zh1%p+C)<^G9dzvx`A!^$JY zm)J;OKW}WjT)?`yWyqVbFlrtn?C9>+cVBT{=}iflQ~UW);_+kPRvtVM$M^(^B|3YD zQ$0o;7UO?@DUCT@UKS6sXuHpg)?c1zv<2cf3+IxOv6t;qNlk1!+Ve0_hz09GZWVxW z33x$b3*L_#|Bu1gF%o4OxWy0+^S(d=5ZuqtZ+_i4nTnndLd_>cI~Z_K0i2|%eFmk= ze&V@fm8R+>J;ZyvyL%w(3_X4QNn2Lbg&XD+Ezecks_`m)WH@jJ@X^mE`n}o!oXAwV zxC8ii8&EtCA3Y*JDIKwGZyT)QYqqnqqvcY6ZJ?;KS`W+&+`bB1vt

EeeyyI!); zil-#ef%5b3-}f*I$FaGvJUOmVP*Re1QNvI1xS%EEaQ|8n!pT&3#R38tp!ERaH33MK zi_7`L6Aaw@M|bZ^C9#(oG zOaRi?Qb==rxOeI#xn+ra2*8McKmap=M*mqAAaHbrI-=^X1Q0jGEEe$)vhXb>(~uT^ zOmsiU8uIHj5y>9_LF)Gble8lP+9Dg9`^g+1DspoC7!oRe+m3XR=yV&E>=$}n2mB>f zdgu$_G^7e$?@bl zmTtIFY6>C_fX>Xy4z_<lRVJ=0ZwdE8e@E} z>b3Oe=DPO0jZo8V=ABVryo8zyepy+Wfq{X&XEfkk{56hPPB{D9m6E)_tprc67j9TR zJ~#udLUe3VXNMz%=P-nRn7s)TFPPhvSV->iI?|4~=&S5Me1Xisj{H07?#* zL5EPAaUTqlfcnR>yK&g9_8HDEv?l2>#&o`wls1HA5YMoQ)2lM$rfd2BJNkTfc5$@H zrdKmCY5;H-24gdU9aN6Sfpj7+>rmpU@}iGZ97h*-!~*d;_b@;?Zb}Y)A%C(YRYcgR zGKDUWRRy*yJQwjGq6eiqRa=g36^5ojcKTXA-iLXp^p(eHl2gvFU*vpzf#5)7b=Xk! zZfTeF940a9Pv&1D?G(?H*W-vgcU+_r3nCB&9f5I4YmE8mzvWB=5dQMl%K#w1IhGHV zGf|F2Ra?2uD#bY*$`_eGIb>hf?(cG{HdyjQGZaX~9?q=ao-BtmA*W|#!VW2-o_$Do z@XLsbJ^+8|(q0(F@aQn)QhXgS$;iohC@hKks4CG=gEu_D0b z!~3Tw|2dSEspgNOmN$S}EWMx{C!tqN$&eCSyR*wnRxq-FY#qSlo%9aMJ|B>M4w=0Q zg)ugdL8J1je@r~PKqztANu)8r7&OTrFcl#Fe9Uryv`j$*!yYxi3B|p zr!4Eg9~{^&U}1tkBazSM3xAChg+Dpm6yJdgV|wr|(;uiiE(lwzRag z_c_B{TaJ_TA4|*BXqf0SfBz2kKX^w#NN7@`YRy9g!w3}MwC?ZnndC2CdbPAXD%X7_W z)O6sOPj+T|p)&<}?f--*AZ!7g;qaO(1yxgAyhu6APGd1{s#P=RNGMZLUPHxa#EjpZ zc06P~_I~k)0dk|Bcu@z3%aw>2c?mrsAzU&m*-kbEl`+qGAb!E{SnJ`QAw42M{*osi znZ!L*`RiQ>R{*5=4m$tAE9oFlX%d_|ynY3lB-3NgR5E8=wx7ZQZ47B^8-mAaU(<0EpL*LM1R8nSDIXYVGvB@FQ zM|3qPF!S> zFKz8?a|#NKrpoid6pe*L;D06lJ9k>U(0S+V>RbIQLFReTIdH7AWPJ^!eP94eD#!rjGs+j?A@|Cf0 zq1x8w4y_xU7HHKT_D#VX5)Rr4Fb>Btn^Tn-^@|mPtbU)e8oE7@W~%3(1g1dP0tTk5 zrxL~k@sI=PIOlDvV2sOvcf{*zdv|G-RChm|lJ9J<88*zo)OeHSiVcAKqtYzJ4Ks6E zI=b}w`nwUGEpEH@-C@l>2nY{k=^{(RFSS$uNX~zMmk)mJv;mWcD0`p|kA%$!wH~!I zRFQyi0t4QOCqR@t^6sPb6Y_tnn^VgiTF*qKsIWk2QOd>%!-A-)GuQ0wPC!KiP~&Cn z>_p>UpMa^7*Orr6_lp32K)Ikccpr-@(cvy_OgC?Tj^wc)GsY8SU*%|^-a6&`3azKM%GCBYatKV(SY)PIEs06sJ4w6p%I znIshoN|sc{MFh$(#g}RNdezrS08EvaM*|xB`@E(XlqGH8AB0F;90s)>$a>j#P|&jT zYFf4(fW~a#${luLG(w++2#NXf{FO_W0S>)tM~g(n!$)X5rvb!{q~5;D>QaNU(f{$DHwD4{QH>CAH4bGqT5|0*Mk4 z)U2?7h?S!fR153v5tVGgL;^iPlk?nq?fq%&V_IS#)0Twh6R`3>A51dKe|m?9V{UA2 zLi!b?m;`X!t=PLre-~gxLjo1{Z<&kPaBltl#zn{jvR~ z)6l&2-@(B^5IRsSHW4l};)KMe-@kt!hDAVB950LdPf|fX08)a=i}+kxdYX)!A`B4S zwCXilaA5tFR{vR67UeN90bMK>5s{SjTNGVgT}wi2_E_i{@~+Jo@{xpB`*|iaa)14D z-Wt#uGGo)T_}B_ROG46j^#HZ<;1?Z&Nonv|30$U&PM6QwJFTf)2^t)fFaJ2x1$i*l zSB$XALa<@)KiD|p@!>h7Mi?))S)C09FkwC$=FEK!+OnX4#S`A$f8Ht6ZvnvqX7snE zCK+@lwRwSCyA5!ehQ~)wn(|w7@DS0Ilp8Rc4vH*XS`Uo80k(f)&Nw0=p&20R92%zf zWm{%8LmCMGI6Dq?+Zn%-c_*`w>O&%wKVZKz;{4^Hn1z6lVE;g##kI$zf_RKVj|BAf zy++Lj9Igv{u)5_xIHakxv@g(!Cnp*+-@HQphDGyvcw`EJ`+A#4OyMaOMh zl=Rdcq9gc!8vMA{Q&mvtHom=PLPjG(kgburv@jC~yBw}y65xz(|Eg&|G`g-X1DTCx zXlxB^>*_HA%r!Ppj9!^8ty>hjeF%n#DVF-5z=)SUbCnKaP#~=zZf_{5?OPLevCQU1 zAt`p^S7v3C>EyGGepu9S!?v`yuYP&N$A}%`>!PmClSU(NeUwd&<|V`P%c$@84a#eP zeJkc{kfCCw{rK?|((*xW@TTjx?o6^fU?)#>tUk=B=;*Q}Knnm^;b%CU%&tAL-7Iqt zx6{shy`MxzMIE2T0zXFLz84di@~ZKplYoPRgNcK>HyZKeveQ&?IVKii`>#zE2kkAN z5WL2GP`Lp>SmAqKg<#!{GY*e-JpuIO?U)Sz4)Z*G5+RT1oPBI;?Apt|8tBw-3jD;< z!>l+z>H!@wJUk5J@KY^DDyhVdV!CLc6=%2i0lmqjmL-qrth~iNrARF9JUKiT%~VFO z+!fZ+a{D>~oTVjyfq2XGR68LEAsrpdsnO=>Kxoy}jS9arKuEiZr(;;eE|OWzpPMby zTR;5BDGH0mZMpEK}qeDaL5)XH9Rs>wkq}{zXSV``?dQ+bX0NDZ1LO?$AoUD zDotZ4|Mh+ye}G}Z!fV&|8+Ul(rEy3D>dERiwI;B5AYE(i0bq|KqNat z%-tWOG7KWj9^hFO1%DN+<5_5GDT#tZDKpcsGEwI0`U>Qupco0u$jnNa4|nB(!?I+_ z7<~@|W~au#UjRD2Ix8_3vRcGoK0Q37ASeHlrZ1YzRVzNQVc(-u846)}`YiY$fX!Ak z`vPjb8B-@9AGmG5In8 zBpdPOu+b;lEVhBxZ?Le%1CsWkQLH_@ouAjG*Dj8vg&c7f3p^MmN&G4@Gan?$jESD1 z-CD<WIk;9-er3C$Ywxy??;y4n`dJ zy_8!}+5|$U2)pc>n)Cq&!z3b_{%BrJStmm^$|v? zk1W=|7H<`S`QPg5at>6pz^Z~OSFcq`1!MN>bv7^1uVh!^>z~o)VrzEmvbqQjbFQEl>N@vh0DK5)`2QqRfDYk@@5*PI$;Ac_Yog>DvyHV44m z#ZM1+xKgm{XBLH}E2(Oy@T2+p+o#5S;4OJ&JN#DtNj{9HBWBTouL2lqIBL*$%jGD70%Z~anBkW|&sKjN zT(f4*`<0hbP)~B66D*tgP85`{AnBdivGHYuC+Xd1kNq07%#Xfb1vcdB3%f721xdxe zx(kpch+S)>6I3fKi9de)2x>RoB2|1=BR0XR^`8X^{^Y);R-snFRReJ&W++Mt_yK5W zpb0xapK*fMVlv%D!P8R!u%4#z$*#PKlKs# zAu$Mgf@*VSeCgO;Dj2-L?KUGbux=6q;QP1xK0yEaw+?!z=(u4EiHN+==06kSaV$g)5D&g!_u1#&E5 zxY#Q6v^6z*3U0R-YOETTFYDZ_xe~JitHhYiN9mzI8~7-0{Z^F*!R~%*xeqvk4Nnq6 zH1)He%dXr6CU`ZC^7lXp^zT-qn%wHeL`8uj^!L=(ne!!h`Nrb}Z}vr%L|WFZ2aQZA zpkROz^Fxt3e5vpUo)Y3p>gg@0@qdJi&!w*_YsQBA;`h;mkrDPt6~$M46!&iLoSwxx zJ@=iV)SUSP*;{AJ_ZkopF0gbVV9)nZ!{OZ#DNh$Yu_Lc?0%)MeA*gI<{XMNx2ey_1 zJ!4F6iQ^m~ezrUqqVH*z;JKuanz$07z1P<6^9x^$mC-V}|3>V?kK}JHBA{4zv#>s2 zDCzIuwf8O3ZzuC-M5ye?SYHT`K&&pPeNS9^dwXk7`n?XC(S52mHge;D*=4FbBX77} zEP*g!s23m+T1ZD1gf1f*)Nxfq`$J}BAfg>M)c`d2uUVOi%;ja@)59SGhkv(jZEtVr z?)kvoy0DWn*9tdI)1s`v{HVU01^3qGW`Im?CftMIFOuj%e%_RGRVkGEI)5P1Dbo*5 z^Jv4edonIW;r6I){Hj?jQ_(Sm3tB3k&F>s_Mdz>94@i4CopvH^aJ#@ycE8$}F`t6A z5^$9#AWRq>obEZmrmNgcuIV??l+RJb9ey}THo3D=9=YamVz}E3JUTbo(02PtY%H?R zx2Mp)Laq|@$U7|ALPBX^WA0q;n5O_f+XkBoFeAR}8so~1_*|FUnNt86=g;;Rp*Jcq z8+pk>E%O0RNO(-h{W*_I2B7%wyL>>)Yj4pk9K*uEe*;1z$a|8C<523Fk~q?ULje%E zfySsZnBUYKnvdmA3tI3&-=v_dECw=)H=lQy!JQW}(+?^(AQ#|vgdT`Id6b@EzA!|%p>$;~I1v^wDW2Zm;d zUz?I%>h9``J*FWW&;Yj*VVSyz1eOk9-SDdt!)0=Rjmg9LbIZT9f`Z`U!HBc7vrs;^ z35tYqk~xkB%jI_fJ_%m!ea#XM!^@zr(ZdH}PQwek0<`{EpnyG$KGHE;=j7+4{;Wpw z^13B?(t1G<;;W<&(P zW3aPk&-L{cm$vth=)59!El@TB6P{@dDRj8uv2+QCX(pfNIAzlan9|Bdhv1EUHZ zk}DfdNC0=KMj;wu^rJs8_GMs4iWEk~By=b9*JRpBrm5uQ6#QHpX9k#yar{m}#X7DY zBkcbH^z_Sf>!S{gU%9y;vu}B>*So5-2QV?fi0||m2XZ5y;VP)9NxlAUEhFCPP`V~@-drO=S_?p-PQ1@rla2_P(b3Tn zrmf@S<7c?Il2y_VANqMhNAbk%WQz>u5YT_PO#9T&`Bus27<7iWmX?=?r+7WP%vq<0 z2lQDzecka+@wb-N1NdA3^?PUj3}@zR9-2QQWk#;lYkdS$50GKfT3Sh2&0%;iKr{v7 zYwP2(vA446)3NNB!QNR2d8PgQ@@VEz8*pWRK=GSkgLqC}v zCWkGNIV9g|(xlPYUY*$lV-r)nE;Qb%v`I#LxMr+}7RpT)0SPA@dA9^569BNkK)S1< z?LrA%4`3BKEVdDq1|o7x9bxV-yXfA6aZn)DOV#O=mpLRTNFUY&J;T8X_d4@Me8&3# z$wa=(Z0F2=frR|gh}F$$H?0?P9#d}f=6XE0os69z@*u}F2i_=f$gIOZ1^?^&x6~=m zVKplxZ_5%vEqh|mm2||*JZ4q~>=g9#-7CBG>8YuWLu5cFzO_FXi822@VL@NB@JQCj z7U^0B)<=JsJTe7Yh#mZLzz_7c3I8J};R6glS??x_*VUh)2OBAma9`^yDb1)bZ#3bA&(iFvRzt$&FmsyKX+> z;FddCzkc}_56VmYrDO!ZTbFUl4X#Nc1NxIE$JQdogI2A4Es#Xow(GsD&k)14Iy`Q$BfQen)1zU0Nq%cx zpCufQ_X7;b&$O@U+G&}somcZKOwG*~S2Qdklo!lvmg{4BXiuSC1sDq+yv6t)yHP|Z ze4US90|(eYqM|dyG`;--2`!DLSbxe967TU+xRYC!4B)q;xYq80OhG!8d}wHWKyd;H z;Om!65tYwD(bK*}8*#b(GfL$4XKH;iLKRkDUk~1zK)}HNzn@L@pg8)hbMs|#QhhW} zjp9i`XytRu%6+7Q+Kre09l3V0%PoBA=n3uF{Jzf zItF#gsCN})0QR~7~Rhtsr+al@Py{wuwL_cXB;AMS#U)%~o|hp0E^ zr3Rdc3#6JEnbBx^bq$TGtcGcjIFRZbJPWLlNO~BC8wOLpf+-r1buL=Q6 zUqi7d+b4jj1pa_tv-0oId?M~Wu^wJkkSjwd0W<}_nRqpRS%ig#t|@`>1|d_4kBo6GeqHnw*K zewh42U?=kuyk-JL{?%1M4cJCN7lGUI3HvZM77y$j0C+8eT%q~HD`%b;exBf$YqqSQ zsLoKT66uGm@Mw?A6Ob>^M>A@0{EP2FQZCH`9bMJMq`6-}03|1<&#l|7$2yL>kkCR} zcEPWO=3Dnq5VYNvU`h0TJqiseFZLd^EqjMGyJ7|J_l_?Lxm}O4;i;}=^~AFW&=pkv zS7q_fLxS=G2lOVlb+=xyY4{5a-C&o1hsfxEmto}&0QW{0N9%B9mFQl(!s#AB$B$=0 z=*U`HT7_=QMnm`Rz}Z<(2!fXg8Bqu~KUTmT%}+ckO6Gfyj}r(t(e_|S?dQ~EPEad3 zp#vVzjfdXP^Bb6cs8F(p&A(_oI9_Isdn&kh2lT}KzqTux@7y8r zl@NKO_^CU}>D8-r0XQDMge>3OcIt4mx?7vk`9(ZD>av={*TfM`_{chRTj8OSiH$oT zPwMQ{g-a4#x|V+)aX|)ao zG%zOS0z3h~H)Jbco&(z6SVpI^U|V$tT0~H0uCD(^928oZ^RBiFy_TUR)dZazyc@kk zWLhj=g?dsw9O~f`{VAIu1HkY#Ug@WaC+5F}U4&8gu3+M|IGXrjQMx_@C_2neE~54)q8vND#qWChP(NQYCm8}>s=#`sw;=V05JA;MY*_nNGf)MHt}Yc}g0C_?sWVhgBgeU5Z=3)3nTW%y0v{B6@L>2vAfHV9Fl2Cgm_EOUNkK#oAw%&Y zaewMF)5lOT`_90=G^=?-2`Mx79*i=!yVs`!My89~6|-q?5BM7_T((D4Ty|%ia&ij~ z?P)Mc(tz|A6u6`ZJt@6*^|w|C1>(ujHva2h1>z~m7>31Q-rXPB*}e@o%Z0JMaHmqv z-<1->GAhB3QFvFR84L;$gd`3s8es3R=?fe@p2=vrWB8?dXxq#FoHOpI_|2^2@lmai zNl3jc#iU@sGV#g23FrxEJoe_BYcKk}^omp~H+O1)GID>fSa=ot22KXt?b9}^Nr)5H zlyW078qEMM3B*5dgrG2CPZyGXO?k`rq4Dt!Nv7Jjpaeo}^UE#JVK?dj+<2~%o{=th`9ikRliR~9ZYI`9z~~G>s*v2Y>OHb6?-p`gf$-g)P55d3!t($hE<)=cfbS~ z1Ky3=y{nY*QX2|X2pT(14_R2;++6=X-DF6;0w{zJiDxV{qw+xN3u>Py48MOt#{36E z6a$JFe1+{}n`05-;Z0gj*Y58}BTif3hlu%3&a7gY^^v%_Zwu>qp9ECT-U{9%;v0Dr z-xql{A@XJ#qt!#2l22WEEJ{+%EIwY{m5o z1djbqYEm#Xx3@@OnUY}W?y8z!Z;w6XgU1)x!}vPKLKD?Vbx?bxD31|M)GtfIhb3tDtn#t|lUhIK0`LV$_z z#%m34vLL_DQREZ2u=&Z)8$_pKUwhie3-JE^22h4Z=XXr8*LoNj7ex~~~b)U8vf zI1o=y?d!MR!K(1{-}d&$T~$Yg-EN|Sg2zP6X3x;k2;05~;KuQ9x`21o;MwYPuwwpQ zFZjTru|+JZhy^HEF}k1u*r-7Ide(EVn^5HM~Q~Zo#lG4v{IhrB(vo z&5UQ&U%}CpowzaQpeSzl@zKH{C24qMtO!sflF^J5Y;422oPVp8jxTF&@9F61Bq!Yv z!Ogp@xIue!J$q@;g`b9&s&#o{zdo2bd;4e15E24FUnOvTrjLk{h2Un^loZiJoZfBX zeC6y41+3e502(sY^Pxw*Yeg5l`UH`0g%D8zQ~OCU)lMjU#vnrEzd(GtUUSqIu*OMQ zTv`&+3Fv%=P_Ln6k7(^Ww{FxUtBu|QzY4m;Y3`LPeKa35k_^b6sy)5AJT_AMoeu0b z1gOH^WqM@AVL9d8s6v2xzONcDE-kf8n!Ihp2FB&#Bb&S^Ilq`(kbM;jbBm zM~ezZ3rGokiaioO96`-({qGJXWvjh!aI{jI&@@6u^ulto zNs^uvwsFf;z`w1Vn%1)H8UnJhK3c~M=lb~%8+|u%tfu*oAk^G`fI6_*?QAp4N8-7J z0qaH)pFKS6TpDEiU?4LAi&|+FyA#Pi;q122()V=zgu+7N)II@^8n>lvZoUOD*7-CR|YWLfA2MG zRhyL_F*7tYq`%w~9?jSCY1PvOR+x`Rj|+6D2e*z`wr;l^pj3tBON|<+xPQwuRM1ET znj(#1%^I=5P-y9ZVbnt#T#+U8eQs6;(cGkSJkm+V=u zG@KB?@>#M)DWt+4w>V*B^e)SQGDSya99n95fXu>hXVg24N^I5#DQ^TkkYKqJA{YO> zu)gh|tF5E4Ll{egFy!9U@_7lM3m%}DX2~92DM@EhyS(lN2pSccZ=k8sqyM1gRm76$*mo*4}xtVJJfD94BvX>Y81yTVRD3(7(>*%;*Jij<+ zzTRbxJ?deFY?d3VeLdKhA_l_Zx^%x=h}|=IV8WmavgoD~PQo zH#_^oW;6r6=j|MHORr$D9inQ%Vp=!x+@Xw~TtDSp!=CXXP@EL6ZHwlq)p7BNzFo+ZdyppH2EiH7QN-HWda<8!gw}hM452QRs4X+X)7inR0)p*y$A-RXO z@a}}#1Rtvl3%vhqA15O@XWb)YijsgmJ_%N4TGp)oCY00C-!FTEz6B~o+w%iMqkdN? z+fGB3Hu~CLiz$$=r^4u^ghhKu5FV4z4sUBjWUQ~#S0p~3D><=Xg71Zeg@J>jb%#T; zg8Ku5nNWAXWh>`9TVBAEnov-7P^N$%Rdii`1Y3ZYOZo*?{bkx=T_FDL(S34_^2h<- zY+R6Ko*x7-sg~(cg2dx!dnyJ5@lSDPr96>-#YMV2sdm(!PyOoS>@v#-d>Mdu20M~W z1MoJxwPU4;X+i4O{}x1nmpUo}3t|L}hZjRSYlaBO4Lw5upgCAbX>42%tjUc3TpM%F7DMl>fUC%1MxRjQ$pkrap}J&?&p0*q4TXQDwTGU;!a zxP@_$`eF!-*^UR@q+{`tngK< zaAYv0~o)o4>0dV+ue{g&*oQu8qxOFX5ouukG& zdo+KV)B29xN?#P58o*4MM)Rqe_s#o^5;Nhc@$v7Q^0c>s}cN=!w_;Gxk z0$%zBEI8C3XqYt;7Wz-{`Undo6uKX#pF@t>HgSmzZ%SMzgcrRc2s{avUybWElKGkO z+q&^TDA|FqJ8M`!P|1HVfc2U}1gNpEXmHdNrYg?KKY`K}{xU z2pXwOzcxP<`68!b9_by?X>RE4&JR}+mhS|t2t*zwsLYM0&-RZtMo^v5t6Z$Cv*-pK}lA(rb_A_`|Pp*qY zZs~PoCfA1mk!RUT)#YQ?{SUC51NS`2rFa(x!y;8!P52LTN>!`$D50)F`^@a#Vol<@ zMpjG6_S>n2NB^Kj0+tLO_6*a4EU^panu7?D*H6kwc|OkkPErz|#hwP@kiIUteC_Sa+2aWoS3}9b$H<)3aKa78cLJ1PPEn>OpZ}4dh z;Ay?2UjQNN(qX><_}%V9lHU&Dt58t-KYiJ5<)@LsG!zjU`g-A~bRv(#BRB0jCjt&l zYZ8Lky|zJ0$+xny?GWu^)Y}AZUm`C;mX=wJR^m_=r#k>E5b?T3g7~+H(v%gk&6ida|xfifRh;EWcQBudRj9>uu2rVpEy{WsjrJpeMB=|m#*Ioq{=WMIBtAIWm6qp=5tFT@)e5BC4I5&n<295MZ(Ffqxx9`E!vqYDaI z#EiRMF6{Vb^bp66m@NyPJb=bR0iM!3=oVb-l40u+i~G`Bo;G`En5fVivc%+c$p|?u zS}ZtNbr*)vuE~vH-UG)aKSK}%XdX153jUC%eTahc9Ap;_Pl&rdeZFTf8gVb2r4Sid zCbiX)w-Vfq^TOh9rLG9l8()K5nIT<$Fx{95=?THNkV5?($J4$vQTLi-Ld42U!Id7H z4i-+l$6HgEs5MTzusO_tg{2RCU+<>`L~IchM&?Nx0~ay?WuC+jiPqQ>ODtOSb;V@d;#-> zbiChfx3;^g#P}}EvTRl$mmAZerlM-=qiwBQ!0R`&(ExR>+RVFR*O z$YK5|Y>#|#v@K~7!|3enJkDEC>0@A^-4E7W;8Z%>!?~?L2*QHFWg$ln_%^(6o~%!E zM>}p$4V9UzTwN0`%=~zhq%p`3CcwUoEQqGy5(^|y%Q~2{-~bf|2!$#5`Ga7wCt{aL zTij!481Dup{Dt*g)u&r;PIqSZ4-X^kWHxDO?QD`d5xN(ES^KOZ8GN)rOB}vwf*>R~ z-9pVmrZYdEd|gDw8mfw@TbwNh-QN7lP8*1Jz;B+*D(bYpAX*PWGf=^MpjtuF2tZ`e z%p!iZtAEajYXW#=hyYDGuNUbJWx@68G+_e_odZHirInRA;H_3vQUVbK$|JOuoc+ah zqNzA|A^xqbc#EayCI86#6W>Ww z^7AJ_AQOZe_?HCGK^cWXaVSrXYrePnAy9`+eF?1V@9f==M`EsuPjTTfD`@|}zOFnT zs=bXXNhnNFy(G;|*{(IDRgE#0ERD)CS&}7*tRX75@FFoUQDnLe`vM;(;$DqR2MF*Zwx10&oU=ykTgd>u}FmOw!L7Q_rDtS_bG3%LR| z1BpG!jQFQd19+<;++9>1%E`V|f?KS>8Rjj@iWNLh^Be>Jz4d`a1%@Khnifm2v)4;U zTHvQZrEZXFV|{$P!d-%l^J$+T|B8^{9|dpV4|^T`rCsx~YHe&odT63?QD?4lJ36j= zE`1cQ4?AFvx7^mY`(rco)tL~!f6X#>?s<03FzevuHKIZ=!VqU#O{(wmA#)QnHw7`F zD+xd_G7e|7P7XTM>Zzuk%Y7V9?&xKzy-IDK-B&eM z?IiZP#JY7^v4*GCTXd4n@pSqyk-SPk&^lBUS^a0r*QsCQhBza%p5;(=LboI+tCNwS zH!HT)G$24rB{yfp=8$iFUW-AgGTSfGyK3}~~&G~T4%^h2~E5AO=!`n^Y)YNcTP;9BW z9@3`8Zf})nl+xi^*CXKd?p}NWJQnz|U~S!?Y==f0Hi_tuv`sb_Fcii*|E%wZbc5|! z>oEt1cv3dJh6Kbc#O&p~E!7!{bUFjIf}`ey{=xlin-A+I#v% z%H^x+eLNs9B|Krhz0js7YX3<~JA!EbAo(H1%ng}{622ll`?@BZrxu5+_26<1+1R4e z2SjHYT3f3^Zc?WsD3>pUdyFIBbqip{mHIWm0Vx9zFoYFLx1z1Big>uXTC%Os8M@|m()9<&l&S|CEu>B-9C;JtjZg2%=_=Rxd~M zxRuNALnW52#|PY*>7?wt`T<(ZoE+ZpOJ8=g2}&6kS%2!o#s)jxrLwGOha@ADr>Ee!4Cd8Rc+;?|wO)bx>uowiWC$1wZ^g_UQ;9i<@ z?7sO_S8@1oPL7nhQe8iCzvy(2hPP7w`rW%{dqW;U!x<=xbZ)~bG~%_Bjz&-Lt}bfe z)u+n-$@d9V6&RE9pR+20DCFCty8rw$#_pMsrTikg7|c_*gQG1QHkbWNUx;dkyM4fK z-m4HXxil9HSwEZ4-D6mgJht5y53*>oiqwh)&Pd*aU<-ZaNnhe_95U7X*OneO?QE@>hDpW|*N)DyNbG-fsY?%w-G%*h}| z&Qp;GjALTHO?T2a5(vDL|7Daa;wyseH{jWALiN=^dQ?dMlDpkw(?yD~uLz8;=AiBX z=o!DtNrUcv@#4$+SOcV&*->TFI-m`7dtR#g8j3%Qsn8R3bR4)7EnjDkJN`X<9Z>(B z6Mezb_XQ;-BpwG&(`e7V^!pZP!PoHEnJXT2xXDge3tJiFAhZoe#zq}v6Yk$jhikaA zmX!BgFxXD-R8BUuHuF?E-L>w75>7_-bYF#ImpO!I>mQKX8vXB_r^!W4#6H;wWblmiBu@PjZeCtu-QXTq&MtYa; z%>M~kims7raWst=A$sWe0XLw2YLIWM%)vf9EY=R;-Y~V;4LR}MOZ`FV2QyyI-IpJn zn4qbE3sY)|j_g|xPJcg}_Trwnwi%wsSuF8bonT)xVj0coL~x1MtZ2~wpRB+;gojOx m;72@>)(CEMRsDZyWJxyQ3a2TiFtLaaKgI^;\n\n\nShots:\n 100\n \n\nKeys: 测量q0\n \n\n\n\n0.0\n \n\n\n\n0.2\n \n\n\n\n0.4\n \n\n\n\n0.6\n \n\n\n\n0.8\n \n\n\n\n1.0\n \n\n\n0\n \n\n\n\n100\n \n\n\n\n\nprobability\n \n", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from mindquantum.simulator import Simulator\n", + "from mindquantum.core.circuit import Circuit\n", + "from mindquantum.core.gates import Measure\n", + "\n", + "circ = Circuit() # 声明一个量子线路\n", + "circ += Measure(\"测量q0\").on(0) # 对q0进行测量\n", + "sim = Simulator(\"projectq\", circ.n_qubits) # 声明一个只有一个qubit的模拟器\n", + "res = sim.sampling(circuit=circ, shots=100) # 进行100次采样\n", + "# print(res)\n", + "res.svg()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "除了标准基,还有一组经常使用的基,它对应 $x$ 轴方向上的测量\n", + "$$|\\pm\\rangle = \\frac{|0\\rangle \\pm |1\\rangle}{\\sqrt{}2}$$\n", + "\n", + "可以使用Hadmard门来得到这两个量子态:\n", + "$$H\\equiv \n", + "\\frac{1}{\\sqrt{2}}\n", + "\\begin{pmatrix}\n", + "1 & 1 \\\\\n", + "1 & -1\n", + "\\end{pmatrix} \\\\\n", + "H|0\\rangle = |+\\rangle, \\quad H|1\\rangle = |-\\rangle\n", + "$$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "|+>: [0.70710678+0.j 0.70710678+0.j]\n", + "|->: [ 0.70710678+0.j -0.70710678+0.j]\n" + ] + } + ], + "source": [ + "from mindquantum.simulator import Simulator\n", + "from mindquantum.core.gates import H, X\n", + "\n", + "sim = Simulator(\"projectq\", 1)\n", + "\n", + "sim.reset()\n", + "sim.apply_gate(H.on(0))\n", + "print(\"|+>: \", sim.get_qs())\n", + "\n", + "sim.reset()\n", + "sim.apply_gate(X.on(0))\n", + "sim.apply_gate(H.on(0))\n", + "print(\"|->: \", sim.get_qs())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "由于mindquantum的测量都是在标准基下进行的,想要在 $\\lbrace |+\\rangle, |-\\rangle\\rbrace$ 下测量,需要使用H门进行转换。\n", + "$$\n", + "\\begin{align*}\n", + "|\\psi\\rangle & = \\alpha |+\\rangle + \\beta |-\\rangle \\\\\n", + "H |\\psi\\rangle & = \\alpha |0\\rangle + \\beta |1\\rangle\n", + "\\end{align*}\n", + "$$\n", + "\n", + "对 $|+\\rangle$ 沿着 $x$ 轴进行测量,测量结果总是 $0$;如果使用标准基进行测量,测量结果是 $0$ 和 $1$ 的随机字符串,例如 $01010001100111\\ldots$" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "|+>: [0.70710678+0.j 0.70710678+0.j]\n" + ] + }, + { + "data": { + "image/svg+xml": "
\n\n\nShots:\n 100\n \n\nKeys: Measure in |+> and |->\n \n\n\n\n0.0\n \n\n\n\n0.2\n \n\n\n\n0.4\n \n\n\n\n0.6\n \n\n\n\n0.8\n \n\n\n\n1.0\n \n\n\n0\n \n\n\n\n100\n \n\n\n\n\nprobability\n \n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": "
\n\n\nShots:\n 100\n \n\nKeys: Measure in |0> and |1>\n \n\n\n\n0.0\n \n\n\n\n0.116\n \n\n\n\n0.232\n \n\n\n\n0.348\n \n\n\n\n0.464\n \n\n\n\n0.58\n \n\n\n0\n \n\n\n\n42\n \n\n1\n \n\n\n\n58\n \n\n\n\n\n\n\nprobability\n \n
", + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from mindquantum.simulator import Simulator\n", + "from mindquantum.core.gates import H, Measure\n", + "from mindquantum.core.circuit import Circuit\n", + "from IPython.display import display_svg\n", + "\n", + "sim = Simulator(\"projectq\", 1)\n", + "\n", + "sim.reset()\n", + "sim.apply_gate(H.on(0))\n", + "print(\"|+>: \", sim.get_qs())\n", + "\n", + "# using |+> and |-> to measure\n", + "circ = Circuit()\n", + "circ += H.on(0)\n", + "circ += Measure(\"Measure in |+> and |->\").on(0)\n", + "res = sim.sampling(circuit=circ, shots=100)\n", + "display_svg(res.svg())\n", + "\n", + "# using |0> and |1> to measure\n", + "circ = Circuit()\n", + "circ += Measure(\"Measure in |0> and |1>\").on(0)\n", + "res = sim.sampling(circuit=circ, shots=100)\n", + "res.svg()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Bloch 球\n", + "\n", + "下面介绍一种用来描述单量子比特的数学工具——Bloch球。\n", + "\n", + "对于任意单量子比特\n", + "$$|\\psi\\rangle = \\alpha |0\\rangle + \\beta |1\\rangle$$\n", + "其中 $\\alpha,\\beta\\in \\mathbb{C}$,满足归一化条件\n", + "$$|\\alpha|^2 + |\\beta|^2 = 1 = \\cos^2(\\frac{\\theta}{2}) + \\sin^2(\\frac{\\theta}{2}), \\quad \\theta \\in [0, \\pi]$$\n", + "\n", + "忽略全局相位,我们可以将单量子比特写作\n", + "$$|\\psi\\rangle = \\cos(\\frac{\\theta}{2})|0\\rangle + e^{i\\phi}\\sin(\\frac{\\theta}{2}), \\quad \\theta \\in [0, \\pi], \\phi \\in [0, 2\\pi)$$\n", + "\n", + "这恰好对应了三围单位球面上的一点 $(\\cos{\\phi}\\sin{\\theta}, \\sin{\\phi}\\sin{\\theta}, \\cos{\\theta})$,这就是Bloch球:\n", + "![bloch sphere](./images/bloch_sphere.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "在mindquantum中,Bloch球有专门的绘制函数。" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zhuyk6/.pyenv/versions/3.7.5/lib/python3.7/site-packages/mindquantum/io/display/bloch_plt_drawer.py:50: MatplotlibDeprecationWarning: \n", + "The M attribute was deprecated in Matplotlib 3.4 and will be removed two minor releases later. Use self.axes.M instead.\n", + " xs, ys, _ = proj_transform((x1, x2), (y1, y2), (z1, z2), renderer.M)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9363e0d21fc04eedb7516f6256ce7738", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d3BkaXoeej7nnDzpE+ngvS1vurraVNvp6u6Z7uE4akYSpRVDlHSvdsmQGNTGFVfLDUqX1CwlcUhG6GrJG6EIUkEyYnTJ5eUshxTJ9j093dXTrqq6qsugCt4DmYlEenfc/pHIU0AVgIJJB+D5dVR0FRKZ+cHmeb/vNYJhGAaIiIiIiIiqQKz1AoiIiIiI6PBgAEJERERERFXDAISIiIiIiKqGAQgREREREVUNAxAiIiIiIqoaBiBERERERFQ1DECIiIiIiKhqGIAQEREREVHVMAAhIiIiIqKqYQBCRERERERVwwCEiIiIiIiqhgEIERERERFVDQMQIiIiIiKqGgYgRERERERUNQxAiIiIiIioahiAEBERERFR1TAAISIiIiKiqmEAQkREREREVcMAhIiIiIiIqoYBCBERERERVQ0DECIiIiIiqhoGIEREREREVDUMQIiIiIiIqGoYgBARERERUdUwACEiIiIioqphAEJERERERFXDAISIiIiIiKqGAQgREREREVUNAxAiIiIiIqoaBiBERERERFQ1DECIiIiIiKhqGIAQEREREVHVMAAhIiIiIqKqYQBCRERERERVwwCEiIiIiIiqhgEIERERERFVDQMQIiIiIiKqGgYgRERERERUNQxAiIiIiIioahiAEBERERFR1TAAISIiIiKiqmEAQkREREREVcMAhIiIiIiIqoYBCBERERERVQ0DECIiIiIiqhoGIEREREREVDUMQIiIiIiIqGoYgBARERERUdUwACEiIiIioqphAEJERERERFXDAISIiIiIiKqGAQgREREREVUNAxAiIiIiIqoaBiBERERERFQ1DECIiIiIiKhqGIAQEREREVHVMAAhIiIiIqKqYQBCRERERERVwwCEiIiIiIiqhgEIERERERFVDQMQIiIiIiKqGgYgRERERERUNQxAiIiIiIioahiAEBERERFR1TAAISIiIiKiqmEAQkREREREVcMAhIiIiIiIqoYBCBERERERVQ0DECIiIiIiqhoGIEREREREVDUMQIiIiIiIqGoYgBARERERUdUwACEiIiIioqphAEJERERERFXDAISIiIiIiKqGAQgREREREVUNAxAiIiIiIqoaBiBERERERFQ1DECIiIiIiKhqGIAQEREREVHVMAAhIiIiIqKqYQBCRERERERVwwCEiIiIiIiqhgEIERERERFVDQMQIiIiIiKqGgYgRERERERUNQxAiIiIiIioahiAEBERERFR1TAAISIiIiKiqmEAQkREREREVcMAhIiIiIiIqoYBCBERERERVQ0DECIiIiIiqhoGIEREREREVDUMQIiIiIiIqGoYgBARERERUdUwACEiIiIioqphAEJERERERFXDAISIiIiIiKqGAQgREREREVUNAxAiIiIiIqoaBiBERERERFQ1DECIiIiIiKhqGIAQEREREVHVMAAhIiIiIqKqYQBCRERERERVwwCEiIiIiIiqhgEIERERERFVDQMQIiIiIiKqGgYgRERERERUNQxAiIiIiIioahiAEBERERFR1TAAISIiIiKiqmEAQkREREREVWOp9QKIiOhwu337Nv70T/8ULS0t+IVf+IVaL4eIiCqMAQgREdWMqqr42Z/9WVy5cgUA0NbWhp/+6Z+u7aKIiKiimIJFREQ185/+03/ClStX8Bu/8Rvo7+/Hz//8zyMajdZ6WUREVEGCYRhGrRdBRESHz40bN3D+/Hl885vfxJ/92Z/h8uXLeOaZZ/Cd73wH3//+92u9PCIiqhCegBARUdVpmoZ/+k//KTo7O/H7v//7AIDz58/jt3/7t/Hf//t/x1/+5V/WeIX39Pb2QhAE/OhHP6rI4x87dgyCIODSpUsVeXwionrDAISIiKpOkiR8+umnGBsbg9frNd/+L//lv4RhGPjmN79Zw9XtTjKZxK/92q/h9OnTcLvd8Hq9ePzxx/E7v/M7KBQKm97vW9/6FgDghz/8YbWWSkRUUwxAiIiI9mhqagpnzpzBr//6r+PGjRswDAP5fB6fffYZ/vW//te4cOECVlZWNrwvAxAiOmwYgBAREe2Bqqr4xje+gcnJSbS1teHNN99EOp1GJpPBn/zJn8Dj8eDq1av42Z/92Q3vf+HCBbS0tODu3bsYHh6u8uqJiKqPAQgREdEe/NEf/RG++OILAMCf//mf4+WXXwYAiKKIn/mZn8F//a//FQDwN3/zN3j77bcfuL8oivjGN74BgKcgRHQ4MAAhIqKq+vzzzyEIwrb+/If/8B9qvdyH+qM/+iMAwMWLF/HUU089cPs/+Af/AH19fQCAP/7jP97wMUqzTxiAENFhwACEiIiqamRkBC0tLZv+8Xg85vs++uijNVzpw2UyGbN71Ve/+tUN30cQBLz66qsAgDfeeGPD93nppZfgdrvx8ccfY2lpqTKLJSKqEwxAiIioqv7e3/t7WFxc3PDPxx9/jKamJgDA1772NVy8eLHGq93a7du3oes6AODUqVObvl/ptsXFxQ0HLdrtdrzyyivQdR1/9Vd/VZnFEhHVCQYgRERUF8bHx/GlL30J4+Pj+Omf/mn84Ac/gM1m2/T9//AP/3DbqVwb/SnHXI/5+Xnz7x0dHZu+39rb1t5nLXbDIqLDwlLrBRAREd29excvvvgi5ubm8Pf//t/H97//fVgsW79EORwOtLS07Po5rVbrru9bkkwmzb87nc5N32/tbWvvs9bXv/51WCwWvPXWW0in03C5XHteHxFRPWIAQkRENXXr1i289NJLWFxcxM/+7M/iD//wDyFJ0kPv9zM/8zP4mZ/5mSqssDr8fj+ee+45vPvuu3j99dfx7W9/u9ZLIiKqCKZgERFRzVy/fh0vvPACFhcX8c/+2T/DH/3RH20r+KgXawvmM5nMpu+39ra197lfMBgEgA3rRIiIDgoGIEREVBNXrlzBxYsXEQ6H8fM///P4/d//fYji/npZam9vN/8+Nze36futvW3tfdYqFAp4/fXXIQgCvv71r5dvkUREdYYpWEREVHUff/wxXn31VcRiMfzSL/0S/vN//s87fow//dM/xS/90i/teg0/+MEP8PTTT+/6/gBw/PhxiKIIXddx48aNTVvx3rhxAwDQ2tqKQCCw4fu8/fbbSCaTuHDhAlpbW/e0LiKiesYAhIiIquqDDz7AT/3UTyGZTOKXf/mX8b3vfW9Xj5PNZvc0M6NQKOz6viVOpxPPPPMM3n//fbz22mv45V/+5QfexzAMvP766wCAr3zlK5s+Vqn7VakbFhHRQbW/zrqJiGhfe/fdd/Hqq68imUziV3/1V3cdfADAP/kn/wSGYez6zwsvvFCWj+nnfu7nzI/t448/fuD2P/uzP8P4+DgA4B//43+84WMYhoG//Mu/BMAAhIgOPgYgRERUFW+++Sa+9rWvIZ1O47vf/S6++93v1npJZfFzP/dzOH36NAzDwHe+8x28/fbbAABd1/Fnf/Zn+Of//J8DKE5Kf+mllzZ8jE8++QQLCwsYGhrC8ePHq7Z2IqJaYAoWERFVxa/+6q8im81CEAT87u/+Ln73d3930/f9/ve/v+nFer2xWCz4y7/8S1y8eBGTk5N4+eWX4XQ6oes6crkcAODcuXP4/ve/v+ljMP2KiA4TBiBERFRxmqbhiy++AFBMN3pY7cbg4GA1llU2vb29uH79On77t38bP/jBDzAxMQFZlnHy5En8w3/4D/GLv/iLWw4+ZABCRIeJYBiGUetFEBER1ave3l5MTU3h3XffLVvdyFqjo6MYGhpCU1MTFhcX910rYiKineJvOSIiohr6i7/4CwDA17/+dQYfRHQoMAWLiIiohph+tYZhAIoCFArF/zc0AJJU61URUZkxACEiIqqhf//v/z00TcNzzz1X66VUh2EAqloMMkqBRun/igLDMABdBxIJoL0dQmsrIMu1XjURlREDECIiqihFUWCxWCAIQq2XUpcuXrxY6yVUxmpAsWGQoevFQKT0/9U/hq4DolgMOAoFCNEoEAwyACE6YBiAEO1jWSULURBhES2QRKYpUP3J5XLweDz4zne+gz/5kz+p9XKo3EonGRsEGpsGGaXeN1YrYLMVgwtZLv5blgELL02IDjr+lBPtU+lCGncjd+GQHRBFEQIEWETLA38kUVr3b1FgkStVzx/8wR9AVVXEYrFaL2XXJicna72E2tK09cHFmr8ba4OLNX83g4y1gcXa/zPIIDrU2IaXaB8yDAN3lu9gIjKBDk8HDBgQBKH4BwIgYN2/zb8Lgnlisi5IEaQH3sZ0GdqrXC6H3t5eLC0twel04ld+5Vfwq7/6q7VeFm1E0zZOlyoUAF3f8DTDKAUea4OK+4ONvZiaKv7e6u4GnM7yfJxEVBcYgBDtQ4ZhYCQ6gmwui4HAAAQIUHV13R/N0Ir/1zXzbbqhbztQuT8ouf8kpRS4MFChzfze7/0efvEXf9HcDbfb7ZienkZTU1ONV3ZI6fqm6VLQtAeDDODe20ppUvenS8kyUKnfAQxAiA4snoES7XOGYUAURciSDFnaesdRN/R7AcqawMT8t1b8+05OVLY6RVkbvNDhoigKvvvd72LtHpeiKPit3/otfO9736vhyg44Xd/8JEPT7nWYKv0fa4KM0gnGRicZtdxo4CYH0YHDExCiferu8l1kc1n0+/vLfoFfCk5KpyibBS3AfYGJuHGQUqpP2egUhfUpB1M+n8fQ0BBmZmbWvZ2nIGVw/6yMtf9X1a2DDEnaPMiotyGIpROQnh7A4aj1aoiojHgCQkQPkERpW0HNRkHJ2tMURVegGdqO61O2Ok1hfUr9y+fz+LVf+zXMzs4+cJuiKPje976H3/qt36rByvaRUpCxWRvbDbpLmW1sJWnjdCmrtf6CDCI6lBiAENGulQICG2ybvo9hGA+cpGwUqOy0PuVhpymsT6md3//938dv/uZvYqMDdk3TMDw8XINV1anNTjJKQcZWszI2O8k4KJPDDYPpV0QHFAMQon1MEAQYqO8sSkEQYBGKQcFWdEPf8DRlL/UpDztJYX1K+eVyuQdqP+63uLiIS5cu4Zlnnqniymro/lkZ2x3IJwjrZ2WsDTQOSpCxHQxCiA4cBiBEVBdEQYQoiTsqpN+wPkUr/n2rQEUUxHW3bec0hYHK9vzBH/wBQqHQlu/z2Wef4eWXX8bU1BSam5urtLIKU9VNTzMeOpBPlotBxv2nGZyVQUQHFH+7Ee1TAg7nrqAoiLBKVlgl65bv99DTFKP47+2epmw26PH+NsWHuZB+O6cfJaWOWPuqFmTtrIz7A42tZmUAD7auXft3IqJDhl2wiPapkeURZPNZ9Pp6H5reRBt7WH3K2m5gexn0WDpFkSXZTAs7iPUpP/jBD/B3/+7fhWEY6z6+0r8fe+wxrKysYGxsDIZhwO12I5lM1nDFG7h/VsZOB/LdX/xdOsk4gF/vipuYgCBJEHp7Abu91qshojLiVQvRPsc9hN3bbn2KYRgbBiml4Y67LaTf6iSl9Gc/eemll3Dp0iWsrKysa7/7K7/yK3j22Wfxx3/8xwiHw3jnnXcAAF1dXbVZ6MNmZaxNldovszKIiPaR/fXqRkRUA4Ig7HjQ4/21KXsd9Hj/aUo9FtJ7vV489dRTD7z9N37jN3Du3Dn4fD74fD4MDQ1VfjGGsfnU74fNyrBYNm9jyyCj+vg5JzpwGIAQ7VMHMYVnv9ttfUopDWxtIf3aQY+iIO64PmWjwvoDV59y/6yMnQ7k2yjAqMeBfIcZf88RHUgMQIj2uXpvw0sPKg163Gp+CoBNp9DvddDjw4Y91lVwaxgPtrHlrAwion2NAQgRUZ3aTh3I/fUpa4vq9zLocbNTlHIMetR1HaqqQpble4+x1dTvrWZliOK9NraHeVbGQcT6NqIDiwEI0T51WNvw0nq7qU9Ze5qSzWeRzWeRV/LIF/JQVAWapkHXdSiKYv5RFRWSJEGSioGHKIpw2Byw2+ywW+2wyTbYZBscVgdsVhvssh0uhwsOuwMvvPACzp07h+nxcSwvLCAdi0HLZuF1OmEFkE0koBYKUAoFFPJ5FAoFSABEUYS4+lyC1QrBZiv+kWWIdjtsHg/cXi88Vis8Hg8cTmd9nd4QEdGG2IaXaJ8ai44hnUuj29v90JoDOrxUVUUymUQqlUI0GkU6nUY2m0U8HkcymYSmaeveXzd0lP7TDG3d/9f+HbgXBJcu+gVBgKgbkDQNkqbDouuw6AZkzYBFMyBqBkSIECFAMgRIkCAYgFQ8g4EuScU/Fgs0i8X8t7HNkwxJFOF2u+F2u+HxeOB2uxEIBNDc3Ayrbet0N6pD4+MQZBlCX1/xRIuIDgyegBDtc9xDIADQNA3Ly8tYWFjAysoKkskkYrEYFEV5+J2FYl2KKIpwOBywWCzQNA2SJMFisUCyFGtW3G43RFFEPBpFLp2ElstCLWShZjLQlTwMJQ9NU6BpKgxDh2EUW9oakVmoEKAH2wHZCm01sNAsEmCRIditsFjtsMo2OJ1OeF1eyLIVoiHA5XTB3+CHqqiILEXM0xkDgKoosMgy0qkUkqkUNF1HPJFAPJF44EP0NjSgubkZbW1taGlpgdvj4WkJEVGNMAAhItpnDMNAMplEOBzGzMwMIpEIEskENutHUAosXC4XGhoaEAwG150SyLJsplq5XC4AwOz0NHLJJAqpFLRcFoKqos/vh8tqxVQyhcVMDqlUGol4DLIOwDAgGBYAFuiiCIvTAYvTCd0i4OPhYTS1t+HYhRcQSyeRTqeRzqeRVwrQocNQChAUBUASQlwAMAO7zYaGhgY0Co0Q3AL8TX70dvRCgFA8QzEECIYAt8sNi2hBfCWOTCqDbDqHXCaLTCYDwzAQj8fNoCSeSGBkdBQAYLNa0dbWhubmZvj8fjQ3NUG2WhmUEBFVAVOwiPap8ZVxpLIpdDV0wWZheslBpus6FhcXMT09jaWlJcRisQdSpwBAkiT4fD7zwroUZNjWpB+VppIXCgUsLS4iG48jl0pCKCiQNB0nhgYhKArmp2dg6DqsFgtUTUUstoL4SgyRUBhKoQBdFKFLIjRJgtXlQnNnJwKtrfA1NcLr9WFxcRHJVBKdHR342a9cwMUXX8T/8h9/D6J0b9+rmB6WQjqdwvLKMmYXZhGJRJApZMxUMA0adMOABg12mw3eBi+amprQ0dFhnshsXUhvgZIvILQUxnI4gpXlFSQTKQhG8X1K7DYb/H4/mltaEAwE0NvXZ67RYuFeXU2MjRVrf5iCRXTg8LcqEVEdKhQKmJubw+TkJKanpx8IOARRQGOwET6fDy0tLWhpaUFDQ8O6HXxd15HNZJCIRJBLJJBLJmEXRXS3tkHKZqCMjcFjsyMgW2BzOGCVZRjxOGAY8LucmF1YwK25eUQTCWiW1bQplxNiwI+Wtja0tbWhva0dPp933fMuLCwgkUygt6cXHrdr04/RYrHA7/fB7/ehs7MTZ0+fBQDk83lEIhHMz88jFo8jHoshk8lAV3WoURVz0TlMD09Dtsro6OxAc2sz/I1+CIIA1Vgz6BH3On65m1zwNLvRhz7ouo5YLIbI8jKikWUsh5chZASEM2GMzY/B4/JgKbqE/t5+zM3OQZZkOJ1OOJ1OuFwuOF0uiJwVQkS0awxAiPYxQRA4B+QASSaTGB8fx8TEBKIr0XUpVZIkoam5Ce3t7Whva0cwGIRUKs42DBiFArKRCDKxGBwWC9yyFYlwCAsz04BhwC5b4bbb4XQ4YcRjkAwD/e3tq21srTCsMjRBxHQkjNGpKcyGloDVAYjwNaCpsQltbW1obWtFU2PTvee+T6FQQDgSRmtrK7xeL3RN3fHnwWazwWazwW6347nTp2G325HJZMwal6WlJazEVgAVWJpcwtLkEiAAAX8A3T3d6OrqhtPtWNOeWIO22v1LMzTohg53gxserwf9/X1QVAXz8wuYm5tDOBxCIp7A3GdzeOezd+Bt8JqBXint6/jRE3DZnUjEEhAgoMHdALfLUzcT6Q8cpsURHTgMQIiIasQwDEQiEUxOTmJ8fBzpdHrd7R6PBz09Pejq7kJLcwtETbs3IyMahVBQkIxGEY9EkE4loWkqBACNwUa4AgG4IaC3pQ02hx2i1QbDWpz8bayZl2GIIkLhEMbHxjExMQlVXS1aF0QEg0H09fejv68Pdrt9Wx+T1WrFkaEj69K+7A47HHbHjj43fr8f4XAEs7OzGBgYME8gurq6AACKomBxcRGzs7OYnp5GPp9HNBpFNBrF51c/h91uR29vLzo7O9HS0vJAwGQYxrqZKS2eVpwZOo10No2ZuRlMTk9hMbyIyMoylleiEAQB3d1d6O3pRTwfQ1JJYG5xDqlkqnjaIopwOZ1oa2lDg9sLy+oMlfsHPkr1NuiRiKgGWANCtE9NrEwglUuhw9MBu2V7F4dUH/L5PG4P38ad4TsPBB1+jwd9HR3o6+yE1+GAoKiAUhzKp+QLSKdSyKRT8Hl9cNhtiEQiSCeScLlccPh8cDR4INhs66d/b1DDkMvlcOfuHYyNjiGVSplvdzgcGBgYQF9fP/x+37Y/JsMwEF1Zgd/nW5eepGsqPn/zz+H2eDB44SvrakAeJh6PY3JqEj3dvfD5vFs+90oshqnVdLV4Ir7u9EiUJHR3deH48eNobGzcdgCQzWYxOTmFkfG7CEVC0I1iTUpLawsGhwYRbAxC0RWkMilkMhlkc1k0NjbBaXdgJbaCfC4Pt8ddLJS3WDasT5FE8cEhj3sc9HhgjI4W57709xe/j4nowGAAQrRPMQDZXwzDwOLiIq5du4aFuVmIigpJ02AxDHQ2N6OjuRkdTU2wyvK9ad96cd7GciSCRCyGXCEPw2KB1elCc3sHPMHAvanf2yyUTqVSuHXrFu6OjEBfrSsRJQm9PT0YGBhAa2vrri58Y7E4pqYn0dvTC6/3XrCgayr+7S/8Izz+2OP45v/0r3YUgADA+Pg4cvk8jh09uu26i0KhgIWFhdXTkRkoSsG8zeFwYGhoCEeOHIHT6dz2OkKhEG7evIWZmWnzbX6/H8ePH0dfXx8EUVg3kT4cCSMcDSOdzUA3NFgdVvj9fjhdzgfqUzabSF8KSERBMk9UHghUDnLaFwMQogOLAQjRPlUKQNrd7XDIO0tvoSpYTZfKJRKYuHMH43fuILMSg6hpEAwDDrsN/f396OvtLQYdug4YBpSCgkQ2i0Qui7bubtjcHoTiK8ipGlx+PzxuN6y76Ai0shLDzZs3MD4xbp4OlC6ge3p6IO/hAk/XdQzfuQO7zVa8GF9bCK+p+PqTxzfsgrUduVwOsXgMzU3Nuyr81nUdc3NzuHXrFpZCS/dORgSgra0d/X196O3t3bSm5X6JRAK3b9/GyOioGcDZ7XacOHECx44de6BjVj6fRzKZRDKZRGNjI5wuJ8LRMOKJOJxuJ+wOOyBi3XR61SjWzawNVARx4yBFgLAajEiQRMumgYoo7MOi+VIAMjCw7QCbiPYHBiBE+9RkbBLJbJIBSC3perEeo1SXoSgQCgoMpYDQwgLu3L6NcDgMQS/+mhUEoKWpCUNDQwi2tEBYLf6GRUY0ncJKMoVUIQdBFOF2udHW1gaHY29f21AohC9u3MDc7Kz5tpaWFpw6dQrt7e1lSfNZXFpEKBTCkaEjD9SK7DUAKad8Po+RkRGMj48jFouZbxclCZ0dHTh+4jiam5q39TnJ5XK4O3IXt2/dRj6fBwA4nU6cP38evb29Wz7GcjSKcCiMfCEHQRDQ4GlAY2Mj3G63+T6lYOReYHKvkL4UpGiGtu3TFFEQtzxNqcv6FAYgRAcWf6KJiLai6+sCDBQK9+oyNK04iX719MJY3W2/8cUXyKYz0EURmiTC0xTEwPHj6B4YgNXlAmQZiqoiHo/D5/PBYrEgk05BsFnR2dIMb0PDnmZPGIaB+fl53LhxA0tLS+bbOzu7cPr0KTQ1NZXjMwOgWAweCoXQ1Ni07UL1nSqlr1mtVgSDwV0/js1mw6lTp3Dq1CnEYnEMD9/G+PgEVFXB9PQ0pqen4XK5cO7cOfT29m554mK323Hm9BmcPHESY2NjuHbtGjKZDN5//30MDw/jscce2/TzHAwEEAwEkM/nEY/HsbKygsLqxPpMJgNd1+FyuR76PXB/IX0pSDEDF02FYijQDX3bgYokSA89TWF9ChHtFU9AiPYpnoCUkWFsHmSo6rogY119hmEAkgRDljEXCuHGnbtYTiahSSIgW9DZ1YNTp06aF6KKohQnc8fjSKWLhd+lmonSgMC9Wl5exmeffWYGHoIooL+vHydPntqykHu3SlPZXS7XhmlM5ToBmZqaQjqTwfFjx8p68avrOubn53Hr9i0sLi6aKVoOhwNHjh7BieMntpWepqoqbt68iS9u3DBTs3p7e/Hoo4+uO9nYTOnrPzs7i+XoMmTZioDfD5/Pt+fATjf09Sle9wcqqycqG81P2SpQKQUkFatPGRmBYLfzBIToAGIAQrRPlQKQNncbnPL2i2kPrVKQcV+6FNTi2zYMMkpvkyTAIpttbEt/DFnGxNQUrly5gkwmA6CYzjPQ349HHnkEDocDqqpCkoo7xuPj40imknC73PD5fPB6vWWbsp3JZHD16lWMjY0BAARRxLGjR3H8+PFtXQDvxnaCpnIFIJlMBiOjI+jq6kbA79/VYzxMqTPY7Vu3USgUC9dFScLgwADOnj27rXS4dDqNq1evYnx8HEDx63D61CmcPHlyW4GMYRhIpVKIxWKIxWLQDR2dnV0IBgJlC1I3oxv6ukL6B9K+9GLa11aBiiiI64IWSdw6UBFXT1w2NDIC0eEABgaKP4NEdGAwACHap6ZiU0hkEwxA7rfZSUYpyNjsNKM0kE+23OsqVWpju8EMibGxMVy9ehXZbBZA8ULz5IkTOHHiBOx2O9LpNKLRKFZiK+jp7oHX60Uul4MkSXsq+L6fqqq4dfsWvvjiBjS1WLy8k533vVhYWEAul9uy5kHXVPzhb/87HBk6gqe/9bN7qgEZGxuDqqo4cuRIRS/EVVXF8PAwbty4YQYiEICe7h488sgj67p8bSYSieCzzz5DKBQCUDxRuXDhgjnHZDt0XUc8noDb7YIsy1hYWEA2m0UgEITX21CzNKj1pyl7r0+5V0i/PkiRxychOz0Qh4ZgkW37s5CeiDbEAIRonzrUAYiqrg8y1p5klIKLjYIMQTCnfq89yYDVuq0dVsMwMDExgatXr5rzOwRRxJGhIZw9exZ2ux2xWByh0BKyuWwxjSbgRzAQLGvQUVrL1NQUPvvsM/P0pbGxEY899hiam5vL+lwbUVUVt2/fRmNjI9ra2jZ9P11T8Zf/7X9DV2cHzn3l7+4pACnNBTkydGTPxfnboes6Jicn8fnnn6+bldLW3o4zZ06jpblly/uXvkaXL182v18GBwfx2GOP7aqTWXRlBZFwGNlcFlbZhsbGIAKBwLY7eFXTw+pTNF17aKBim5gGHHaofT0QLBazkP6BdC9BgizJZloY61OI6h8DEKJ96sAHIKr6YLqUogBK4cEgA1j/d1m+d5qxNsjYQ7pTOBzGT37yE7N7kiCKOHrkCM6ePQtd1yFJEqxWK0KhEFKpVEV3qTfaXX/00UfR39+/p+czDAOGYZgfjyAIUBQF2mqxfenlQpZlLEeXEQqF0NXZDYtFMm8TRdE8eYnH49B1Df/rz/8jnDl7Bt/5hX+DhgYvJElCNpuFslp4DRQvOq1WK2w2GzRNQy6XMy9ES49rtVqRy+Ugy/L6HfQKX3CWiuBv3rqF+bk58+2BQAAXLlxAY2PjlvdXVRWff/45bt26BQBwuVx49rlnHxrAbCadTiMSiSAWj2FwYBAul6vi6VmVYhjGhqcpqq5CGh+HZpWR6W6DLq4/MdlOfcqDdSnr305EtcMAhGifKgUgra5WuKyuWi9nd1ZnZaBQeLAuQ9fXBxrAg0FGqS7DIgNrTzXKKJfL4aOPPsL0dHEAnShJOH3qFI4ePYpsNofl5QjSmTSam5rR1tZWsQtBwzCQy+Vw5cqVdXUeZ06fxokTJ5BKpaEoBei6bv7x+/1wuVyIxeKIRMJmcKHrBlwuJ7q7u80UrvtfCk6eOAmLxWLWrazV2tqKcDgCh91uFtOX2G12HD16FABw/Yvr0FUVsZHLEAQR3sFzOHrsOBwOB2ZmZhBdia67b+lzmEwmi/NK1rBYZJw8cQIAcOPmTWiauu72/r5+eDweLIWWEF1eKdYjrF60er1eNDc3o1AoYGlpCaIoQhRFCGKxRqHUJKB0ylG6XZIkc4J5yXI0iqtXr2J+fs4sWG9rb8dTFy48NOVtcXERH3zwQfHESgBOnTyFs2fP7voEQ1EUyLIMwzAwMjICq9X6QDvffcswIIyNQXA4YPT3Q79v0KN6/2nK6r/N+pQtApVSd7PNTlPuD1qIqPwYgBDtU9PxacQz8foPQO6flbG2LmOrIMMw1gcZshVYW59RhV3vW7dv4+rVq2ZXo9a2Vjzz9DNQFBWzc7PQNBUupwuBYBA+r3dbg/IMw4Cqqmv+aHC5nLBarUgkEojH41BVFZqmQdM0eDwetLe3Y2ZmBu+//wFUtXhq4PP50N7ejvPnz0MQBIyOjhZPDUQRoiBCFAW0trbC6/UikUhgZWWleNG9egFms9kQDAZhGAYikUhx7Wsu1LzeBoiiiEwmA03T1u0wq6qK6elp9Pb2rrtAL91eSjdTFAW6puIffeUpPPvss/iFf/dbsNrs5mPoq1/z0stQ6YJf0zRztkbp5EUQBLhcLmiahuE7d+D3+WCz24vtjw0DXq8XsiwjHo+brWxLAZfL5UIwGEQul8P09DR03YBu6Obznzp5EgAwPHwH+UJu3derp7sXPp8XkUgE4XAEklQMTBRFxcTEOMLhcPFjFwUM9A/g2PHjcDocsFgs5inSWoVCAZ988olZpO73+/HMs8/uqbDeMAwsLy8jHI6goOThsDvQ2NQEv8+3L09FAKwPQAYGijVa2/BgfUrxz/0F9gDMovnt1KdsdpJilaw8TSHaBQYgRPvUdHwaiUwCLa6W2gcgD5uVsVl3KcMoBhNmutSaIEOWKx5kbGZ5eRkff/wxIpEIgGKK02OPPYZgMIiGhgZks1lEo1EEAgE4HI51aUuqqiIWi0HVVKiKWrwI13UMDAwA2Pgit7urB36/D8vRKJYjEfPitZTWNTk5ieHhYQDF+ROPP/44WlpazNtrcZGp6/q2Aq5KDCK8e/cuZFlGX1/fnh9rrVK6maZp0HUdmqbD5XJClmVzmnnpdk3T4HK5IIoiPvnkE0SjxdMcUZLQ0tKCpsZGnD17FoIgYHp6GoqiwGKxQJZlSBYJiXgCn312GYpSgCAKOPfIOZw8eXLPKXTxeAKRSBj5QgHHjx2DKIrb/lrVlV0GINt76PX1KZquQdGVB05TzPqUTU5TDBjw2r1o87SxQJ5ohxi2E+1zBqq0h2AYG079hqpsOCvDuD/I2KCNLazWmgUZG9ko3erokSPw+XxIJBPQNA0NDQ3I5wsoFAqYmZmBoqpQVQU+rw89PT3QNA1z83OQJAvk1QvOUpqMIAhoa2sFAFgslnWBBnBvQF1JKBTCpUuXkEwWU6D2UsBcLoqiQBCEsrUP3o1AIIC5+TmoqlrWdZS+VhvxeDzweDwb3va1r30N09PT+OSTT5DNZrEwP4/lSARutxsDAwOw2qzQdR2KoiCTyULTVHR2duFb3/om3nvvPYTDYVy5cgXj4+M4cuQo/AEfWppboOs6kskkrFYrrFbrQ1O1BEGAz+eFz+eFqqoQRRGFQgF3795FY1Mjmhqb6rJgvdoEQYBFeHgdyP31KfcHLeFMGPFsHLIko9lV+cYPRAcJAxAiuuf+WRkPGci3rq1taVaGTX6wjW2d777quo5bt27h82vXzHSrlpYWNDU1QbJIyGSLXab8q8FBKS3I4XCgwSpDtsjmsDir1Yozp89supO9nRaumqbh888/x81bNwGjeALz9NNPo6Ojoxwf7p6Ew2GsxGI4cfz4tnfre3t60da6eaesnfJ6vZibn0M8kVgXsNWKIAjo6elBV1cXbt2+jWvXrqFQKODDDz/EzZs3ceGpC+jt7V13n1JAevHiRQwPD+OLG18gFovhxo0v8PjjjwMA8vk8JqcmzftIkgU2qxWDg4MQBAHxeBySJMFutz8QiJX+LYoiAoEAQqEQIpFltDQ3IxgM7r8TkRoQBAGyJEOWNg5KbRYbkkpyw9uIaGtMwSLap2biM4hn4mh2NcNt3WXRaSoFZDIVmZVRj0r1F7IsQ1VVzM7OIpVKYWxsDPF4HEAxxenZZ5+FKIqIrqzA7XLB42mAzVbs0FTpHeRIJIJLly6Z6+nr68MTTzwBm81W0efdjlKgFggE0N7evr37aCrGPnoDsmxF9/kXypKCBcAsuu7p6SnL45WToii4evUq7ty9A0MvvsR2dXXjwoUnN20fHAqF8O677yKfz8NqteLiixfR3NQMRVFQKBRQUBQUCnnomm5+7m/dvg1FKc4pkUQJNpsN7e3tcLlcKBQK6+pxSgX40ZUogoEgOjs7q/CZ2ANdhzA+XkzBGhysq5PSkkgmgqSSRLO7GU2uplovh2hfYQBCtE/tOQDJ5WDMzEDIZIqBxNogY7N0qX0QZKxVKBSQTCaRzWaRyWSQy+fgsDswNDQEwzCKF4l37hYv4gSgvb0DjcEgjh8/XvULfsMwcP2L67h27RpgADabDU899RS6u7uruo6trKzEMD0zhaNHjponPg+jayr+L19+Ei+99DL+p//nb5QtACkUCmY73nqVyWRw7do1jIyOAEYxpe/xxx7bdJBiKpXCu+++i5WVFQiigAtPXsDQ0NCmj6/rOnK5HPL5AvKFHAr5AlpaWmCz2TA7O4vl6DIkyQKnw1E8rWtoMAvjbTbbaptkAz6ft/4+jwxAiA40pmAR7XO73kOIxyEkksXTjEDg3klGDXP790LTNKRSKWQyGdjtDvj9PuRyOczOzcJmtcPpdMDv98PhcEDTNHz88ccYHR0FAHMnvbGxES0tLVWvscjn83j/gw/MGRPd3d24cOHCti/yqyUWW4HD7tjxuhKJBGLxWFnXUvoa1fP8C6fTiaeeegoDAwP48Y9/jEwmY37fPf/88w/UlLjdbrz66qv44INLmJmZNufOnD9/fsOUKVEU4XQ64XQ+OAeoqakJLpcb+XwOmUwG0ZUVSJKE5uZmpFIpLCwsFGtSshmEQna0traioaF209WJ6HDZn1caRLR3ggA47EBDA7CNuoR6VZpxkclmYBgGJMmCpqbiYDi3243Tp06vu3iLrqzg9ddfNydTt7W1oaenB21tbZsWGVdSdGUFP3r3XaRSKQiiiAtPPrnlrnetlALdQB3UXJTMzMwAALq6umq8kq01Nzfj29/+Nq5evYqbt25ieXkZf/HDv8Cjj543O1WVyLKMF174Eq5fL56G3b59G7F4HF96/vkdBcY2m+2BU7zS17BUEJ/NZQEAuXwOk1OTcDld6O7urmmTg/2ECSREu8cAhGifOqw7lblcDisrK3C5XGhoaABQnB/R3tYOt9sNm822bnp2iWEYuHnrFq5evQJDNyBKEp66cGHP08P3YmJiApc+/BC6psHpdOKFF1546FTtWhEEoextb/dKlmVEIhF0dnbW/c+DKIo4f/48+vr78f6Pf4x4PI7Ln32GifFxPPXUUwgGg+b7CoKAs2fPwuv14v0PPsDC/Dz+9m//Fl/+8pc3PO3YrtLnqKGhAQ0NDdB1Hel0Gslk0gxKVFXFzMwMGhoaEAgEatc1ax9d3Nf79x5RPWIAQnTY7YMX+rXzDdKZNCRRMndpS21Ht5LL5fD+++9jYWEBQPFk5Nlnn0Vzc21aZ+q6jitXruDWrVsAigMOn3/u+bpLuVornU7D6XTW1cWW2+3GUmgJmUwGLlcdD+NcI+D345vf/Cbu3LmLy1cuIxqN4q//5q9x7OgxnD9/ft0Ff29vLzweD9555x3E43G8/vrr+PKXv1y2SeeiKD7QXrg0eHJ+YR4Liwvw+/xobm6ubROEOvqeI6LyYB8+on2uanNAaigSiWBqehKGYaCrqxsnTpxYt2O8lVAohB/+8IfF4EMoztL46Z/+6ZoFH9lsFm+++aYZfJw6dQovv/RyXQcfiqJgdGzUHLa3U7JcbFVcbi6XC6IgIpnaX61QBUHAsWNH8dPf+haampoAAxgeHsaf//mfY3Fpcd37BoNBvPLKK3C5XEgmk3j99dfNuTCV4HQ6MTAwgIA/AMMwEF2JYn5+vmLPt58dht+9RJXCExCiw2of7CrmcjnY7XYEg0E4HI4d7fyWUq6uXLkMGMULq+eff75mgQdQnKHxox/9CNlsFpLFgmefeaYu28jeLxaLQRCEbc0w2cgv/+tfRrACqWWCIMDtdiOdSgMtZX/4inO5XHj11VcxNjaGjz/5BLlcDm+8/gZOnz6Ns2fPmimEDQ0NeOWVV/DGG28glUrhtddew1e+8pVdfz0eRpIkdHV1IRgMYnZ2FolkAsvLy7BYLLBarZu2Ej6sBNT/71KiesMTEKJ96qC/6C1Ho7g7che5XA6iKO4o+Egmk3jr7bdx5XIx+GhsbMQ3v/nNmgYfIyMjeO3115DNZuHxePBTX/2pfRF8AMUAxOP27Hrq+AeXLmFycqLMqyrq6Oh4YMjffiIIAgYHB/Gdb38b7auDJr/44gu88cYbZqMEoJhu9sorr6ChoQHZbBavv/46YrF4RdfmdDoxNDSEjvYOeDweLC0tYWxsDIqiVPR5iejgYwBCRHVpaWkJ3gbvjlKT8vk8xsfH8c4772BhNW2kv78fr776as06+xiGgWvXr+EnP/kJDN1AZ2cXvva1r8Hv99VkPTtVatVaKvjfjR//+D3cuHmzjKu6x2q11q5QuozsdjtefuklPPvss5AsFoRCIfz//uIvMDU1Zb6Py+UyTz5yuRxef/01RFdWKrouQRDQ2NhotqrWdA0jo6PIZrMVfV4YRt2f0rILFtHuMQAh2uf2/CJYpy+iqqrA7thZXcTc3BwuX75cnCIuAOcfe8ycal4Luq7jk08+wbXPrwEo1ntcvPjCvmpzqigKHHbHngKQSpudnX2gdmK/6u/vx9e/9jW4XC7omob33nsPH374IXRdB1A8lXjllVfg9/uRz+fx+muvY3l5uSprs1qtsFhk6JqGuyN3sbCwYK6rYuo8CCGi3WEAQnRY1fkLe4OnAeFwBIVCYcv3S6VSWI5GEQqF8MknnyCbzUKWrfjyy1/GyRMnqrTaB2mahh//+Me4c+cOAOCxxx/Ho48+WlddpLbD6XTiyJEjkOXyF5GXi67riFc4HamavF4vvvWtb5kpeqOjo/jhD39oFp/b7XZ8+ctfRjAYhKIU8MYbb1b8JAQoDpRUVQWdnV1oaWlBOBLG5ORkxZ+3ngmCsO9+ponqAQMQon1KEAQc5DKQjo4OOB2OTdNrNE3D3NwcxsbHcPfOHbz2+msoFArweDz42td+Cm1tbVVe8T2FQgFvvf0WpqenIYgCnnvuOZw4frxm69ktXdeRyWTqPtXE5XYjl89BVdVaL6VsLBYLvvSlL+GZZ56BIIpIJpP4q7/6H2ZKVikIaWpqgqIU8PZbbyGVSlVkLaVTjoaGBnR1dcPrbUBrSyuODB0xf84URan77xMiqh8MQIioLsmyjL6+PkiShHw+j9HRUSQSCRiGgUQigTt37yKyHEEinsDIyIhZbP61r32tpulCmUwGr7/+OpYWlyBZLHjpxZfqboDfdiWTSYyMjiCXy9V6KVtyrQ7nW1u0fVAMDAzgp7/1LQSDQaiqgvfeew/vvfceVFWF1WrFiy++aBamv/322w89MdwJTdMQCoVw6/ZtpNNpCIKAgN9v7vjb7XY4HA4YhoGJiQmMjIwgn8+X58n3QTDDNrxEu8cAhGif2/OLYB2/0JcudDRNg67rmJicwO3hYczOzcEiSUgmkpiYKHZXqnWxOQDE43H87d/+LVZWVmCz2fDKV76C9vb2mq1nr5LJJKyybc8zSl796k/h3CPnyrSqB9lsNkiSpfKF0TXi8Xjw1a9+FcdXT9Gmpqbwwx/+ELFYHDabDS+99BLsdjvi8Tje/dG70DRtT8+XTqcxMzODW7duYWFxAd6Ghi1T8ARBQEdHB1RNw927d7EcjR6q05CD3pGQqBIYgBDtU4fpRc/pdKK5uQXtbe1wu1xQCgVMz8xgfHwcAHDixAk888wzNSs2B4Dl5WW89tprSKfT5nyHxgrMvqgWwzAQTyTg9TbsOcf9+PFjaGmpXAtkQRDQ092NQCBQseeoNVEU8fjjj+NLX/oSRElCOp3G//jr/4HFxUV4PB689NJLkCwWLC0u4dKlSzsKADRNQywWN08vkskkkqkUmpqbcOL4CXR1dT00sHe5XDh65Ai8Xi9mZ2cwNze3p4/XxPoKogOJgwiJDqt98sKuKArm5+cRi8cQDATR1dWF8fFxzK9e4Jw6dQqSRcLNmzfhdrvhcrngdrurOixtcWkRb7/9DjRVhd/vx0svvQTnalrQfpXNZqGqyo7mr2zm//Nf/gsuXnwRJ1/4ZhlWtjGPx1Oxx64nPT09aGxsxOuvv45UKoU33nwDTz/1NAYHB3HxhRfw1ttvYXJyEm63G48++uimj5NKpZBMJpFKpZDJZgAAHe0dsNlsaG5uRktLy44DT0mS0N3dDbfHY26QGIbBIm0iegBPQIj2uYOa6mAYBqIrK7hz9y6SySS6urrR1taGt995B9PT0wCAp556CufOncNA/wAaGxuhKAoWFhcQCoUAAKqqYn5+HtGVFeTz+Yp8rkKhkBl8tLS24JVXXtn3wQdQ/NzZrPayBCCqqkLVKlsgrqoqZmdnD2wa1loulwvf+MY30NLSAhjAhx9+iCtXrqCtrQ1PP/U0AODGjRu4fXsYuq4jnU4jEolgenraPOWIxWJYjkYhyzI62jtw7Ogx88ROFMU9BQ0Bv9+cczMzM4PFxcWd/+ztg99rB/V3L1E18ASE6LCr0xdRwzCwuLgIt8uFjo4OSJKEt99+GwsLCwCAJ598EkNDQwCKU6LdbjdaW1uh67qZA18oFBCLx6FEwgAAURDhdDoxMDAAoJjrXpxtYNnVBVc4HMabb70FTVXR2taKFy++uOtp4fWmoaGhrmd/3E8URURXorDZbFU9/aoVWZbxla98BVevXsWNGzdw48YNhMNhPP7EEzj7yFlc+/waPv30E4RCS/D5fRAEATarrRhY2mxob29HR0dHRU8nDMOA1WbF0tISkskkuru7YbPZKvZ8tcITHqKdOxivlESH0J5f9AShLtOwUqkUrFYrrFYrjgwNwWKxQNM0vPnmm1haWgIEmCknGxFF0awFcTqdOHH8eHGadyaDfD4P3Si2FDUMA2PjYzAMA6IgwmYrFlu3trbCarWiUChAEIRNg5Pl5WW89dbbxZOPlpYDFXzoum52WdovRFGEw+5AJpOp9VIqxjAMFAoF6LoOh8MBdTXlr6enB1PTU1haWsLbb72FV155BelUGqOjo5iemcHQ0BBaW1vX1UhVo15KEAS0trTC4/Zganoad+/eRXd3N7xe704epHILJKKaORivlkS07xmGgVA4hMXFRTQGG9HR0QGLxQJVVfGj994zg4/nn3sevb29O3psWZY3vOg5MnQEuVwe+UIOhXwBuVzODDbm5+cRT8QhCiJk2QqrVUYwGITX60U4HMZbb70NRSmgsbERFy9ePDDBB1A8GRqfGMeRoSP76jTB6XQikUjWehm7pmkaCoUCFEWBzWaDzWZDPB5HOBxGQVGgKMUWu26XGwMDA5AkCYZhYGhoCM3NLbh85TKy2Sz++q//Bi+99CLSmQwW5ufx0Ucf4etf/3rNAspSgfr09DTS6fTOAhAiOpAOzism0SF1EHrRK4qC6elppNIptDS3FHPbUczrf+uttxAKhSCIIi6+8AI6OzvL8pyCIMBut6+2mH3wgqi1tRVerw+KUrwgLNaQALFY3Aw+Sicmd0dGIFssaG5ugd/vQy6XQyqVgiRZIMsWWCwWyLK86VDFelNa+17b75b4/X4EAv6yPNZW7A4HIssRaJpWV59rwzBWi/pVKKoKTVWhqqp5KjE9PY14PG6ezgFAe1s7mpqaIIoiZFmGy+WCLMuwWq3m10UURfT39xffv70dra2tePPNN5DL5fDGm2/iqQsXEI/FkEqlcOnSh3jhhS/VLF1IkqR1GweJRAJut7umnevK5TB1JCQqFwYgRIddjWtAdF3HyOgodF1HX2+fWXdgGAbefudtM/j48ssvo7W1tWrruhec3JNIJPDaa69BUQrwer14+umnIYoiFFWBqqiwWIoXvelMBvML8+uKVJ0OJ4aGhmAYBu7evQuLxWL+kSQJTU1NkCQJmUwGuq5DkiTzNkEQqnrhmEwm4XG7y/ac//E//qeqpNK4XS60tbZV7PE1TYOqqtA0bfXvGhyO4vdJOp1GNBotFtyrKlRVg91uQ19fHwzDwMjoiPk4oiDCYpHNAMPt8cBut8Miy5AtFlitVnPuhsfj2XaHL7/fh29961t45513EA6HcenSJQwODmJsfAwzM9O4dfs2Tp44UZHPzXaUvp9UVcXU1BRsNht6e3s3Ppmp09o0IioPBiBE+9R+33UzDKNYfyGK6Ghvh9PpNC+6DMPABx98gKXFYtrVxRdeqGrwsZFkMok33ijuLnu9XnzlK1/ZND0pGAgg4PdD0zQoigJVVc2LL8Mw4HK5irvhioJsNgdN18wORIuLi0im1qcRtbW2obm5GfF4HIuLi5AkCZIkQRRF2Ow2tLYUPzehUKjYwUgUIQoiRFGA2+2GJEkoFArm51sQBPP/9wcZqqoim8siWMYZJv/23/4qXrj4An7ukefK9pgbKbWQLdWw6Lpu/ik1G8jn80hnMjAMA7qmQTd0WCwygoEANE3DzMyM2chA03RouoZjR49CkiRMTU098LVpb2uH3W4vft6yWVgsFthsNrhcFrPgWhRFDA4Mmidh9+/6B/zlOx2y2Wx45ZVX8NFHH2F0dBSjo6MIBoNYXl7G5cufoamxEc3NlZvJsh0WiwUDAwOYmJzEyOgoent64HK5aromIqouBiBEh1UNiztLKVc2mw2dnZ0P5IRfvXrVnHB+4ckLZUu72q1UKoU33ngDmUwGHo8HX/7ylx9aG1EqYL+/NkQUxS0/nu7ubiiKYu6ya7oOx+pJjMVigcvlMifDK4piXswahoFQKARNXz8F+9jRY5AkCQsLC4jFY+tua2luQWtrKxKJBKZnZiAIgnlqsxKNIrg62G9iYgK6rpsflyAIaGtrg91ux3I0ilQyuS6QcbndCAYCyOfzWFyYx7lHz8PtbsDMzAwsshUdHR0AgIWFBSiKYj6nYRhobm6G0+lEdGUFsZUVM1A1DAMejwetra0oFAoYGxuHgdXbdB2GYeDUqVOrU7xnUVDy6z7Wzs4uBAMBJJNJzM3PmR+LKErwrK5XEARomlYM7Gw2M9AzP18tLWhsbFx3OlW63ev1blnbUM0LbFEU8dRTT8HpdOL69etYXl6Gw+FANpvFe++9h2984xtlS6/bLafTiSNDQ5iYmMDY+Bh6uns2/vzVcRG6YRj7fiOIqFYYgBDtc/utF33pYhfAhjuxo6OjuHHjBgDg7NmzOHLkSFXXd798Po+33nrLnHD+la98paJzPjYKWkpcLtemF7KCIODUqVPmxXpp5790qtTS0gK/3w9dX73duBfY2Gw2NDU1wtDv3Vey3LvwlmUZmqatCwZK9NVTHuDe92Lp4lbXdWSzOTQ3NcHlciCbzUHW7tU5FAoFs9tY6WMoPYYA4YGTmtLnRRRFc0K7IAgQRAGiUAzEYrEYDBjo6e6FINzrilY6jQgEAvD7/RvOuhBF0WzRvNnnf78QBAGPPPIIZKsVlz/7DNlsFqIkIZvN4v3338fLL79c8/axsixjcHAQi4uL+3p2Tq0/j0T7kWDst6sXIgIALKWWEElH0CA3IOgM7vwBVlaAxUUYNhtQhfQmwzCwtLSEpdAS3C43uru7zYvjkrm5Obz9ztuAAQwODuLpp5+u+Lq2omka3nrrLSwtLcHhcODVV1898BO3dV0va2Gwrqn4+pPHcfHFF/G//MffgyhVdt9reXkZs3OzOHXyVF0VotfS3bt38dFHHxX/IQAwgLOPnMXZM2druq77KYqCxcVFtLe3Q1JVCLOzENxuGH19tV7ahuYT81CgoMPbgQbb/pmZQ1QP9n/7CaJDar/tupXSW1pbW9Hf3/9A8BEKhfDOu+8ABtDb24unnnqqRistMgwDP/nJT7C0tATJYsGLL7104IMPVVVx4+YNxGLxWi9l10qpcYdhIvp2HTlyBM888wwEUUCpad61z69hfn6+tgu7Ty6XQywWw8jIKPK5XF2nXwEHowMhUa0wACHa53b9IlilF/d8Pm9e0La3t6OlueWB4CkWi+PNt96CoRsIBALFi6UaX3xc/+I6xsfHAQF44UtfMushDrJ0Og3DMGC3l3dadaleohpK6V+5XK4qz7dfDAwM4MWLL0JYc7r1wQcfoFAo1HBV63k8HgwODkI3dIyNjyOfzz/8TkS0LzEAIaKKSaVSGBkZweLiYrFgc4OgIpvN4vXXX4OmqmaNRa1TZ8bHx3Ht82sAgCcef9Ismj7oMpkMJOle96Zy+Rf/8l/g5ZdfLutjbkYURQT8AUgVTvXajzo6OvDixYso1U3ncjl8/PHHtV3UfRwOB4YGByFJEmamZ6DvgyxxFqIT7RwDEKJ9qt5f9JajUYxPjMNut2NwcGDD4ENVVbz22mvI5/OwWq346le/WrNpzSVLoSVc+vASAODEiRM4duxoTddTTalUCm6Xq+ynT6OjY4iEI2V9zK10dXXB7/dV7fn2k46ODrzyyivFdCwUO5xNTk7WdlH3kWUZA/39aGltORCDConoQfzJJjrkhApsMEYiEczOzsDv86O/v3/Trk6ffPIJkskkREnCK6+8WvNOOPF4HO+8/S4M3UBnZxfOnz9f0/VUk67ryOayFen09Nf/43/g8pXLZX/czRS7b2X3XYe4amlpbsGrr7xqnoS8/8H7iMfrq+7HYrHA4/HAMAzMz88jkUjUekkP4PcX0e4xACHa53b9IljBGouGhga0t7Wjs7Nz0x3MO3fuYHR0FADw4sWLNd+xzuVyeOedd6AoBQSDQTz//HM1r0OpJlEUcfLESQQOQK1LPJ7A3ZG7UFW11kupW01NTWYQYugG/vqv/waZTKbWy7pnzWyYbDaL8YlxxGKx2q5pE4fp9wRRuTAAIaKyUBQFk5OTUBQFVqsVTU1Nm74wh8NhfPxJMff87CNn0d7eXs2lPkDTNPzoRz9CMpmE0+nExYsXNz21OcjuH7y3XzkcxUJ0dsLaWnNzM55+qtjqWlUV/NVf/VVdFaUDgChJ6Ovrg7fBi4nJCSwvL9d6SURUBgxAiPapsuy6lWnnLpPJ4O7ICNKZzEN3nfP5PN5+uzjro7GxEWdOnynLGnbLMAxcunQJoVDIbLdb61SwWpiensbi0mKtl1EWNpsNgiCwi9I2DA4OoqenB0DxZ/Nv//Zv6+7kSBRF9Pb2IhgIYnpmum7SxdiGl2j3GIAQHXZ7zGOOxeIYGxuDRZIwNDhozmHY+KkMvP322ygUCrBarXjppZdqnr5we3i4WIQrABdfeAEBv7+m66kFwzDqMsd+twRBgM1qYyvebXrqqafMzmfxeBxvvvkmdF1/yL2qSxAEdHV1oauz68DP4yE6DBiAEO1ztZwDUigUMD0zBbfbjcHBwYd2sLp8+TIikQggAC+//HLZ273uVCgUwuXLnwEAzp9/rOapYLVSKBSg6Roc9s2Dx7149tnncPLkiYo89mYcDgc0Tavqc+5XVqsVzz33nPnvcDiMH/3ovdoWWW/w3IIgoLGxEaIoIp1OY2FhoS4Kweu9IyFRPWIAQkS7YhgGrFYr+vv60dvb+9Dagbm5Ody6dQsA8Nhjj6OxsbEay9xULpfDe++9B0M30N3djRPHj9d0PbWUXi0+rkQHLKB4stTX21+Rx95MV1cXent7q/qc+1l7ezsGBwfNf8/OzuDTTz+tiwv8jWQyGSwuLWJx8WCkDRIdNgxAiPapWu26GYaBhYUFLCwsAADcbvdD06iSySTee+/HAIChoaGaX+wbhoH3338f2WwWHo8HTz/9dM1TwWopm8nAKtsqVnj/m9/7TbzxxhsVeezNHOav52499thj604xh4eH8dlnn9VwRQA2+T3X1NSE9rZ2LC4tIhQKVXlNRZsNVyWih2MAQnTY7WCHs9STPxQObftiVdM0vPnmm1BVBT6fD0888cRuV1o217+4joWFBQiiiOe/9KWaDz+staamJnR1dVbs8QuFAgpKdbsr5fN53Lp9G6lUqqrPu59ZrVacO3cOACCsts++ffs2vvjii1oua1MtLS1oaW7B3PxcTbtjMQgh2jkGIET7XLVSJAzDwOzsLCLLEXS0d6C5uXlb9/v444+RSqUgShJefPHFmrd5XVhYwLXPrwEALjz5JIIHYO7FXlmtVrjd7lovo6xkWYaiFJCvs7ay9W5oaAh+vx+GrsPr9QIArl69irt371Z3Idv8vdbW1oaW5pYtm18QUf1hAEK0j+1p522H941EIoiuRNHZ2bXt+o2l0JI5bPCpCxdqfpGbTqfx4x8XU8EGBgYwNDRU0/XUg2w2i9nZ2bprvbpXoijCYpFRYCveHRFFEY8//jgAIJ6Io62tDQDw0ccfYWpqqpZL25AgCGhvb4fT6YSu6/U1TJGINsUAhGifqvaxfzAYRH9f/7ZPDFRVxXs/eg8A0NbejoGBgUou76F0Xcf777+PfD4Pv9+PJ598sqbrqRfpdBrL0eVNJ9bvZ3abjbNAdqG1tRWdnV2AUeyy19rWChjAj99/H+FwuLqL2cHvuaWlJYyMjCCdTldwQfdwDgjR7h28Vxwi2pktUh10XcfU1BQymQxEUdxR//0rV64gl8tBlq14fk2Lz1q5cuWKOWzw+eefP5STzjeSyWTgsDsqGoC43R54G7wVe/zN2BiA7Npjj52HIApYXFjE0SNH0dbWBkPX8c4771TtAn+nmpub4XA4MDY2hmw2W7XnZRteop1jAEK0z1VqF07TNIyPjyORSOx4nsL8/DyGh4cBAM8//1zN531MT0+bLYCffeYZM7edgEwmW/HJ79/97r/Hl7/85Yo+x0YaGxvR3d1d9ec9CBoaGnDyxEkAxfk9zz77LBoaGpDP5/H6669XJ2Vvh6e8kiShv78fsixjbGyMwSdRHWMAQnRYbfHirqoqxsfHkc1m0dfXt6OTj0KhYNZZ9PX1oaOjY89L3YtMJoNLlz4EABw/fhw9PT01XU890TQN+UKu4gW8/+V/+y/4yU9+UtHn2Ijdbmdx8h6cOnUKNpsNqVQKY2NjeOGFixAlCalUCu+++25lG2Ds8rEtFgsGBwchCAJisVh513Sfep2RQrQfMAAh2qcqeew/NTWFfD6P/v7+HReOf/jhhygUCpBla83rLAzDwKUPP4SiFBAIBHD+/PmarqcetbW2Vbw5wMTkBObm5yr6HBvRNA2zs7MsTN4lq9WKRx99FABw7fp12GxWXHzhBUAodpO7evVqbRe4CVmWcfToUbS0tACofKDANrxEO8cAhOiw2+DFubW1Ff39/TuejD09PY3p6WkAxdSrWs/XGBkZwcL8PARRxDPPPHsgC633QpIkNDc31zxFrlIEQcBydLmq9QAHzeDgIAKBADRVxY0bN9DR0YFzjxRnhdy4caPynbF2eXFfqvFaXl7G5OQkTyuI6gxfjYn2uXK9sOq6jsWlRei6DpfLteO6gHw+jw8+uAQA6O3trXnqVTKZxKerU5zPnTsHv99X0/XUo3g8fqAH9ZmteDkLZNcEQTCHEw7fuYNMJoPTp0+btTUfXLqE6MpKLZe4JYvFglg8hsXFxVovhYjWYABCdFit2Vk0DAPT09MIhUK73i3+9NNPoaoK7HY7nnrqqXKtclcMw8CHP/kQmqqiubkZJ44fr+l66tXS0hKi0Witl1FRNquVAcgetbe3IxgMwtB1s5nD888/j5aWFmiqirfefBO5XK68T1qmjRWv14u2tjYsLi1ipcyBEtvwEu0eAxCifapceccGihPO44k4urt6dpx2BRTzwcfHxwEAX3rhS5BluSxr263bw8NYWlyCKEl4+umnmXq1AcMwkMtXvgAdKH6v1ipP3soAZM8EQcDZs2cBFH+2stksRFHEl770JdhsNuRyObz55pvQdb3GK91YS3ML/D4/pqenK1IPxDa8RDvHV2Wiw0wQEA6FzAnnPt/O29Pquo5Ll4qpVwMDA2hpbin3KnckFovj8uXLAIDHzj+GhoaGmq6nXuVyORiGAbvdXvHn+p//53+OF154oeLPs5GGBi/8fn9Nnvsg6ejoME9Bbt68CaDYZezll1+GIApYWVnB+++/X/4nLkPgKggCuru7EQgEyr45wgJ0ot1hAEJ0iJXqR9pa27Y94fx+N2/eLA4qlKSad5nSdR0ffngJhq6jta0VR48eqel66llmNdWuGicg8WS8ZjMZfD4vGhsba/LcB8naU5DhO3fMVM1gMIhnnn4GQLF73o0bN2q2xq2Iooiuri7IsgxFUcpSO8fCdqLdYwBCtE/t9di/oCgQBAHNTc1obm7e1WPkcjlcu34dAHD2zJmq7KZv5ebNm4hEIrBYZDz91NPcndyCJErweX1VmQj///2TP8WHH35Y8efZiKZpiMfj1Rmcd8CVTkF0TTNrQQCgv78fJ08WhxZeuXoF4XC4Vkt8KF3XcffuXczNVb8tNBHdwwCE6BCKxWIYvjO853zojz76CLqmwel0mhcgtbIcjeLza58DAJ544vGKz7bY73w+76EYyqiqKianJjkLpAwEQcCZM2cA3KsFKXn00UfR1t4OGMCPf/zjvdfdVOh0QRRFNDc3IxwJIxKJlOUxudFBtHMMQIj2MQHCjtMAkskkJqcm4W3w7in9Znl52Zz58cwzz9S00FvTNHx46RIM3UBHZycGBgZqtpb9wDAMZLPZui0aLqfSLBoWopdHZ2cnAoHAA6cggiDgS88/D5fLhXQ6jR+996O6TVFqampCY7ARs3OzB7oNNVE9YwBCdIik02mMj4/D7XKjq6trdedu5xcJhmHg008/BQB0d3ejra2tzCvdmZu3bmJlZQWybMVTFy5wR/IhVFXF3ZG7SCSStV5KxQmCAFm2QlGUWi/lQLj/FGRt+12r1Ypnn3sWEIDFhUXcun27HE+498fYQEdHB5wOJ6ampnYdiLMNL9HuMQAh2qd2epFtGAbm5ubgcDjQ19e3pxOLkZERhEIhCKKIxx57bNePUw7JZBLXrhXrUJ544vEdD1A8jEqpM3b7wZyAfj+rzGGE5dTV1QW/3w9d0zA8PLzutpbmFpw6eQoAcOXKZSzX6ZwZURTR19eHnp6ePZ/esg0v0c4xACE6JARBQF9fH/r7+yFJ0q53FhVFwWefFdvcHj92rOa1Fp98+ikMXUdLSwv6+/trupb9Ip/PQxAE2GzVCUDOPvIIBvprlxbndDqL3/NUFoIg4PTp0wCA4eFhaJq27vZz584hEAjA0A28+847ddsAQJZluN1uGIaBZPLgnwYS1RMGIET73MPSAAzDwPz8PAqFAmRZ3nPXo88++wyqqsBqteKRRx7Z02Pt1czMDOZmZwEBeOKJJ5l6tU25XA42q61qn6+///f+Pk6fOV2V59pIe3s7Ojs7a/b8B1F3dzccDgcKhQImJibW3SYIAl588UVIFgsymYyZrrkjVawfWV5exujY6I7rQeq1xoVoP2AAQnTALSwsYCm0tC5Xe50dvIgmEgmMjI4AAC5cuFCVFq6bUVUVn3zyCQDg5ImT8Pt9NVvLfqOqalXmf5R89//9Xbzx+htVe76NGIbBC8YyEkURR48dBVA8Bbn/c+t0OvH8c88BKKZsTk1NVX2N2xUMBuFyujA1NfXAac52cOODaOcYgBDtU9vJO45Go1gKLaG9rf3BieC7eNG8cuUKYAB+v7/mLVxv3LiBdDoNh8NhFsXS9vT19aGrq6tqz5fLZpHJ1q4Nbjwex/UvrtdtKtB+dWToCARRRDQa3XD2R1dXF06cOAEAeP+DD3becUoQKlaEvv5pBPT09EBVVczOzlb8+YiIAQjRgZVOpzE9M42AP7DrQYNrxeNxTM8U2+4+8eQTNd31i8fj+OLGFwCAxx9/HLIs12wt+9Vh2rUtndSxE1Z52e129PX2AgBub9Lx6ty5c/B4PNA1DW+99Vbdtn622Wzo7OxEdCXK1rxEVcAAhGif2yytpFAowOV0rWm3uzdXrlwFDKCtvR0tzS17frzdMgwDn3zyCQzdQFtbW81PYvabeDyOW7dvH6qL8XuzQA7Px1wtx48fBwBMTU8hnU4/cLskSbh48UUIoohEIrH9epAaZMsFAgEM9A/A5XJt6/3Zhpdo92qXwE1EFWEYBgRBgN/vh8/ne3jwsY28+FgsjpnV049zNS48n5qawsLCAgRRxBNP1PYkpp6Uvu5AcaffMAzoum7WPthsNkiShHQ6DVVVkEoVLxYNGLBZrXC5XFBVFbFYzLxP6QKrFHBGIpF1gYthGPD7/XA4HEgkEkgkEuvW5HA44Pd5YbVZ0dvTi9nZWYjSvZed9vZ2iKKISCRiduYCiqczDQ0NcLlcyGQyxcdd/TKX5noE/H4YhoFoNAoIAgRBMNMSGxo8kCQJ2WwWqqqaj5vLZaGqLlgsFvPzI5Tuy++jXQkGg2hubkYoFMLIyMiGjSl8Pi+efOIJfPTRR7hz505dzA7aSOn7Dii293a73Q/9vlj7fUdE28cAhGif2uiF0TAMTE9PQ5IkdHZ2lu2i6tNPi8XeTU1NaGxsLMtj7kahUDB3UE+fOgWv11uztexE6WK3VOBa2pGPx+PQdQO6rkHXdeiGjmAgCIvFguVoFOlUqvj21UDC5/MhGAwilUphanoaxurbdUOHLFtxYnU3+s7du9C09fUO/X398Hg8SCSSxe+TmXtFwQF/AC6XC4qiYH5hHgJWL8gFAaIomgFIPB5HfnWeRumiy+12w+FwQFHVB3bAS/MVXE4XPB430pkMRPHBdrjZbBbpdGbdaZ7NbofL5UI+X8ByNHrvNsOA0+lEwO8HAMzOPZizf+zoMUiShFAohFg8Zr59KbQECEBrSysSiQQmpybN2wRBgM1qw9GjxcLqkZER6LoOURTNP21tbbDb7VhZiSGbzay7zeFwwOVyQdM0ZLNZiKIISZLM2w9yG+Bjx44hFApheHgYp0+f3vBjPXLkCGZmZzE3O4sPPvgAf+fv/J1tNbEwanBtn8vlMDo2iva2drS01O60l+ggYwBCtM+tTQMIh8OIrkTR3dX98Dtus8BzORrFwsICANR86OD169eRzWbhcrlw6tSpqjynYRjQNA2qqt77v67D5/VCFEUsR6PIZbPQNA2aVgwk/IEAAn4/YrE4pmem1l1Y22128yJ3avrebYIgQBQlNHgaYLFYoCgF5PP5dRewwuoFvSzLCAYCEMTi7qsoihDXXPR1rxaYC6sBxNqZH4IAeBu86OjoMHf+S4GCw+HAmdObF/QPDGw+yyMYCCAYCDzwdl1T8cu//P+A2+NG/5Ej605ASrYqiPf7fZt2OBMEwVyveWpjGOYFcHt78QLSMAzkcnmIomB2/3I4HOjq6i5+/lcDxLWfQ7fbbX49S39KAX2+kEM8noBu6DB0HZquoamxCS6XC9lsFmPjY+vWKUkWnDp5EkAxsNE0HZJ0L0BpaWmBw+FAKpUqBi+SBFEQYbFIsFqtsNls675P6k2pJW82m8XExAQGBwc3fL/nnn0Wf/EXf4FsNovPP/+85r9PNmO329Hc1IyFxQV4PB4ONyWqAAYgRAdEIpHA3PwcmpuaEQwGy/a4n31WPHFobm5GU1NT2R53p1ZWYrh1+xYA4Mknn9xxC+CNAgm73Q6bzYZ0Oo1oNGrepmka7HY7enp6YBgGbt66+cDjuZzHYLPZkMtmkUymzAtKi8UCUShd0NvR1tpmXlCKorBu3cePHTcDjPsvLFtbWtHa0rrhx2Kz2dDauvFtAB7seLbmc1AoFOD3+6tauP9//Mn/gScefwL9T7xc9sdem7Z1P1mWzY/z/rbDVqsVgdWTqI1slSK00demFCA4nU4cGTpiBi2atr7ousHbAFVRzeBG0zTzvql0CuFQGLpx7z4BfwBdXV3I5XK4O3IXkmSBJEqQJBEWi8Ucvrm8vAxd1yFZLLCsfh+W0u4qrdSS9/Orn2N4eBgDAwMbfj2sViuefvppvPPOO7h16xa6urtqWk+2lba2NiSTSUxNTeHo0aMPTEtnS2eivWEAQrRPrc07zufzmJycRIOnAe3t7Tt7oC1eSKMrK1haXAJQ+9OPy1cuAwbQ0dlpDpUrXeRZLBbouo6VlRUoqgJN1aAoClRVRV9fHyRJwsTEBJKp9dOO21rb0NzcDFVVkc1mYbFYIMuyGZgAxYurnu7edQFGaecaADo6OjZds81m2zJoq0X3rsHBwarPb/ni+vWapu4BxQA2nU5VbCBh6YK7lI61ma0uuEuBzdpgWVxz6tXR3gFN16Cp2rrABSi23M7msuve1tvTC6/Xi1AohMjyMiRRNIeRutxuBAMB6LqOVCplvt1isezqlOXI0BFcu3Yd0WgUkUhk0+/7zs5OtLW3Y2F+Hj9+78f49re/vXGQVOMLfFEU0dPTgzt372AptIS21s0D0no8lSKqdwxAiA4AWZbR1NSEpqamsr4Yfn71cwDFFItqXkDqug5FUaAoCgqKgnQqhfm5OUAAmpuacPv2MFRVgW7ocDldZsrH7NwsJMkCi2SBLBeDidIFWWNjI/z+ACwWybzQKl2Ie73eLetJfL79UWvyMIIgVHUAYT0pKHnEYrF9MRFdEIR1359AsZXwVj+DQ0NDZq2RqqpQVdUMoovNAHzQtGJgns/nzTqkfD6Picn1k8wtFhknjh+HIAhYCi3B0I3V9ciwWuUNT1bsdjt6ursxOTmJ8fHxLQPv5559Fn/+gx8gm83i8uXLeOKJJ3b8OaoGh8OBwYFBpmARVQADEKJ9TBAEFAoFs0B2h3fe8uZIJILZ2RkAwJmzZ3e7xAeU0oAKhQIKigJVVaAUFLS1tUGSJExOTiKeiK+5AzA5OQmguKPb0NBg7tZKFgtsqxdSoijizOkzmwZgm6UlHSaxWByZTHrnp2QHgMUiQ1st9r8/neagEAQBkiRBkiQz+AAAj8cDj8ez4X3sdjuOHT22emKoFQP7NfUumXQGmWwWqnqv+1npZCUSiSAajcJqtcJqtSLY2LgagEzg/PnzxbqlDX4e7XY7nnj8cfzkJz/B8J1iytamaaM1Pl1wu90AYAZtPO0gKg8GIET7WDKZxPTUNNqcbWXfpSt1m2ptazU7Dm1XKaXJDDQKBbMzl2EYGL4zbL6vJEqQZRmapkGSJPj9fngaGiCvpkMtLi4iHo9DlCQ89thjW36cvDjYWjqdQiKRPJwByOqOvaqq5u4/wWxQsDZgWauvrw9AceOgdCpZel+LRYbD4UChUEA8noCqKpBlKxSlgImJCWRzWcgWK6xW2SymLw1F7evrw+joKMLhMN5//31885vfrNvAsFAo4PbwbXS0d5gnO2ubf7ANL9HOMQAh2qdUVcXc3BzcTnfZ02ri8TjC4TAA4Pz5jWs/8vk8stkc8oUclEIxreNem9g0pqYnARQvUmxWq1nvIIoi+vv6zQLh+1M51qZC6bqOzz//HABw8sQJpkLsUS6Xg92+8YXmQVf6/lMUhQHILgiCYJ50lPh83nXpiYZhoJAv4Pbt25iemcGZ06eLaZSFArLZLDKZjBmA3Ll7F62trYgsLyORSOCjjz7C+fPnYbPZiicwhl43l/VWqxUBfwALCwvw+Xw1qd0iOmgYgBDtQ6V5HwDQ3tG+t53/DYo9r127BqA4Gdgqy4hEIigUCsjlcujo6IDNZkMoFEJ0JQpREM3dzdKMB4/HjaNHjsJqtW64q7lZOsj9RkZGkEwmYbVacXK1jSntXr5QgN/nq/rz/oN/+A83bc1aLVarFa2trbx4rCBBEDAwOIjbt29jfn4Ozzz9NOx2+4bv297WjoKSR6FQwJ07dzA2PobBwUE0Nzdjfn4eickpOAt5WNJpWAzDHExZK+3t7YjFYpifn0dPT0/N1kF0UDAAIdqHwuEwEokEOjs7d9/RaE3QoigKcrmc+WdqNbjx+/0YnxgHAFhlG+z24u4kALS0tKC1tXXDrjmlPPS9UBTFPP04c/Ysd633qFjYX6jJ59HldMEq1/brZ7FY6rbl60ES8Pvh9/uxsrKCyckpHDt2dMP3K812aW5qLs4vikbx0Ucf4Rvf+AZ8Ph/szRmokQhymoZYJAJRFOFyuRCPxzE7OwuHw2F2q3M6nRVvrmCxWNDe3o6Z2RkEAgE4XTyNJdoLBiBE+5DP50NXVxcylgwMbfvtKosD2XIwDANOWUY+n8fU6Cgyq+1pBUFAdDkKQ9fhdDpx5swZyHKx6839QUalL2Rv3b6FfD4Pl8uFo0eOVPS5DgPDMNDa2lqTXeT/9t/+ABdffBGPvvJ3q/7cayUSCVgsFqbyVVhffz9WLl/G+PjYpgFIiSAIeP755/HDv/whYrEYbt66hVMnT8Ld1ATBagWCQWB1mCRQ/L3j8/mQy+UQjUahqArcLrfZBWxqagp2hx1ORzEoKeeJVzAYRKHwYBDP2jOinWMAQrSPlHr/W61WNDU2YSo29dD7ZDIZRKNRZDIZZLNZ6IYOj9uDwZ4eyLKMgNeHxq4eOBx2yLKMH/7whwCAU6dObztVqtxyuRxu3CgO/zt37lxVhqkddJIk1ewEoDShvNbm5xfg8bgZgFRYf18frly5jEgkgng8vmWLa6DYoe7M6TO4du0arl69ir7eXtwfJpcu8h0Ox7rZO6V5KUCxLk5RFMTjcXOYo2yRceLECYiiiHQ6DeuaerSdEgTBbOCgauquHoOIihiAEO0js7OzSKVSOHHixAO3qaqKdDqNTCaDdDoNn8+HxsZGFAoFJJNJOBwOeL3ee+kKhgFRFNHY1AhjNR1icnISqVQKksWCgYH+Kn9091y/fh2aqiIQCJhdeGhv0uk0dF2vWVBZD2TZAkVRHv6OtCdOpxNtbcVhgxMTE3jkkUceep/Tp09jfHwcyWQSP/noI7x87ty2nmttuqcsy+ZJSKFQQCaTQb6QN+vQJicnUVAKsMpWuFwuOJ1O+P3+HQckmUwGYxNjEIMiHPbDOVeHaK8YgBDtEysrK1heXkZ3d7c5/0PTNAiGgLm5OYTCIQCARbLA5XKZtSE+nw++jQqP1Qd38K5fvw4A6F09HamFRCKBO3fvAAAeffRRpjeUyfLyMvL5/CEPQGQUCoVaL+NQGOjvx8L8PMbGxnD27NmH/hyLoohnnnkGr732Gubn5rDc1YXGXaZ5btZaeGhoaN0mTSweg8fjgSzLCIfDUFUVLpcLbrd7y5bANpsNmqYhshSB13MwhpQSVRsDEKJ9oFAoYGpqCk6nE6lUCktLS4hn4pD8EjwuD7xeLxwOB1wu166HZS0vLyMWiwEAzpZx8OBOff755zB0A61trYdyXkWlFFvwbtyR6LCwWCxIpzO1Xsah0N3dDcliQTqdxlJoCa0trQ+9T3NzM/r7+zE+Po7Ll6/gKxeeLOsGRKmNsH91rtHagYuKoiASiWBxaRGCIMDldKG1tXXDgF2SJHR0dGB6eBrJRBLYZIYiEW2uPqf+EBEMw0Amk4Gu65icnDT/nclk4PF40NfbZxYUu91uBAKBDYvFt+vz1da7LS0t5vTfaovF4ubU8/OPnq/JGg6qQqEAq602nagG+gfQ2dFZk+deq7grzm5q1WCxWNDT3Q0AmJ6a3vb9Hn30UQiiuNpFa7JCqysSRdH8fdne3o7Tp0/j2NFjaG9rX9fdLxwOY2JiAsvLy2YKn8/ng9vlxtLSUl3UNxHtNzwBIaojhmEgmUxiZWUF8XgcqqpiaGgI7e3tyOfzaGhoMFOjcmoO8ZU4dFXf65Mil8thfn4OQG1PP27c+AIA0NHZiWCQ24rlomkaNF2D1VqbIYT/4l/+C1g3mbRdTcFgkN9XVdTd3Y3x8XFMT0/j8ccf39bmiNPpxInjxzH68ce4ceMGus6dq9qFiiAIcDgcD7T0FUURiqJgeqYYSDkdTgQaA2hubsZyeBmFQmHTSfJEtDGegBDV2Nrds5GREYyOjiKVSiEQCKC/v9/MSQ4GgxvWZRjY++7b3ZG7MHQDPp8PLS216ZSUTCbNmSNnTp+uyRoOKk3T4HK6YK/RRdK/+3f/K958482aPPf96qUj12HQ3t4OQRTNTnzbdXZ17o+qqLh69WoFV7g9wWAQR44cwamTp9Dd1W2mudrtdrS0tCAWi7G2iGiHGIAQ1YiiKFhYWMDNmzeRzWYBAK2trTh69ChOnDiBjo4ORCKRyqUhCAIEQYCu67gzXCz6PnHiRM2Kvm/evAkYQGtbK5qammqyhoPKarVicHCwZu1nU6kkEslETZ57/TpSuP7FdeTz+Vov5VAoDe8Dih38dnK/Rx99FAAwMjaKZDJZkfXtlCzLCAaD6OvrM1sL5/N5zM3N4caNGxgZGcHKygoDXKJtYABCVGWpVAoTExO4ceMGFhcX4fF4zI4rDQ0NcLlcEAQBKysrSCQSCAQCGz6OAKEswUI4HEY2m4UoSTVreZvJZDAyOgoAOHP6TE3WcJCV5sccdqV2reoGHeCoMrq7ugAA09PbrwMBiulbDT4vYACffPJJJZZWFk1NTQgGgxBFEZqmmbUiRLQ1BiBEVVK6ACwNBezo6MDp06fR09PzQP6wqqqYnZ3dvIVuGY2OjgEAOto7ajbw79atWzB0HU1NTTVLATvIFhYWMDIyUutl1FypNbWqajVeyeHR2dkJCMU24js5yRAEAefPnwcEYGpqCgsLCxVc5c6tTX1tb2+HYRhoaGjAsWPHzC5bs7OzmJ2d5ewZog0wACGqsEwmg5GREYTDYQDFF+QTJ06gubnZvCC639zcHAzDQNfq7uFW9rKzrSoqwpEwYBg4fuLYrh9nL3K5HO7cvQugOIyMcz/KL5/Pw7rLmQoHSennTeMU66pxOBxobmoGAMzsIA0LhgGf14vBgUEAwPvvvw9d32PDjQoQIECWZTQ3NyMUCkGWZXMjx2KxIBKJ4ObNm5ibm4OmMfAlKmEAQlQhuq5jfn4ew8PDUBTFPOVY2/pxM06nE52dnZUdBigImJqeAoxie9KW5tqcPAwPD0NTVfj9fnR0dNRkDQddvsZdeqw2K6xy7QMgQRAgiRJUBiBV1bm6kTI7O7Pj+545cwaiKCKVShXrxOpUS0sLBEHA4uKi+bbW1lacOnUKTU1NCIfDuH37NoMQolVsw0tUAYVCAWNjY8hms2hra0NLS8uWk3VLDMOAIAjbKsIux0nB1OQUAKC/v78mJw+FQgG3bw8D4OlHpRiGAUUp1PQE5N/88r+Bf5NapmobGhra9OSRKqOrsxNXLl/G4uIi8vn8joJhu8OBs4+cxdUrV3H16lUcPXq0Lk7z7j95tlgs6O3tfaCFr8ViQUdHBxobG5FIJMzTkdLveqLDiicgRBUgyzI8Hg+OHTuGtra2bQUfQDFXf2Zm57uEu5FKpbCysgIAOHasNulXd+7cgaIU4PF40L06tIzKq9QetKKnaQ/x9rvvYGx8tGbPv5bNZqtZrdNh5fV6i12jjJ11wyo5e+YsHA4HVFXFp59+WoEVlofX64XVat0wLdZms5kbS0tLS5iYmKjLlDKiamEAQlRGuVwOyWQSgiCgs7NzR21Ps9ksFhcXd3xxtNs5IHdX6y6CjUF4ajD5XFVV3Lp1CwBw6tSpbQdptDM2mw2nTp6q2XR7APjw0iXcunW7Zs+/VjgcxuLS4sPfkcqqVM+2mw0WURTx5JNPAijOLMrlcmVd217cf4qRzWZx48YNs7X6Rmw2G+LxOCYmJtidjg4tvuITlYlhGJient7VDl/pvjabDa2trRVY3YPPVyr8rlXdxcjIKPL5PJxOJwYGBmqyhsNCkiQGeKuy2SySifqYK3GYlAKQufn57dVB3Hdh3tfXB5/PB0M38MUXX1RiiWVhs9kgCALm5+c3fR+fz4e+vj7E4/EdDWgkOkj4ikRUJrFYDKlUalcX9JFIBOl0Gj09Pdu+UBSw+/zhUChU3KETga7Oh3faKjdd13Hz5g0AwMmTPP2opFAoVLW0vv3AYrFA05j6Um2NjY2w2WzQ1NXOezskCAIef/xxAMWhpZlMptxL3BEDG9dwiKKItrY2xOPxLdfo8/ng9/sxNzfHVCw6lPiqT1QmqVQKNpsNDQ0NO75voVBAY2PjrtJkdnOEX+om09TYBFmufkHu9PQ0MpkMrFYrhoYGq/78h0kmkzHrQAgQJRGazk5E1SYIgjnjZ2lxaSd3NP/a2dkJr9cLXdfrphZko42gQCAAWZYRCoW2vG9raysCgQADEDqUGIAQlUkul4Pdbt/VfTs6OrY186McNE0zd8SHhoaKb6xyHvKdO3cAAEePHmVHogorFGrbAaveSKLEOSA10tbWBgDrWtXuhCAIeOKJJwAAY+NjSKfTZVtbOQmCgObmZuTz+S03iBwOBzo7O/k7kA4lBiBEZbKbqeXZbBbhcHhXLRl328KxNBBLtlprMnV8ORrF0tISIABHjhyp+vMfNgVFgWytXQcsAPjGN7+Jx84/VtM1lLhcLrS0tLD4twZK9W2hcAiq+pAgcJOvT+kUBAbq5hRkI83NzThy5MiWv6cLhQISiQS/F+lQYgBCVCZNTU0IBoM7us/c3ByWlpaq+gI0NVWc/TE4OFiT2os7w8W5H91d3XC5XFV//sNE13Vomgq5xkMAe3t7EAzWxxwQp9OJluYWzmCogYaGBjgcDhi68dD0JADr0q/uvUnAhQsXAADjE+NIpVLlXua2lH5nb/Z9JAgCBEFAOp3etOh+aWkJ4+PjDEDoUGIAQlRGuVwOU1NT28rpTSaTSCQS6Ojo2FMgsJM2vIZhmAFILeZu5PN5jI2PAwCOHa/N7JHDpqurG+4aB3r/++/973jr7bdruoYSVVURi8UfvgNPZScIgnkKsu00rA0u8Nvb2+H3+wEDuHbtWjmXWFaKouDOnTsbdrpKJpMIh8Nob29nEw46lPhdT1RGuq4jGo1ibGxsy1aThmFgdnYWLpdrx2lbe7G4tIhCoQBRFNe3+63SDtzI6CgMXYfP50NLc/XTvw4bURQR8Pt3NHm6EjRN217r1SooFAqYmp5EPp+v9VIOpVIdyMLCwq4fY+0pyN2Ru0gm67OtsizL8Pv9CIVC6045UqkUxsfH4Xa7zeGERIcNAxCiMnI6nRgcHEQ6ncbIyMim3Yfi8Tiy2Sw6Ojp2nQoiQNjxfcdGxwAAzS3N9wYeVikVRdd1M/3q2LFjTIGpgnQ6jUgkUutl1JVSwW+9BESHTWnjYzm6vHV3todsirS1taG1tRWGbuDjjz8u5xK3Zbsnz6Vi9Hg8br5tcXERDocDAwMD/D1IhxYDEKIy83g8OHLkCBRFwfDw8IbpWF6vF0NDQ1WfTl3qfjU4sNr6toovfnNzc0in05BlK/r7+6v2vIdZMpnE0nZy7Q+RUuDNWSC14Xa7i7/3jGINxF6cO3cOQLGtdyKRKMfyduxh85hcLhdcLhcWFxfNrl19fX0YHBy8twlEdAgxACGqAKfTiePHj6O3txeiKEJVVfPFR1EUCIIAj8dT1TWVTl0gAD09PVV9bgAYXj39GBoaZNvJKikUCrDKte2AVW9K+fY6Z4HUzI7rQDbR1tZmNv746KOP9ryuStB1HQ6HA9lsFlNTUzAMA5Ikse6DDj3+BBBViMViMYcSRqNR3LlzB3fv3sXNmzexvLxc1ufaTheVyclJAIDfV/2agFgsbuZ8s/Vu9dTLDJDm5mY0NTXWehkAivUDDrujqqd/tN6O5oE85Ov05IUnAQCzs7N1VQtiGAbC4TBu3ryJSCQCv9+PoaEhplwRreI2JFEVNDU1QZZlTE9PQ9d1RCIR2Gy2PaVg7fSFbG5uDkCx/e4DKlyEfudO8fSjvaNjV5PiaXcKilIXrY5//dd/HYJQP/tdDIJrqzR/aGVlZU8DXAGgtaU4TTwajeLq1at4/vnny7XMLW226aOqqnnCGw6H4Xa70dbWZk5GDwQCNW8KQVQP6ucVgegAEwQBDocDmqYV20fi3gtYJpNBLper6PPncjksLhV3G3t7eyv6XPcrFAoYHSsWv584fryqz33YedxuOBzOWi8Dv/L/+hW88ebrtV4G1Qmn01kcJghsPg9kB5sijz76KIDiKe+Whe0VIAgCDMNAPB7H2NgYrl+/jmw2C0EQcOzYMfT19ZkBVigUQjgcrur6iOoVT0CIqmRubg5WqxU9PT3r8n/n5+eRSCTgdDrh9/vh8/nKvkM2OTkJGMWCyHW1J1VIBxgbG4emqvB4PGbqBVVHV1dXrZcAAIitxLCyEqv1MkxjY2OwWq118/k5jILBIOLxOJaXl/c8k6irqwterxfxeBzDw8M4c+ZMmVa5NQEClpaWEJ+OQ1EUOBwOdHV1mWmPa3/PS5KEYDCIaDTK2R9E4AkIUVUYhgGbzbbhC09/fz96e3shyzLm5+dx8+ZNs2XjVgMN13ZfeVhLyLHVE4hNL7gqmII1OjoCADjK1rtVpWka8vk8pyxvQBAEtuGtsWCwWBP00DbR2/idIQgCTpw4AQC4fv36tgbB7oZhGEgmk5idnUVBuXfS4vP5cPToURw7dgxNTU2bdrcKBoNQVbVmHbuI6glPQIiqQBAEdHZ2bnibKIoIBAIIBALQNA3xeNysDZmamkImk0FDQwMaGhrgdrt33LpR0zSEwsU0h6Ghob19IDu0HI1iZWUFgiigv6+vqs992CUSSUzPTOHkiZPsOnYfURQZgNRYqSlBJLIMwzD2vDkxNDSETz75BIVCAePj4xvXuu3S8vIy4vE4kskkdEOHbJFhcVoAoVjP0uXd3kmaw+GA0+nE8vJyVQfQEtUjnoAQVVgmk8Hi4uK2duUkSUIgEDCDjGAwCI/Hsy6/OBaLASgWO27nMZeWlmDoBiwWCxob7+tEVOETifHVk5fOjq49FZrSzqlqsd0zZw08SJKkiu2S0/b4/X4IogBFKZSle5XFYsHRo0cBAJ9//vmuH0dRFKysrGB2dtb8HkkkElBVFc0tzTgydAQnT540N4keNgfkfu3t7Whubt71+ogOCm6LEVXY0tIS0um02fllJ0onH4ZhIJ/Pm7UiQLGF5fDkMARJgCPngLfBC5fL9UCKV6n7VWNTY1VToHRdx/j4OABgcHCgas9LRYqiQLZY6yLtzWKxwCLVz8tN8QSEAUgtSZKEgD+A5eVlRCKRB7rjCbvIHDxz5gxu3b6FRCKBhcUFtLVur+bMMAzMzc0hmUwily82BLHKVgSDQTgcDvT29j7wc7Tb1EZ2ASQqqp9XBKIDKJfLYWVlBV1dXXu6EBQEAXa7fd0pQmNjI5ozzYjGoghHwgiHw2htbUVbaxtyuRzS6TScTqfZdaWnu7rDB+fm5pDP52G1WtHR0VHV56bVAESuj1/xv/RLv7SrALxSmpqaHjwNpKoLBoNYXl7G8vIy+vv7N36nHfzedDqd6OrswszMDK59fg1tr64PQDRNQyaTMf/kcjkcW61NU1UVbrcbLS0tcLvd6+bnlDuITyaTiEajNRkIS1Qv6uPVieiAWlpagsViMaf1lpPD4UBjYyNcbhf6fH1QCoqZbpNKpTAzOwNDN8z2uw6HA8C9nbt1L6oVKFQeHS2mX/X397PjSw1omga5Tqagf3HjJnQDOFHrhayqh+GMVNxEuXv3blkHs547dw4zMzOYX5jH4tIinA4nGhoaoCgKbty8AQAQBRFOZ/Htuq5DkqRdtyffTXCiaRqWl5fR1NRknmgTHTYMQIgqpFAoVK3lYmnOSEljYyP8fr/ZftdisZinJ/l8HsN3huGwO9AQDsOm65D9fris5UvXyeVymJ2bAQAMDDD9qhb6+/vrpgPWG6+/BkUp4KWfqfVKilKplHkySbVjdsJaXoau67v6PWkYBgzDgCiKyGQySCaTZkveTz/5FIODg2hoaIAsy+ju6obT6YTdbq9paqLX64XFYkE0GmUAQocWtyWJKkSWZQwMDFQ81UMQhA3b8EqSZLa4bGxsRHt7u/n2ttY22O12ZHM5hMIhTE9Pmy/IMzMzmJ+fx/LyMlKpFFRV3fGaJienYOgGfD5fRU5/aHvqof6jHuULBURXoixErzGvtwGSxQJd07Cy2lzDZBgbpl9lMhksLS1henoad+/exRdffIHFxUXzdlVVzXSuyHIEfWu675VqOsrxc/Gw1udbEQTBnN5eL5sERNXGExCiCii1lax1weH8/DwArKvBkGXZzMcXdB1aIoHC6r8Nw4Cqqkil0igoefM+Q4NDcDqdWFmJQVUVWK1W2Gw2WK3WDXctx8dX0694+lETqqpidHQMnZ0dZrceukcSi6mKu911p/IQRRGNwSCWlpawHIkgGAgAKAYZhXgMWiaDjKIgI8vo7OyE2+1GPB5HKBQya+IavA3wuIvDVZ1OJ4aGhmAYBu7cuYNMJoNbt26Zk9IrYaddsEoCgQBCoRDi8Thb8tKhxACEqAIWFhaQzWbR399f0V3orV78NE1DLB4DsPVEbFGSYFvNiRcEwdwx1HUduVwOuXzeTN9Kp1OIrqzftWtva0dTUxOy2SySySQKhULx5EUAZ3/USKFQQL6Q4wnIJkSx+HnRNI0zUmpA13Vks1nk8nnYbDYAwMTEBIaGhiAIAmZmZqDNz8OqA4LLBafXawaKLS0taG1t3fJ7WxAEnD59Gh9//DFu3bqFRx55pO4CTafTif7+fng8nlovhagm+JuXqMw0TUM4HEYwGKzpBWA4EoahG5AkCX6/f8f3F8VioebaHOXOzk50dHRAURTk83kUCgWz9iSby2Fpacls++txezA+MQGrLMNqtcLT0IBgIABd183uWJxRURmKogBA3RSh15vSxShTsCqnUCgglU5DUQpQCgoKhQLsdjva29uhaRpGx0YBYF3jjNLJcW9vLyxOJyyGAbS3A2tOkrcbSBw9ehSfffYZCoUCZmdn0d3dXf4Pco948kGHGQMQojILh8PQdb2qw6Y2yiMu5UW3t7dvHgjtIkASBAFWq/WBTkIBvx/ehgbcvn0bQHEycWNj0Lz4UJQCgGKB+sjoCIBiKozFIsNms5onL7FYHIJQ7FQkyzIkSeJO/g6V6nbqJQB54YWLOH3qVK2XYbJarWhuamYAvEOGYay2d5YhCAJWVmLI5bKrP98KFEVFS2sLAn4/kskkZudmIYkS5NVNiNJpk8ViwdDgEGw2G1KpFCYmJpDJZs3nsdlsECQLoCq7XqvFYkFPTw/Gx8dx+/btsgcg5ajdMAwD09PTcLlcbAtNhw4DEKIy0nUdoVAIwWCw5q0+FxYWAMAsPq+GpaUl5HI5yLIVx48f3/ACz263Y6B/AAVFgaIUoCrrJ7rPzc9BXXPhIQoi+vr64Ha7sbISQzabgWQpBi6yxQKbzWamcVCRoiiQJEvdBG4XLjyJxsamWi/DZLVa0da2vSF1h4Gu61AUBaqqQlFUCEKxU5Ou65iamioGF6pq/lyeOH4CsiwjkYgjncnAKsuQZRlOp9NM5/T5fPD5fBv+DhAEwTxZ9Xg8EEQRhq4jlUrdq5srwwX+mTNnMD4+jrn5OWSz2XWdAstlr/OdSpPXGYDQYcMAhKiMMpkMDMOo2tC1zV78dF03T0CqeaE1OlpMq+jr6910d1kUxS0Lo48fO7a6m1rcUVWUghlgKEoBiUQSqqpA0zUAQGOwER0dHchkMhifmIBssRQnb1ss6y40E4kERFGEJEkH/mTF5/PVVXvP3/md38HFiy/i2HM/VeulACj+fKTTadjt9ro5JSonXdehqqp5UpFIJJDP56FpGlRVhaqq8Pv98Hq9WI5GMTs7s+7+TocTXq+32GHPMOBwONAgy7BYLObPDoAtB+lt93RJFEV4GxoQi8UQj8fL2rgjEAigsbERkUgEt2/fLn8xehl+fXi93mLNi6bxRI4OFQYgRGXkdrtx+vTpqhc83t8SMhzeYf1HGXYbNU3DzOwsAKCvf/fF56Iobnqq0dzcbKa2lS6ySkGExWJBY2MQqqKu7uQq61oIT8/MQNPWtxQe6B+A2+3G8vIyEokEJEkq/rFI5gAzTdOQy+XM2yyW+jlZ2EypQ1C9KO6g7z6dptx0Xcf4xDi6u3rg9/tqvZwNleZbAMWfiUKhgEwmC03XoKmqOWiysbERuq5jdHQUqla8TTeKJ4qlk4rl5WUkU0lIkgWW1e/h0o+82+VCZ2cX5NXgohS8A8UNjk0nlJdRw5oA5IGGGXv8Wevr60MkEsGdO3dw7ty5sv3s7qUN71qlACQejyOw2gWM6DBgAEJUJvl83rxArbXS6Yff79/6BbeMF9ILCwvQVBV2ux3NTZWvfxFFcV2am9VqRWtL66bvf+zoUXP3V1U1aJp6L8hZ3ekt7hLrUDUVAb+OhoYG5HI5s2C2xGKRcfJEca735OSkuXtZ+hMIBGC325HJZJDPFyCKAiRJgiiK5snMhhPpyyQcDsNms9W8DXS9MovQjfIXoRuGAU3ToOu6+X9RFOFwOKDrOqLRKDRdg67du72zsxOiKGJ2dhaJZBK6rkPXNRiGgY72DjQ2NiKZSpknFaIgQrJY4Ha5ANwbRGqxWFYD6GKgsfakQhCEDb/X6iGF0e/3Y3p6GrH7Z4GUwdGjR/HZ5c+QzWaxFFra8nfEbuy2DW+J1WqFw+FgAEKHTu2vlIgOiLm5OeTzeRw/frxqz7nZi18pAKlmXvHU1BQAoLu7uy5PCNbu7N4vGAiYMwju53A4cGToCFRVhabpxdSvNSdGVqsVhULBzKPXNN288I/H4wiFQ+sez+/zo7u7G/l8Hnfu3oEgCBDFYnAiiSKOHDkCQRAwPz+PQqEAURTNP6XUqkwmg0wmU7yoFEWIggirtZiDbxgGlkIheBsaYF2dbi8IgpmOU8nAp94UL+R18zRB13XIsmwGIPlcDolEYvU2A7JsgdvthqqqWI4uw9AN8/66rpu783NzxZqCYpChQzd0tLe1w+/3IRKJYH5hft06PG6POZl+bn4OkihBlCRIqymBpa+J3W4vBqqSaL6PazWVzuf1osHj2fAEThCErVtt11kL2vt5vV4AxTTJcrNarWhrbcP8/DxufHGj7AFIOXR3d9fFxhVRNfE7nqgMFEVBLBZDZ2dnrZcCAOZO4rbrP/aYgqXrOqani7uzvb29e3qselPavd7MVkX+ra2taGpqMi+E1+Z5WywWdHZ0Fm8zdOiabrYhBe7tpCuKsnoRDLN2Jp1OY2FxYV0nngZPA/r6+laDIBXRlSiiK1Hz9lMnT0GSJIyPjyOVThU/NkE0P4ZgMIiVlRgWFovNCwQIq8XCDnR3d8MwDLPGZ+0FcE9PD2RZxlJoCalkat3tPr8fvgYPWltbcWToCMbHxyFKxZcdWZbNi+aJiQlomrbuc9fR0QGHw4FQKISVlZXVz0nx8+IP+NDa0opMJoOJycni52E1yBAlyTydunPn7rqBmgDQ29Nr1jeEI2GEI2HzNp/XB7fbDV3XEQ6FzeCuGCQK5tdHFEWzFqIUHNpsxdM4j8eDbksPJOle4Fi6uBRFEWdOn9k0+Ntqw0Bac6Jx0DSsBiArsdi9n4EyTgg/c+YM5ufnMTs7a3bxqieu1ZMsosOEAQhRGSwvL0MQhJodoa+9ENU0DelMGkD1TkCWlpagKAXIsrWq7YfrnSAIm+5sWiwWBIPBTe+7dnr9/ZqamtDU1GTuzOu6bl7Ulv7f2toKl9Nl7uCXdsGbmprg8/nMU4FSkTEA2GxWBPz+dfUHay/W7Hb7uu+1tX8XBXHdBbJhGOYJncvpgkWW1qUBrd2Vt1gs6/5dusgHAIssw+Vyrfv47DbHms9h4N5tENY9Tnt7G3TdMAOIUqoSAFhlG3x+L/w+v/l8pftarVac2qJt8FaB/Vb1N4fh1Gk3vA0NgABoqopMJlP2C/K2tjY4HA5ks1lMTEzgyJEje37McrThXat0at3aWn8nNESVwACEaI8Mw0AkEoHf76+LY/SVlRXAKF5EbdVtqqg8F0T30q+66j7d4yARBOGBnfFS4b3L6drw679VXcj9gyfvf66t0nxKQdH9dE3Fv/q//ytIkgXdfX3mCchaWz1uwO9HYJNGCg+r+yml9mzk2LGjm95G1SVJEjxuD5LJJOLx+PoApAxBmyAIOH7iOK5cvoKRkZGyBCBrH7scCoUCEokEWlpaGKjSocArBaI90jQNdrt9w4uvStvohWppaQkAzDSTSisN0wK2bstJ1SEIAvw+f83n0Kz1W9/7Lbz//vu1XgbVMa/XBwCIxeMVefyhwSFAKP5+rESx+155vV4UCgXkcrlaL4WoKhiAEO2RxWLB4OBg3eTxlo7yt9r9LadQOFRsU2uxcLhbHbDb7eju7q6rAGR6ZhqLS4u1XsY64+PjmJ+ff/g7UlX4fMXfV/FScFDmFCeXy4XGYDEl9caNG3t+vHK14S3xeDwQRRHxCgVgRPWGAQjRHhQKBcRWCydrRRCEdS+GpYLdHeUS72H9M6vF512dnQe2SHY/URQF+Xz+4e94yJWG8lF9qGQnrJKTJ08CKAaful7+Fsx7IYoiGhoaGIDQocEAhGgPIpEIJicn6+bFTNd1JFNJAKhKMbhhGGb9B9Ov6kM4HMb4+EStl1H3RFGs6cYBrefz+QDc20AxlTGNtLe3FxaLBaqqYmZm5uF32Ia9zgFZq7W1tW46KRJVGgMQol0yDAPLy8sIBAI12/m//8UvHo/D0A0IorC9FKw9vrhHo1Gk02kIorhlO1qqHlVVYbHwJOphBEGom40DKqYgAcVTZUVRKvIckiShu7sbAHD79u2KPMdeOJ3OuknlJao0BiBEuxSPx6EoSlWH/T3M8vIygOI8g20XoO8hCCkVn3e0d9Rdb/3Dqh7nHIiiCEGsr84+a4cyUu1ZrVZYLMXv21QqXUwLrUATjaNHi93PQqHQA7NndqJS3zuRSMSs4yM6yBiAEO1SJBLZsm1pNZVeDEsByI57ye/yxfRe+lX3ru5P5aeqat0FIP/X/9vP48UXLtZ6Geu0trayaUKdcbuLu/+Z1TlGldDa2gqHwwFVVffchGDtXJtyyeVyiEQiZX1MonrEAIRoFwzDQENDQ82HRt3/4ldqwbvVgLtyicXiSCQSEMSt50NQdem6AanOUrDC4RDS6Uytl7GOw+HYcsI9VZ9zNf0olUpV7DkEQTDr1eoxDcvtdqNQKKBQKNR6KUQVxQCEaBcEQUBzc7NZOFkvSh1Utr2uPezezc7NAgBaW1rrquXrYXf8+DG0NLfUehnr/Pn/+X/io48/qvUy1llZiSEcDtd6GbSG21U6AVkTrFYgDau3txcAMD8/v+s0rHK34S1xVSEII6oHDECIdmFpaQnZbLbWy1hHURSzeLMaM0AWVtMX2js6Kv5ctDOcpPxw6XQK0Wi01sugNap18d3a2gqLxQJd1+tuFowsy7DZbAxA6MBjAEK0Q/l8HnNzc3U1sdaAYfbPlyQJNptthw+ws908VVWxuJru1d7G7lf1IpfLYXj4zvodZNpQsQ1vrVdBa7nWnYBU7osjiiI6VjdOhoeH9/RY5WzDW9Le3g6/31/2xyWqJwxAiHZoZWXFHBpVa2tf/ErpV9Uoig+FQjB0HQ6Hw5xgTLWnKAryhRxEkb/aH0YQBOgG2/DWE5e7eulHx44dA1BMw6q3dsx+v99sS0x0UPFVimiHVlZW0NDQUHdTv0sByI5euHaZqlNKW2hvb///s/fn4ZGd5Z03/jlr7YtK+9Laeu92t9s22MYGjFltwEBCGJgMhGSSycVMIG8YkjDZZkgYsvzIm4WQDJmEJJNACJlMAi9LEmBCABswxu12t3tVq7W01NqlKtV69t8fp05paalbS0kqqc/nuuqSajvnUenUOc/3ue/7e/vpPjWEabr57LIs7/BIah/fhrf2iITLEZBiYeF/s0Xnl9bWVhRFwbKsDdnebuWx4zgOU1NT5PNb5wbm47PT+ALEx2cdlEolisViTYbHvYvVdnRAHx0dBfCbD9YYlmUC1Jw4ftGLX8yhg4d2ehhLCIVCpGrwe3wnEw6HQQDHdigWtzbFVRRFenp6ABgYGNjwdrZqAWZ8fPzmrvA+PnsIX4D4+KwDURRpbm7eliLv9eA4TiUCsqHUsHWs5uXz+cq+/D4KtYVpmUiSXHNRqTc/8SaOHD2y08NYQiKR8I/fGkMURcIhN4V0O+qYPAFy7dq1mkrDEgSBaDTqR0B89jS+APHxWQeqqtLe3l4zOfaLJ5reatlW5w576Vf19fUEg8Et3ZfP+kgmknTWYE+Wj/zGR/jKP39lp4exBNM0/WL9GiQajQJQ3MJmhB6tra1IkoRhGIyNjW35/taDJ0BqSRj5+FST2phF+fjsAkqlEuPj4xv2jd8qBARM06w0rlpXdGYDK+WL6z98aotgMFgT5gjLKRVLlLTacY0DSKfT9F3t2+lh+CzDM9EoeDbnWxjNE0WxEgW7fPnyut67VX1APDwh5kdBfPYqvgDx8Vkjc3NzjI+P11x6C8B81rXgFUVx/Ra868BxnMpKYWubn75Sa8zMzJBOZ3Z6GLsC73vsF6LXFp4A0TVtW/bnuWGNjIxs6FjYChtecBcT6uvra66ey8enWvgCxMdnjczNzZFMJmsm/WoxXg+QcDi8pQJpZmYGXdeRZJmmxq0vdvdZH9PT0+Ry2Z0exu6gBhcSfKgsoGjbJEC8lFrTNJment6Wfa4FQRDo6uraFlt1H5+doPZmUj4+NUixWKRUKtWc+5W3+pZOp4GFsP26WePK340xN/2qpaWlJoXYnY5pWb4F7zrxIyC1xXYLEEmSKs6BI6Mja37fdhw3hmFUDD98fPYa/gzCx2cNzM3NIUlSzTaH8opp123Bu85V4LEbbvqV3/28NrEssyZTNkKhcKXHQ60gCiKiIPoCpMbwBIhX07YdeG5Y3vltrQiCsKUR52w2S39/f83VHfr4VAN/qczHZw3EYjFUVa3ZVf982TFmQwJpjRdQXdeZnJoEoL3dFyC1hmVZOI6DVIMRkA996EOEI7WVSlJXl6SuLrnTw/BZRiDoChDDEyDbkCrX3t4OwPjEOIZhoCjKlu9zLXgug8VicePRbR+fGqU2Z1M+PjVGLBajoaFhp4exKl6YfivzhScnJ3Fsh0gkUpNOS3c6juNQl6wjuIUmBBvlL/7X/+L0s6d3ehg+u4CA6k66NU3btjqdeDzuRl6cBZe/27HVLliwVID4+Ow1fAHi43MbstksMzMzOz2MFfHC/7rmrhZuuC/HGq6lk5Nu9KO5uXlj+/DZUmRZprOzsyaLVi9eOM/g0OBOD2MJ2WyWS5cuY5rmTg/FZxGBgAqAYZjb2gOjpaUFcJsS1gqiKBIMBimVasvC2senGvgCxMfnNkxNTTE1NbXTw1gVBwfDMAAIhULre+86Fhi9z6CxsXFd+/DZHizLolQq+TUNa8S2bTS95Dd6qzEqiyjOwnltO+jt7QVYd0PCrbLh9YhGozVp/e7js1l8AeLjcwscxyGbzdZ0ypGu65V0gPUKkLVi2zaTZQHS1ORHQGqR+fksl69c9gtW14g/qatNRFFElt0ajO1ywoKFOpBSqUQ2WztW1p2dnXR0dOz0MHx8qo4vQHx8bkGhUMCyrJoWIF5+sCRJW+aANDMzg2PbKIpKMrmOTus+24Ztu8KjFl2wahG/EWHt4qVh6bq+bXUgqqqSTCYBGB0dve3rt/O4sW3bP0599hy+APHxuQXZbBZRFIlEastC1ENAqKwSbir6cZuLmxf9aGxq9FeOaxTTMpFE6Zb/H12HbFZgekZgdFRkbFzg+ojI+Lj7WGZeoFCAO6kswp/Y1R5eGpahbZ8VLyzY8a5FgGwXuq5z5syZmorK+PhUg9rza/TxqSFCoRAtLS01Pen2ChS30qZxcsItQG9q8us/ahXbspEk95TuOK7YKGkCmga67v60LAfbBtsBx7YxDZAVxz2+BRAFr7cBiKKAooAiu69RVVBkx31MWd/C9Dvf9a7K5K5WCIVCdHV214zlqs8CaiCAwfb2AgFoa2vjueeeY3R0FNu212S7vtXXBkVREEWRYrFY05F4H5/14gsQH59bkEgkSCRqO+XIa0K4oQ7Ya7h4Oo7DVLn/R1PjOhsd+mw5tg2aBuk0zKUDDF8X0XWw7aViw7YBAQIqBFWHYBAkycFxwDQFDANMQ0A3wLQAx6FUcg8RQXRLbUXRFSeCICDLlMWIUxEq3u/Ls8AkUaq5HjqyLPvphDVKQFXJA5q+fTUg4BpsiKKIaZpMTU3VhOOfIAgEg0Hfitdnz+ELEB+fVSgWi2iaRiKRqOkISC6XA9iyldxsNutGWQRquhfKnYBlQakEmi6ga+WfZbGB0EYiAdmsKzYEEYIqqAE3ehEMOLeIXDhLfrqiBAzTEycOhi5gmKAb7v7caMlCxMSLmgiCgCSVxYnsIIkCn/zzv+cVjz7MPa95O2qNlKgYhsHs3CypupQfBakxKilY+va5YIFbAN/Y2MjExASDg4M1IUDAjdb5AsRnr+ELEB+fVZieniadTtd0BEQQhEoK1ubqVFbPg/fsd+tT9RuLsvhsCMNwIxslTUDXBDTdFQVeZMNx3OJU2wFZciMbgaCDqjoEVFcAbBRBoJJqtVycgCuEDNNN7TJNB9MAw4uiWE45WuIen7YjoJlNZLIprg2KyLJYtdSuzaDrOuPj48SiMV+A1Bjeeca0zO07IMp0d3czMTHByMgIDzzwwG1fv9U2vOAKstnZWRzHqenFMB+f9eDPJnx8VsGz3631E75XhB6LxbZk+14DwqYmP/1qK/DqNbSyyNA1gdKyeg0cxxUeDqiKG81QAxAIuGJDkmBoaAhZDhOt2/o6HUlyb8HAYuHq/m7brnjyoid6yUbAwHZA0x0Mw75tapequOLkdqldPnsT18nN2RFL6c7OTp5++mkymQyGYdSEOG1oaKChoaHmr0U+PuvBFyA+Piug6zqlUqnSHbeW8Qo1NxQBWcMFzW9AWD0cx41qaLpAqbRQHL5avYaqQDjoEAhQiWysVkpRLJUIBALb+veshChCIODewMGO2gTkcepiU/R2WdiOsCBOdAfTuDm1q7CG1C65HDFRy+JkvcE5fzJXu3hW0jshQGKxGIFAAE3TmJ6eprW1dcXXOY6zLdEP8K21ffYmvgDx8VkBz/Kw1l1HBARM00RGXuggXEV0XSedTgN+BGS9WNaC2NC9VCrdnbgsFxuC6KZQhVRXbARUNzVpPXNkyzRrfqIiCF5EAzab2rWVrl0+O4u4gwIEoLW1lcHBQSYmJ1YVINuJbdv09/fT3Nxc89ckH5+14gsQH58VkCSJ+vrdUfNgWRYy8uZWv1fpheBFPyKRCOFweOPb3+OY5s31Goaxcr2GJC0tDvfExmZwHAfbsWtWgBw6dIiO9n23fd16UrsMg0ph/Fpduxandtm2TDCQRBBq8zO7k5EXC5AdUI6NjY0MDg5y48YNTt196pav3Y5ImiAI5PN534rXZ09R+7MrH58dIJlMVrri1jKO4+ZJOzhbIpb89KubWVyvoZW84nCnLDK8CIdbr6HINxeHb4Wm9VaKvT4gtcaP/ui7CQQ30SiTm1O7XFZ27VpbalcAUexmZLS6qV0+m8c7l9m2vSP796K9U5NTNVH4LQgCiqJgGNvrCubjs5X4p1Yfn2VYlkWpVCIUCtVc74LlWJbldnIWNmjDe5sL69T0NACNd2D/j7U287NtdxocUCEUdIvDVdUhGFi9XqPaiKJI574uwuHNTfK3io985Nd55JFH+PH7XrEl29+Ia5duQKFogiAjCcKaUrsU1akIFT+1a+uQJAnB2bkUrIaGBhDc/c/Pz6/ohOjcwjlwK1BVddsbM/r4bCW+APHxWUYul6O/v5/jx4/XRFHvrVh8gd6KCMjc7CwAqfq6qm+7lvCa+Wm6gFZa2l/jds38vMjGTk5ERVEkkajd1Ix8Pk++kN+x/a+U2lUoFpjr76e7uxdViayY2mWYIOCmdomiK07W6tql3sIwwOfW7GQRurf/eCzO/Pw84+Pjt7Ri365CdEVRKo6HPj57AV+A+Pgso1AoIEkS6mYT87cB7wItCMLmojUr1IAUi8VKj5G65N4RIMub+ZU04aZ6DcdxxYYoQUBZazO/naOklZifn6c+VV+zdSC1hpdWs77ULjbl2qUu6hzvp3atjreYslMCBNy00/n5eUZGRjh8+PCOjcOjoaFhRz8PH59q458CfXyWkc/niUQiO573uxZM0wTcottqMzc3B0A0Gt0VYmwldrKZ33ZSKmpMTEyQqkvt9FB2Hc4qBgywttQu3QDDWOrapRtuqt5aXbv81K6leCLadpwd+yA6Ojro7+9nthwFXo6X+rpdRKPR7duZj8824AsQH59FOI5DoVBwc4B3AZ4AkTbq5HOLi7t34a3bBZPa5c38NO3meo21NPPbrdiOW6wrSVLFmMC0TCzLwrZtHLv8t9tWWXB5j9lLbpZtue+xFibZDg62ZbnvcRwc21lSmGvbNqZp3jSR91axda3EfS+6j3gszjPPPIMoyW6OvyAs1DCxEMUTRRFJlrydlyfubnRPEEXXIal82FZeL0oLv0sSgiggCu59ofy8IC68XpZkdzV5k2n8kgQhya39WWCVhoyLoid+atet8Wx4vfPbTtDc3AxANpetiYaEhmEwNzdHKpXaFe6MPj63wz+KfXwWYVkWsixvrKnfDmBb7sQzEKx+rcpsjdZ/bGUzv60dt4NpmhimgWmYmJaFaRpYprXwuGliGia6rmMYBoZpYBgLk3vLMtFKmisWLAvLExS2KzpeeOEFHHt7i2Nvh22Z7Nu3D0GAvr4+xBpz6nrh/AuuKJFlJNGd+HpCRpJcYaMGAshyWeQIIoqioCgKsqIgy266pizJKIrivk+WkWUJRVEIBZVFaXE3p3YZRrnPiZ/aVUHe4RoQcCMO4XCYQqFwy4aE2xUpN02TkZERwuGwHw3x2RPsgVOVj0/1kGWZY8eO7fQw1oxhuraMW1KAXk7B2sm0ntWa+dl22fa2ys38VsO2bQzDQNM1DN1A13U0XUMr6Rimjq7p6LqOaZmV15aKJQzDwLRMTNOsiMXtRhDF8sTVVV3eJNaLHKiqiiAI2LbtRgzKzwmigCzJCKKAXRY1AkB5QizLMrIkuxEX26pEKdyXCJVjUtOKzBhzqAGZWE8voigjy3IlAuJZrXoRFkFwoxe2Y1fEl3cDkMrq0TCMmyI4oihWIjKLxRksbGO5QHNsd/yWuXWTXcGLvMgSiqxUBIyiqgQDAfezlGUUVUVRZBQliCAEEIQggiAjigFsW8YwhTsitcv7H1v2ztY8xONxCoUCIyMjO96Q0IvA+Fa8PnsFX4D4+CzCsqzKJGw34KUobNovf1n6jGmaZOYzANTVbU8EZDua+TmOUxEOml5CK2kUS0X3Z7FISSthGia2Y6NrOoViYUvEw+IJqSRKyLLbyV5WlLIAcCfwiyersiJXVuXlchqTKLnpRPl8npJWoq2trbKS763e7zS2ZfLrf/tJTp06xYMPPLjjERC3T4u9NE3N8kSIuRBdKj/v/v/d5w1dR9O0crSq/HrH9WE2DIOSVqq810t9A1ckW7aNZZpobNDJSHD7vLi3IKoaQRQD4KiIYgBJDiDLYQIBtXILBgPl1986tUstC5UaOFwAFo5bmx1VTC0tLYyPjzM+Pn7Tc9ttw+t9n30rXp+9gi9AfHwW0d/fj6qqdHd37/RQ1oRhGOWVz+pepNPpNDigKOqWpKNVq5mf4zjouk6hUGJurkShWKCQL1AsFjFMwxURhQIlrYSu65te5RZEEVVVCKgLq9ayoqAoMqqiEggEKuk6qqK6qTmyjKKoKKorKLzV/2pSX19f1e1Vm2e//2zNpI24KUyuQFPZWnMFLxqmGzqmaWEYOqZhViJppmlW+g6VtBKGYWIaboTNS8kzDMPN3HLAMk0s0wRKFAvpm/bnfn9ELEvAtCQsS8R2JEQCCGIAVVVRAyqRcIRgSEFVVEKhIOFwiGAwQCQSJBiUaie1a4fXgdra2zhz5gxzc3OrNiTcLhterxmhL0B89gq+APHxKeMVoMfjtdtPYTmG7objK0W762WVifDi+o/NTJY32sxPVmwsq4BtFSiVCsyli+RzOfKFArqmVSZspmluqOZBkiWCgSCBQKBiuRwIBAgGg6iBAKFQsCIgVDWAosoE1EDNWtx6QtQvTl07xVKRoaFhOjv3EQ6Ft2QfoigSCAQ21U/Iqx3SdA1dNzB0vZICqOsGpWLRjeJpOrqmoWkapmWi6wZOJTLq9mCxLAG9JFIsiFhW+Wa7QsWx3e+5rLjfDfeYd78XkUiIcDhEPB4iFguSSASJRNSyQKl+atetnMm2k4Z6tyGhaZpks9kdvzYkEold60jo47Mc/2rl41NG09zi3nB4ayYjW4GXD1ztiedG6j/W2sxP0w2KxSK2VcQ089h2AdPMo2nzFPJ5iqVSeZV37UiVgt8QgWCQYDBANBIlGAwuERaBgFrTQmKjjIyOIAgC3V3dOz2UXYPjOBhG7a8meyvfiqLAOoKRnnApaSV0zU0d89INdV2nWCqSz+UrYl7TDExTcKMmVo5iQSKXE8v3yy5kAghCuR5IElAVhXDI/c7FYwGSyQixWJB4PEQ8FiSZDBMIiOtO7aoIpx2OgMiyTCwaI5vNMjU1tUSAOI6zJfbnt6Kjo2Nb9+fjs5X4AsTHp0w+764S7kYBsukJ9bIVx3Q6Daxe/7FaMz/LcigWS+TzRQqFPNlcjmKxgO2UsPQcxdI8oqAhSfbtV0wFCAQCxKIxAsEgiiITCUcIhUKEw2GCwSDBUJBQMLTnBMV6sSyLgFp9JzSf3csS4bKG7DdXkBkUiyVKWpFisUihUKSQz1MoFsnnNPJFk0JOo1iysCwRXbcoFg1w5hkTvP06le+2IICqqkQirjhJJMLEokHq6sLEExHqkmFCodXtbQWEFUMrExMTnH7uNKefPc2zzz7L+fPn+b3f/z0ef+zxjXxUt6SpqYlsNksmk6n6tteLZ1vtRzp99gL+UezjU6ZYLBIoO9LsFuRyQa+qVC8s7zgO0zMzANSlUjc188sXTDLzBbLzWeazWeYz+fJkRaOk55BFE1k2kWULRbaRpIUCbrU81xAlkWAgSDgcJhKNEIvGCAbd++FwmFA4RDAQ3DVmADuNbdl3vAhbL7WS5lMrCIJQTjlUSXDrVCPLsigU3VqrfD7PfKbIfLZAsWCQzWnMZwrkSyaWKVIoGBQKBtPTuYXoibBwk2SJRDxEIhGu/AwFRUxLQnQgk8nw3JkzDA0N8fa3v513/ci7+PKXvgxAKpXivvvu453vfCcP3P/AlnwuqVSK/v7+SlR4Odt5jhoZGaFYLHLkyJFt26ePz1axe2ZaPj5bTHt7e6X51G7BE0sbdjtadPH06jWmp3Ok0wqmFeLMmTzz8xPMz+colUrk8nl0zcBxQJJtZNFyhYZiEg7ZRCPuBENRFcKhCKFwmFg0SjyeIBqNEI5EiITDfh5zlbEdp6YFyBNvfoKDBw/t9DB8qoQkScSiMWLRGDSu/BrHcSiWiuSyBdLpHPPzGpn5AnPpHLl5jVxRx9AdDMNGK+WZGMliaw7o4JQcQpkUoS6R3/3dzzE2fp1SKUtjwxne+oM/ylve/HYeeOBe9u/v2XIBkEq5aaiTk5Nbup+1IEnS5h0PfXxqBF+A+PiU8VIWdhPexUhfZy6740CxaDM7mifdN8tEfpIJc5hiUWNuLoNhBHAcgaefPlO2/7RQZPcWClgEghCNhIlEE8RjMeKJOIl4glA4RCQcqenJ8F7ELttH1yqtra0kYrGdHsYSgoEgXV1dfuraFiEIAuFQmHAoTFNTw5LnjKJBbqbA+WcvcvFcPyND08zO5olGY3T3HmamkEHSRcSSiJyIs6/jOIIAZ87cKG9b5Pr1M0Qil6ivj5Oqi5Gsi9DQEKe+Pk4sFqyaa1cymQTcCLlpmpVFHwdn2xywPERR3NHmjD4+1cQXID4+uCkFfX19dHR07JhdqK7rZDIZGhoa1ryq512MzFsUbZumw9TUPBMTaSYn55mZyTE7m2N+PouSKxDI5tEVhVI4AgLIsklAtVACNvV1UZLJMMlkgngiTjwWJxqNbsrVx6f6HD16dKeHcEs++Sd/ysseeYS7XvGmnR5KBUmSiMd2j+PdbsXUTApzRa5euMbF5y+RCKWIRGJ86L/+NzTTQMSho72D3gO93PPiY7zysfsxnSJPf/6zEA5z9w8+zlw6RzqdZ3pqnmy2yHy2hK1DWtfIpCcZENzohJfWpagy0UiE+vo4jU0JGhoSNDYmiUYD63btCofDlQaXmUxmRy2v/QiIz17CFyA+PrgOWIVCYUdrDt7znvfw53/+5ySTSQ4ePMjBgwc5dOgQb3/72zly5AjFYpFQKLTkPd6qt5fPPj9fYHw8zeREholJV3DMzxewLbfHhnsTcBy3WDQomyTrBCINQRI9LTQ0Jrh+fYSxGzc4ceIEJ06c2PbPwWf91HqtjGXZiyxhawNN00in06RSqV0X+axVLN1Cy+loWYPRazf4/N99kf6+awz0D1DSSwC8/OWP8O53v4sff8+P0nmwneP3HCfeECUQW1jUmE+DpAgIkkNPbys9y/bjOA7ZbJ7ZmSwzsxlmZ3NMTc0xnylRLBoUCxbFwjzT0/NcuXIdKAsTRSEWj1JXl6SxMUlDgytOgkEJRQFV5aaGjIIgEIvFyGQyzMzM3CRAtjMK4kVAVutJ4uOzm/AFiI8PUCq5F8edXNn/6Ec/yhve8AauXLlCX18ffX19fO1rX8MwDO69917e+ta30tjYWBEm+/cfJdnazMxckJnJIn0v/AO2aaFI4k1iQ5Qdkskg9fVRWltTNDYmSKXiRA0dcWoaJxSCRjeZe3BgEIBorDYax/ncGtM0GRwapKWlhWjE/5+tFcM0mJyaJJFMoOALkPVimzZaVmd8aJxzpy9w5VwfV68OMtB/jde//g0kkwme/vb36Orq4s1veyNH7jrMsXuP0tReTyAW4Nhr96+6bW9BZbVJtiAIxONR4vEo3T2tS54zDINMJsP0VIaZ2Swz0xmmpzPk8zqGYTM1ZTA1mabvCoCDIEIoFCKZTNDQkKKhoYH6VJJwWEFWnLIoqUfXc4yNTXHo0M7VMtXX19d801Efn7XiCxAfH9zVUK+z9U5RX1/PW9/61pset22HsbEZPvGJzzA7m8c0JQxDxLYDXB/OM5sJk8uKqKKBgIAolAgoJo0NEe45eYDOjhRNjQlikSCqsqw2Y272pv1l5l27yVi0tnL2fVbGsiy3r0qNRRhqHd8Fa+04toOW1ZgZn+P86QsMXBnmRXc/wBe/9AX+8Z/+CYBYOErvgV5e9dpHefT1L6Vzfwf/5qfeTCCmIsobq0/aSHRBURQaGhpoaFhad6LrOun0HLMzs0xOzZGeyzI7l6NYcLvNj4/nuDE6huO4Y43FwiSTdcQSUbRSnLnZGNf6ob1dQFVgoiChBgUSgB3emoaMy6nlOi8fn/XiCxAfH1wBUgt1DbYN+bzJ6Og0IyPT3Lgxw40b0+i6WY5mRCstO0xTIBBSCJZ0gkHIzc5wfWSYkdERxsbHMDWN3/md3+Nj//NPuNrfT1tbK+1trXR2tNLb3cFLX3I/dbZJsKATUQJIuKuHWkkDIFZjRcM+K2M7rvDwC/99qoWe1yllNLScyb9+9Zt871vP0Hf1KuMTEwgIBBSVrv/SzSOPvpyj9xzk+D3H6D7USTAWQFI3fxxuRbqeqqo0NTXT1NTMkXLJlOM4FItFZmZmmJqaYmp6ktnpNIWigWXlmZmdYXKq3IzRFhkZneSb33iapuZGzKBOLBEjZAhkVKdcfyJUhIh389K6lqd2bYRiscjIyAhdXV2+k6DPrscXID4+QGNj47avIHvN/GZmcly/Psn161OMj88wP5/DthdqNsBdVUulwjQ2Jmhvb6C9vZ7m5jqePvs9vv70AL3trbz5Nf8e23YoaAaFks7sXA5bkLCMN/DU099ndHScc+fO85Wv/V8cw+Sd7/4RUqLMU5//PInmZqJd++jsaCEUkAgHFObyBmELwgEFWfJX3moV77it5dXRtrZWmpuadnoYS6ik+ex0u+0dxnOkunT2Mhefv8zVS9fov3KNudlZfv23foOvfelfyGVznLj7BG89+haOnjrCoeO9hFNh5MDunkIIglDpPbRv377K48VikdnZWaZnppicmGRmZhZd13AcKBTn6e+/zLSWQZQDdNXtpzHVTirVTF1dikBAXdTnREAQXOEhCAKSdLMo8W5rCb67tS9ZTNP0BYjPrmd3nz18fKpEJBLZ0u1XmvmVIJ0uMjQ0zsjIONPTs2SzuSU1G6JoE4lItLXV09HRSFtbPS0t9bdMD3NwJ1OiKBANqURDKk11bj3AsZ7X8qNvey227ZAr6hRKOkMjY0SjSa6dvUCu/zjD07OcPnOGS5cjPProK7gxOcfXv3eFT/zR/yCRTNDe2kxXZyvdHe0cPdJLa3MD4aBCWFUQxTt7ArfTeE5oolC7AuQDH/hZZLm26iwURSGZSN5RkSPPkar/4gAXn7+IVYKTJ+/h597/AeYLeYSyI9X+A7288a2P03W8nd/+s48QTARQbtGxvNrY5WNaknfmfxMKhWhvb6e9vb3y2Kc//Sksy2L//k6KxQL5iSkcNAxzmKmpMaamwLZF6uqaaGxso76+hUSiAceRMQx3wckVI+750vt98c+VhImquuLEfZ37HfeteH32Ar4A8bnjsSyLyclJUqnUptOwvGZ+mrYgOObnNW7cGGd09AaTk9Pk84WK2JAkC0Wxqa+P0NpaT2dnM21tzUSjkTW5nFi2eyEqFYu3fa0oCsQjAeKRAC31bnrV8ZTCE0dbMJUA+USSZ8+c5flzl9jf1UNrY5Ijhw8ydH2E7zz9DJ//4hQ4Aooi8T//+I/55J//BYau0d7WTGdHC/s7O9h/oJP2liZCAdkXJ9tEMBCkvb1jR+uXbsev/tqv8opXvIJ3n3rpTg+lQigYWrLqvdewdItSVkPLGsyOz/G/P/0PXL1ylWtXr1HUSwjA0SNHecmDD/Pj7/33NLWlOH7vcRINsSWOVDuBYRoASDV0TEejMTKZNC0tLRw+fJiDM4fI5bKoBZWZqVmmpqbQtBKZzDiZzDhXr7r9SurrU7S1tdHW1kFdXROmKWIY7qKUaTqVxSlBgFJJWBI9cSMnC6ldIDEzI5NKOWVXr+qkdvn47AS18+328dkhSqUSY2NjJBKJdb3PcRZEhic4NM21HJ2dnWN4eISxsQnm5uZwHJBlG0WxiEQsUqkI+/Y109XVQUtLy4bD6dVa9ZZEiIcDBEWTppjEicPtnDjRyyvu+3l0w6KoG6TnSwwMXSedK1KfjNLa0sClS1f41288xezsLCAADr/wi7/I3Mw05144R3tbE13trfT2dHJwfxfNDXWuOAnU1mr4bkZVVVI1no4xn5knk8ns9DCWYFkWhmkQUAO73tJ0NUeqa1f7OXH3SR57zet45rvP0NbWxpvf+kYOnzzE8XuPVRypDryiY6f/hCWYhtvXqJZEdSKRIJNJMzU1xeHDh5FEifr6Brr2dxKQA+X0qBxjY2OMjY0xMjKCrmtMT08zPT3N2bNnkWWFjo4O9u3bR0dHB6FQEHCvJa4ocZaIE113F7Tca42Aadqk0yLj4w7FolO11C4fn53APzR97njWYsFrWUujGprmXhi8Wg1N0xkbm2Bk5DoTExPYdglZtlAUi7o6i4aGOE1NLezb5wqOYDBYlbGL5YlTtRx98rk8sNSCV1UkVEUiEQnS1ZqsPP6iX/1pdMMiXzKYy+TpHxpmeHScg4cO8+RTaaamZzl//gLpdAZPnLzlzW/mJQ89xFf++R9pbkzR3dlOb3cHB/d3k0rGiAQVgqp/WloPxVKRYqFIKpXa6aHsKrLZHNdHhjl29NiuSsNa7kh15UI/dx0+yeUrV/jzP/9zAKKhCPsP9PLq172Sl7/6pRw5cYiX/uCfbcqRajsxyxGQWhIgTU2NDA8PkU6nV3zetQaOEY/HOHz4EI7jkMnMMzo6yvXr15mcnMQ0DQYHBxgcHADcLuudnZ10dXXT0FCPqq4shE3TFSeaJiIIzQQCCqJorym1SxRvFiXLU7t8fHaC2vl2+/jsEJ4FrzcJMc2lUY1SyX3Mth1se6nomJi4wdjYILOzY4iigaKYJJMOoijR1NREd3c3nZ2dRKNbU2MiiJsUIMuuPuu14PXESV0sSG/Hgj/9y0918p//ww+QLxnMzGXo6x9iYHCEtq4ectkSQ0PX+e73nikLHlecHDt2hJ/7+Q/yxS98nkhQpburjf09nezv6qQuESESVG62EfYhl81VUgh91o5XN1Xr0Q89r1NKl9DyFs88+Sxf/8q/LnOkUkj+eJIXv/he6lsTHL37MF0H9xFKBKviSLUTGGa5rqmGzC9SKff8Viynu3rHz2oIgkAymSCZTHD8+DFs22Z6eoaRkesMDAySyaRJp93b2bNnCYXC9Pb20NPTS2Njw5LjUpbdWygkkkwu/Z7bthsx0XVn1dQurxh+tdSulRy7/NQun63GFyA+dzS6DjMzOoVChJER94Rtmq7AWCw2bNspn5ANZmdHuH69n+npUQTBvVCGwxCLxWlpaaGnp5vW1tZtWVVVFTf1xjTNTW+r2ha8QVUmqMrUx0Mc6moBHqg890OPv5iiZjI+Ncvlq4MMDY0gyiEsy+D8hUsMDgxQKml44qSlpZlf+sVf4lr/VebT03R1t3Ggq5Oern0k40FC6p0rTmzHRvBnCuvmds3udoLVHKlujN3g537+5zhz5gyjozc4cfIufvDYmzl26ugSR6p7uWun/4SqYJleClbtpGqGw2EANK20ZMFnrcePKIo0NTXS1NTIvffeS6FQZHh4mIGBASYmJigWC5w/f57z588TDIbo7u7mwIEDS8SIZVmk0xlisWglbVcUIRBwb8tZKbXL+13XKf89S8VJNV27fHxuhX8I+dwRePUai6Maug6W5ZDJuL010mm7IjgCAQgGvRO7QyYzyZUrlxkYGMAuF34LAoTDEXp6ujl48BB1dcltn8yo5auOUIVi72wuB4CsKFveEyUcUAgHFOrj7Rzfv+A0Y9sOL//071MoGYyOT3Kt/zr9wyPMzmYJR0KcOXuWJ598EsMwAQFEh6bGJn703e+mrbWZixfO0t3ZxoHuTro724lFAnveRtixnZq24AWQZQlZqp3JJLDgcb1DmJpJMVOi/+IAF567wPRYmsde+xi/+Iu/xMiNG0scqV73pldz/6P38OgPPrTtjlQ7QUWASLUzRfGcEm3brkRBNkM4HOLIkcMcOXIY0zQZHR1lYGCQwcFBSqUily5d5NKli4RCYQ4fPsThw0dQFJnh4WH279+/prpBz1lrtZd6qV2eIDEMp/zYxlK7PKHip3b5rIXa+Xb7+FQJ2765ONyr11ge1QBobKyrCA1vJcl1JClx+fIVLl26RD6fq2w/FArT3d3FwYOHqK9P7egKquJao2CZm7NlFBzIzs8DkIjHNz2ujSKKAtGgSjSo0pTs4Z4jPZXnbNvhZff8ArmCxuDIOAMD17l2fZTR0UlSyTrOvXCRv/hfn8Iyy435ZJGmpiZe8bJHeMMbH+Ps6e/T3FhHT28n3R0thMv72e1OXbZt1/zf8NP/z/9DQ33D7V+4zbgrvlv/2dmmTTFTojSvU5gr8dlPfZaL568scaTa17GPV73yVfyH//TvUSMyx+45SrIpjhpRq7LAsJswjXINiFI7UxRJklBkBcM0yOdzOHL1BKwsy3R1ddHV1YVpPszw8HX6+vq4ceMGxWKBM2fOcObM87S1tREMBqvWs2ohtevm5/zULp+tpna+3T4+G8A0b45sGMbNYsNxnEqoWlUXohuK4lAslggE1ErK1OTkFM8//zzXr1+HSp64yP79+zl8+DBNTY01k7ahlgVISdc2toFFf0euHAGJbFG9ymZZLE5aUjEePHmw8pxp2RS0e3nPj7yJoeEbXB0aZmBwlOGRcaKJOCMj4/zOxz+BabhCTVFkmptbOHToAP/hJ/49N4YGUCSnYiO8m3qcqKpKlOjtX7iDnD79HHcdP8bhnR7IIlKp1JbUzTi2QymjMT40wQunL3D5/BWuXhnkWl8/iboEv/CLv8Sz33uO+vqGFR2pjosHqj6m3YZRg0XoAMFQCCNrkMvlIbk1+5Blmd7eHnp7ezAMg2vXBujru8Lk5CQ3bowCMDo6yuHDh7jrrruqZmiynJ1I7VJV2EV+ED6bpLa+3T4+t8Awbra8Xak43LYdZNkVGaq6kE610rXMNC0uX75MV1cXmlbi+efPVk7yAPF4gqNHj3Lw4IGa7DzrRUC8C/ZmyOddB6y1FqDXErIkEg8HiIcDtDfGeei+I5XnTMsmX9J55P6/Y3B4hKuDwwwN3WB4ZBzdNDBMm1//f3+fmek5wCEYDNDS3EJ7Rzvv+nfvIBYOMDc7yaED3TQ3pogElZqyEW5oqL3IwnL+9etfx3FsHn3bTo+kuji2g57Xmb4xy/nTF7h0ro99bd2Igshv/OZvAIscqR57JQ+87MX0nmzjz77wiV3jSLUTeDVttdQHBCAcCZHNupbS8aQbKRbYukUKRVHK6VeHmJtzi9UHBgbQtBJnz57lhRfOc+TIYU6evJtweIUwxhZRzdQuL63LT+2686itb7ePDys383P7ayyPari/LxYZ3orNWldRDMMkk8nw9a9/nUwmXX5UoLu7m7vuuoumpsat+jOrglwWIDhugeJmCt+9vObQSvH4XYwsiSQiwYqN8CMPLBTqejbC/99n/oT+oSH6B64zNDTG8I0xpqdmSGfy/PXf/G+++c0nAYdINEJLczOtrS08/tpXc+rkMSYnR+nZ10Z9XWJHbIQtyyqnP/iT2fUwOzdHOj1Hb0/vmt+j53XysyXMosWFs5f40t99mb7+q4yNjwMCQUXhTW96E69/0+v54H/9WQ4e66X7UOeudqTaCTwXrJ3qhL4akXAUmCCTyRBztnehpq4uyUte8iDNzc2YpsnFixfJZue5cOECly5dZv/+/Zw6dYpYbOejoetL7XLFiXfN91O77hx8AeKzo9i2e+JZHtlYrV5jsdDwIhwbPenMzMzyrW99s9xEz02zOnDgAHfffTfx+O6IAnguWOC6WG1IgAgCOE6lH8peEyC3YrGNcE97ilc/dE/luZJuki8ZvOxFh7nY90YGBkcZHB5l5MYEY2MT9A9dZ3Riij/6w08ADolEnOaWVtramrnv5F289jWvpJjPkErGqC/3ONkKp66h4SFkSaazs7Pq297LmKZRdlpbGaNokJ8pcuncZS6cuVRxpBoZGeZHfvRHURSFGzfGuOvkXfzg29/M0VNHljhSHXllz6rb9rk1lRqQGipCB0gk3KhHsVjYkf2rqsqRI24i4/Hjx7h+/Tpnz55lcnKSvr4r9PX1cfz4Me69995KdLzW2OrUrpUcu/zUrtqktr7dPnua2zXzW/xTENwTVCi0IDhUtTrhV03TOH36NBcvXsKt8RA4dOgQ995777aGsauB6C0NOaDr+qbygfMFNwXrThIgt2KxjXBP+/1LnitoBkXNJFc0OHl4H9cGrjM8Osb10QmGBq8zn57nwJG7+I//6afAcahL1dHW2kJrSzO9PV285YnHCakSAUWiLhHalI2wbdsIsp+XsF4cx6nUci13pBodHOdVr3wtf/Znn+T7z55e4kj1mje+ile//pXUtyZ518+9bc87Uu0EtlV7LlgAyWQdQNmFz2U76wGX2/92dnayb98+xsfHeeaZZ5ienub8+fNcvdrP/fffz4ED+2umXnEtVCO1q1hcW2rXYqHip3btDLX17fbZM6y1mZ9tO0jSzfUaW7V4Mzg4yJNPPoVeLtpubm6mqamJF73oRbvqRL0YRVGwNRvD0Nf/5kWd1L0ISDC0NUWNe4kFG+EQXc0vAV4CuMdzyXAjJ/miyZ98/Le4cPkqwyPjjN6Y4MqVfk6feZ6jd53if3z8D7nSf5WmxkaaW1roaG1hX0cLr3vtozTVpwipAtHw7W2EXRcsP/dgrXiOVHMDGdKTOf7gL/+U50+fof9qP0XNdaRqbm7moYdexg+/+x289Z1vuqMdqXYCszzBryUXLKDSUDafy93mlVtDsVji8uXLHDp0iEjE7UsiCAKtra088cQTDA4O8p3vfJdSqci3vvVN+vr6eOSRRyqv3e3cLrXLEyXrTe0SRQFZ9lO7tpva+nb77Eq8L/hiwXGrZn5e+NW7bUedoW3bPP3001y8eBGAZDLJAw88QHt7+5KV0N2GgICqqpS0EsYmmhFquuYZfhEO7Y2L1U4gikJFnDQmoLvlxbzh0RcD7vFf0A0KJYNCyaL+v/w033/ueYavu+Lk+XMv8LV/+Tq2pJLL5Pjbv/tbGpsaaW9pp621mX37Wnj4gRfR07WPSEgiqMpEgyo41LwAeeWrXsXxY0e3fb8VR6rhSV44fZ7LL1yh/8oQ/Vev8vKXv4yHH34p58+eJxgI8uYfvNmRyhcbO0NJKyGy0OeoVohE3PoK3dAxTJ2AWjvjEwSBnp4e9u3bx5kzZ3jhhfOMj4/xuc99jkceeTkdHR07PcQtRRTdxcuVkgDWktq1XJzcLrXLu++ndm0cX4D4rJmVmvmtVq+xvJmf93Mn5kn5fIGvfvUrlVqPw4eP8OCDD1TqJXar+PAQBfdDNY2NC5BS0Y1+qAG15iezu5XFNsIA3S0nePVDJwDPRtggX9Qp6Q6jE1PUJUIMj4wxemOcZ06f5ov/NMn3vn+WH/iBH+S3fus3iccTtLW28sQTj2NbJdpbRjl+5BCRkEwoINeUjfDJkydoamza0n14jlQzY3O8cPoCl85eIaLEuOv4XXzgA+/HxFlwpHrdK7nngbs5cHcXv/vEb/iOVDVGsaQRwT0f1RKq6p4fbdumWCgRDe9MreCtrlmyLPOiF72IgwcP8S//8n+Zm5vjK1/5CidOnNjVkf7N4Kd21Sa+APFZkfU28/PqNRZHNmrhi1coFPnCF75AoZBHkmRe9rKX0du7UBw6MjKCbdu7uoBXFEQcHDRtg71AgFLJdcDyox87w2IbYYCe1jgvPbUfWLARns9plHSbfEnjh9/xgwwOjXJjfII//p9/ztT0JJZt8qd/8kk+/OEPYxkmbe2ttLe10N3eQnfPPu47dYJwUHaduhR5W8XJx//gD3jkkUc5/PBjVdumnteZn87jFB2uXxvlb/7yb5c6UskKD7/0YV7xmkf45V//JTp623xHql2AaZrYluuCFVRrLx00EAhSLBYoFAvuSvkW2vAuxyp/Lmv57iYScZ544gmefPIprl3r59y5c+i6wUMPveSOFCG3YitSu1y3LwHThNZWaGvb/r+r1vEFiM+mm/nVYHsMwC02/+d//icKhTzBYIg3vOENFRcTj1JJQ7pFfv1uQC5bVWpaaf1vLl+IimUBEvQL0GuOxTbCHqfe/2OAayNc1A3mMkXSuTyyHOLNr38t5y5c4sbYBJcuX2Fudg4Q+OAHf47+/n5On36O1rZm9rU109nRxv6efdx15DDxWHDLbIRN08K0Nt6rxigaFGaLXDx7mYtnL3P1wjWu9l1j5PoQjzz6Sh5++CEmJqe468RxfuDtb+LY3Uc4dNf+iiPV/pfenH4yPz+PbTskk4nN/Gk+VaZYKiIAjijUXA0IQDgcplgskMtmt33fngBZq9uhLMu84hWP0NjYyNNPf5fLly+hqgovfvGLt3KYe4q1pnbl85DLwfy8+3uh4KVvCcRivuBbidr7dvtsKVvRzK8WcRyHr371q8zNza0qPsBdbQsEdu+qv+uL7lbsFwrFDW+nVI6ehPwC9F2FqkjcuHGdVF2K7jZ3kn3Xf3w74NoIFzWTmXSWkdEJUo0thAIiU1OTjI1NcO7sC8zPu8W0r3/8ddz7ovv4+7/7exqbGuhsa6ars53eng4O9naTSkQJBeRt6XHiOVJduzTIhecucO3ydR56ycN859vf5v/74hcRcGhva+fAgf285g2v5OWvepjW7mZe886XoUbWvhoyNzeHZVu+AKkxdM1Nyg+qAQRBwLnN67ebSDjM9LTD/A4IkHg8xrFjR9fdIf748WNYlsX3v/8M586dIx5PcPjwoS0a5d7Htt15lHcrFl0xIooC8TjU1QmV9CxJgmRyp0dcm+yS6aTPetnOZn61yJUrfUxOTiJJMo899tiK4gNcASLLu9tGM1ROm8ptwplFK4uXSDhSlTH5bA+O45DNZonHbj6+PRvhuliQA/vchpon97+On3zH6yo9TqZn01zpH6KuoYXJ6VlS9XVcHxnlmWe+Xxa0Ap37OviV//bL/Pmf/TmhUIB9ra10d7exv3sfvV2dpJLhVW2Ebcfm0vQlbNVmzkrzrYtP8bLjL6vULVUcqSYyKJbKP37hKzz5zaeWOFI1NjRx6uQpnvjBN/DQq1/M0VNHquJI5bB7zSf2Mp4bn1orebzLSNbVMTQ8hG3bwPbWEIqiSGCDhfknT57ANA3OnDnDM888Q3d314a3dadhGK7I8ASHpi3UgoiiUO5HJhAMumlcXvuA3TyH2g58AbIH2MlmfrWIYRg888wzgHvSTaXqVnyd4zgYhrHu1aRaIxJ1BYimbyAFq0yh3FhrM31EfLafSl+AdU6CFvc4OdzdWn60m7c8eg8lwyRX1JmYmuXK1UEEWSUcUFFVlat9A3zrye+UV6kFFFXm//3ob/Pd736XmZlJOttb6e5upaW9AS2U5e+/+lm+/v/9M70lh3/9/Df46+8+zVt/7G0EZ8KURkrM9KUZ6htiPpfl1z/8Ea4PjlQcqQ6dOMjxe4/R3NGwyJHqcFU/O1+A1B5eOmgtOUwtJlietFvWxk0/NsrMzCzFYmHDjlanTp1iYGCQTCbNM898n5e+9OEqj3D34zg3Rzdse6ngCIXcjuye4PDmU/7pZH3s7pnXHchGmvmFwwtRjWo186tlrl7tR9c1QqEwJ0+evOVr9+/fTzBYmxe6tRKJutaQtrWBZIXywaBrbn6+34Rwd+GtwnoRhc2y2Ea4KRnhxMF9leceuedDFRvh6zfGudo/wsxchmQqwqg2wvMz5/jndBpGwImCaqioV1XiUy8mKMtIgkBixuT/fvs8gmCCqCN2mYj7bVLxOJ/nf9Pxgx080v4ABxoO0F3XQ10wWZW/ayVs20bZ5dHPvYiu6eA4BGrMActDKRc9FvIbT3ndKIVCnnx+413YRVHk/vtfzFe/+lWuXLnCgw8+sOsX4DaLad4c3Viw4XX7g0iSUDHa8QTHHf6xVQX/I6xh1tPMT5YXBMZWN/OrdcbGxgDo6em+ZbGeIAjE4ztjo1gtBARCQVc0bCYFq1QsQijoC5BdRkWAbIOjlSgKBBSBoewgl63nORt6njPzz3PpyUsQkwj0xkiVYsjFCPJ0BNtSEAUFxxJxBLAEsA0Z3ZEw1RK6YqMHbRzFZFic5OzoKIwbcNYASQfRIBVM0l3XTW+yl+5kN711vfTU9dCd6CYW2Nx3NxKOrLmY12f7qKRg1ai7STAY3LTr4EaxLGvTx2xHRweqGkDXNaanZ2hpaa7S6Gofr5XAYsFhWUujG4EAKIqwJLoRDO79hdudwBcgNcJuaOa3W/D6fbS0tNzydZZlMTk5SV1d3a5OPQqVx14sFTaUVuI4DkWtAKGg3wV9lyFJEq0trVuSy207NtfmrvH8xPM8P/48z088z/nJ85glm4AWJKAHkPUALVo3ju2ZkQoIaNgBDVl00CMljO9p2IqFITtM6SJOXIGoimMrgIRjSThWCMywO0MoI4gCM4LB7NQkp6URkP4FRL0sTkyawo30lMVJV7KL/XX76U720J3sIqTcXkjf7vzgszOUtNquAVFVd2XPtN0UrO214bU3LUAEQSCVqmN8fJyJiYk9LUAsa6nYKGvbcoG422BQUW6Obtypi7fbjT9t3WbW08wPltrd7mQzv92Elxd/u0mZaZqMj08QiUR3tQAJBNwVORzXeni9f4thGpUu6MHA7v0c7kQkSaKhoWHT23EchxvZGxWh8fzE85ydOEuuWCCoBQloAWQtSL3eDpa4SGw42LjzRCNQwgiU0FQNPaBBwOZg6iCXvnyJlAiCA4IOd0XuQu/RGEwPopkWgq2ApYItuz8tBcdWAQHHknEseQVxAhMZg8nJEZ6WroFoVqImgmTSGmmht663Ej3pTfbSVddFV6ILVXJX1k3TRBRFv/FmjVEquZGFWi2QVsu1KZa5/TUgpmlWxanQ+xtMc+PW2LWIN6fyRIdhLDQL9KIbsnxzdMM/BewMvgDZQvZKM7/dRjweJ5udJ53O0NrauurrPKGy2wtRJUlyc9kdyj1P1nGBEgSMcgd1QRTu+Hzg3YZpmmRzOWLR6Lr+d9OFaZ4fd0XGmXKEY6YwS7BUFht6kKjWQMKUsXEQAAEqYsNUdPRACUPV0AIldFXncMNB7m5+CXc3383dLXdztOEoOT3HPR+/BxZlBz6aeAU//yM/j2VbjGXH6E9fYyg9yLW5awykBxiYG2B4fhDTAsFSwVbA8kSKK04cG0DBsRQQIjeJk9G0wY3xazwpXQaxnNIlGYiSxb7YPnqTvSRJsr9+P3d3naIn2U1HvANZ9I//nUYrue5ntVoD4gkj27YrKZDbRUNDQ8V2fTPk8+4XMpVKbXpbO4Vt3xzd8KxwPdERCrkOVYujGzWa2XdH4p9ttwjThCefBEFwkCSQ5YWfXgrVbmjmtxuJlouyh4eHOXr0yKqvWzAQ2r0CxBu7KqtgQLG4ficssyxAfPGx+9B0jZGR6xw4cGDV/9+8Ns/ZibNLohuj82NlsRFENlRULUKHUVcRG1AJimErxoLYCLoRjq7kPu5vfqAiNo43Hl+xJiOn56CRJQKk70ofAJIo0ZHooCPRAV0vX/I+wzIYyY4wMOcKkmvpAQbnBriWvsZIth/HlirREk+gOJYKjrJMnAhLxIkjOgylDYZuXCoLk3+B77kCRZEEuhJddCd76KnrZn/dfroSXfTW9dIaa61aob/PramkYNWoC9bi2hTd0Lf1+lFfv3nBUCyWmJtLA5BMruwQWYt4Tp+e6ND1hdoNSXKFhiTdHN3wy7xqF3/GsUUIAmia60SlKE7lGuiF+mzbzU80jIUoh6L4EY9qcOjQIS5fvsTo6AjT0zM0NNSv+DovArIXUjDUgAIGG+rOa1omggOq4qvg3cbyXgRFo8iFqQsVofH8+PNcnb2GqqsEtCCKHkDVguzTD6wsNmQTPVDCLKdRlYIlmiKN3Ntykrub7+ZUyylONp8kFVrHxKUeGFi4O9A/sOpLPRRJoSfZQ0+yB3qWPlcySwxnhhmcG+Ra+hqD5ejJtbkBJgrDbsrW4siJvVScOLYKprpEnAiigI7N1bTO1ZEXQDpdFiiuOAlKCj11PXQlyrUmdT30JLvpSfbQFGna1YsYtYTjOJRKGiK1W4QuiqIbhbDA0PVt26/jOKTTGSKR8KY+m9OnT2PbFnV1dTXbhHN5o79SaakVriQtWOEujm7UaNaezyr4AmSLEEV46UsFTBN0XUDXXcVuGO6JxPuCFQpeQ0D3QqgobjTE++nd9sAcedtobGygvb2D0dERvvvd7/D6179+RZEhSSJ1dUkkafd/uLF4nFwuW1k9XA+m4eYB1+oF32dlDMvg4vRFvjHyDf5y9C85N32OS9OXEDSJQCmIqgdQtCAd+n4chyV1Gw4OSDaaWsIMlNACGqVAiXg46kY1ypGNu5vvpiW2yWLtZfp/oH9gU24+QTnIofpDHKq/uZNzXs8zlBlyoyZz1xjMlFO75gaZLs6U600UsFUoCxXHVsGRcWwBxw6AuXQWI4gCRSwupnNcFM+A9L2FmhPJIKqEKoJkf3I/XXVd9CZ76anrXZ9Q86FYKuKURbVb61Cbws5rXqtvowCxbZvBwUG6urpIpTZ2rp6bS3PlyhUA7rvvvpoRzoaxNLqxvNGfoixt9Of99KMbuxtfgGwRggCRFZpKux3KFwTJ4t+9mhC3bmRpp3JZXlmY+FkzK3P//ffzD/8wyuTkJE899W1e+tKHbzrZBgIBuru7d2aAVcJzYIlEwuTIbigFyygXIiqqb/1Rq2zckapcJC46bhpVoISuupGNQEDhrua7lgiO7kR39Scly7JGdN1gcGiQ/b37q7sfIKJGONZ4jGONx256bl6br0RLBuYGODN0hkljiuvZYdLa/EIxfCWtq+zU5cg4tohjB4Gl9VWCKJAVTF6YTfOC9D0Qn6pETRAN6gIJulLd9CZ66KnrpadsJdyd7CYeuLl7/Z1OodzjIhgK1rRFslC2vdb17SviNs3NpcoWCkX+8R//EcexaWhoYN++fbd/0xawvNHfSla4rhOVsERs+DWxew9/+rrNeM0BVwoVmubKwsTr/eFGUxxyOZZETVYSJndCw8FbUVeX5OUvfznf/OY36Ou7QjQa5Z57Ti15jWVZGIZBIBComZWgjeIVRqbTc+t7oyBglCMgflO22mAlR6pzE+fIFvPrdqTSFR0tWIKAzdHGY5xsPsmplru5u+kUB+sPbE/RdQRQgEWmQVf7rm6JALkV8UCck80nOdl80o1C32+XG44JzJXmyrUm1yqpXQPpQQbnBsgZRYRKEbzn1LXcRlgC42ZxMisYzE1PcUYaBelfyzbCBogGDaF610a4rpfuxEKPk65EFxF1hdWrO4BcuTg6Ggrv8EhujaIoCAgbijhvFM8sZCNF6Lqu8+Uvf5lSqUgoFObVr37Ntl3zbtfoT5JAVRescD3B4S+u7n38f3ENIcvuLbzs3GvbiwXJ0nQuz1HLba7jlF/vRk9WS+eq4YWlqnLgwH40TePpp7/Lc8+dJpvN8vDDD1VW1vL5Av39/Rw/fmxXpx8JgkCw3IywUFh/d97Khc2PgOwIM4WZSmRjNUeqiFZP3GzesCPVkYYjBOUdtFhOADMLdy9dvszrXve6HRuOIAhLVthToRSpUIr72u5b8jrHcZjMT7ruXOlBBmavcS19rZLmVTLNDdoIC0xlDKanbvCMOLQkaiJIJs3hZnrreirRkt6kaynclegiIO/dRPd8Lg9AuGwkUqt4Cz7aBiLOG8VrfKiu8zw9N5fmX/7lX5ifz6AoKq9//esJh7em4exCBocrOjTNnadI0tJGf7IsLKnd8Bv93Zn4AmQXIIoLX9LFOA4YxmrpXK4QMQy3GH5xOpfbfOdmYbIXi+CPHz+GaZo8++z3uXq1j+npKV772tcRjUZuKuDdzXgXlGKxsO73WoYJOH4R+jYwr81zbuLckiLxkfkbm3Kk6kx08OKW+yupVHc13bXpLuFVJ8YSAdJXzkPfKQzD4PrIdVpaWgjfYrVdEASao800R5t5sOPBJc/Zjs1YdsytNUmXoyZzgwymBxjMrGAjXEnrUnFsByiLk2VOXYIIY2mD8YlBvi31LSmGFyWL9mh7WZD00JvsoafOve2L79v1NsL5vCtAostX4WoMTwSUtrEbuiAIRCKRdaWm9fdf48knn8SyTEKhMK95zWtIJKqX+mdZS2s3ljf686xwl0c3/EZ/PuALkF2NICyIh+VY1upRkzutCP7uu09SV5fk61//V9LpNH//93/Pgw8+WGngtpsFiDf2SHnF0LIsNE1bVxMvwy9C3xK2wpGqMdLAPV4aVcspOgP7KMwUuOv4XbV9HC+b8/T17awAsWyLfD6PZVkb3oYoiLTH22mPt/Oyrpctec60TUbmR9yoydw1rs1dYyg9RP9cPyO5fmxrozbCcD2tc/1GH9+QzlfSuZB0ZAk6452uIEm60ZOuZDf7k720xdt2hY1wrixAQl4BZY0e04Fyw9btLEJPpepIpdZmalAqlXj66e/R338VgObmZh599JWbjnwsj254VriLG/25DlV+oz+f2+MLkD2KJC3Y0y1mvUXw3mO7vQi+s7OTt7zlLXz1q19lfj7Dk09+i/r6ehob94aFpiqrKLKCYRrMz2dobGxa2xsFoVKELvvLUhvGsAyuzF4pN/dzU6mq7Uh1svkkLdGWJcfr7OwsBdYf9dp2lgVk+vquYprmjvWe8aKfW2XBLYsy3cluupPdPNr9iiXPaabG8HzZRnjuGgOZAQbnBumf62c8X7YRXpbW5VgKOG7kxE3vUkGILrERNrC5lta5NnoBpDNLusMHZInuZDddiW72l2tNupNur5NashEueBGQSLhmxQdAuByh2c66Odu2b3u8Oo7DxYuX+P73v1/pcn706FEeeOCBdR/r3iLl4ujGrRr9edENfx3LZ63skumjT7WodhG82+dkdxTBJxJxfuAH3sLzzz/P2bPnmJmZYWZmBtM0efGLX1y2fdydODjE4nFmZ2eYn8+uXYDgNtMCUBT/dLAWbudIpRoqihbcFkcq9zso1MwEclWWRUAMw2RoeGjbC9E9tlqA3IqAHOBg6iAHUwdveq5gFBhKD7tRk3Q5apLuZ2B2kKni8Co2wko5crLIRnhZj5MSFpfnilyWngfpmSU2whE5SHed29OkN9lLV103veUISiqU2rZjy3GcShF6OBQGffvSm9aL54K1nZ3QL168RCpVR2tr64rPj49P8L3vPc309DQA0WiMl770Ydra2ta0/cWN/jRtqRXu8kZ/i+1w75SaUp/q4884fCrcCUXwkiRx7733cujQYb797W8zMnKdq1f76O/v5+DBg5w6dYpodHc60KRSKWZnZ8iusxmhaVrgNyJckVp3pHIcp2LFXNMEgWWHV9+Vvp0XIDWWlhRWwhxtPMLRxiM3PTevzTOUGarYCA+mB+lP9zM0N8RsKb2oGL4sUrxi+IqN8Mo9TnKCyfm5ec5Lz4D47SVpXQk1RlfKTePqTfbSlVxoxJioso2wpmvYlvt/CYcjNS1AvNS9Ymn9ph8bwXEcdF2v9B9Z/PiNGzd49tlnK8JDlhXuvvtuTpy4a1WB7VnhLo5u3KrR3+LoRq2vdfjsHnwB4nNbtqIIfrkw8aIo23Vyi0Yj3H///QSDQSYnJ5mfz3DlymWuXLnC/v37OXXqVFWL9baKxZPPWMytA5menlrXNixz4/aOe42NOFJV2AFHKi8CsiuIA4sOzUtXLvPYY4/tyFCCgSBtrW07lgK2EeKBOCeaTnCi6cRNz80W5xhMDyypNRnIDDI4O0DWKNxsI+x1h7+NjXBaMMnMzHBWGgfpG0tshOuDdXTXuWlcXYlueut6uL/9fpqjzRv6+zwHrEAwgCyXJ841emx73zlnUX3OVuLVmnh1eo7jMDQ0xOnTp0mn096oOHjwIPfdd99NtR6LG/150Y3FVriLG/15YsNv9Oez1eyes69PzbGZInjLclO78vmdK4IXRZFYLMYDD9zP1NQUzz77LDMzM/T3X6W/v5+2tjaOHj3Cvn37diRVY73E4wkA0unM2t+0uA/IHSZAVnOkCugBAiWvSLy2Hanq6uqIxWvM8Wo1lheiX965QnRVVamvr7/9C3cJqVAdqVAd97beu+Rxx3GYLkwv1JrMlqMmaddGuGjprlPXomL4Snd4hLI4Ca1oIzwtGMxMj/OseL0iSv5/r/vvvOPEWxHF9QuHXK7cAyRS2xa8QMWJytmmFCyv4aHjOJw79wKXL19mft49zwuCyIEDB7jnnnuIRiMrRjeWN/oLBPxGfz47jy9AfLaE3VAE74kKx3Ho6Oigo6ODsbFxzp49y+joCDdujHLjxiiBQJBDhw5y9Oixmk3PchyHZMIVIMVSYV0r416HXWkXrQavl5JZch2pFqVS9c30r9uRylI1t0h8BUequ5tPkgqlVhvCliDL8u5Zxb+pEL1vZ8YBlLQShUKRumRy90SQNoAgCDRGGmmMNPJAxwNLnrMdm/HseKXW5NrcNfrnrjGUGWQwPYhhOat3h1/c42RRvcnVcxYfe/ZLXB++RmdHG709HRza30VDKkkkqBBUVz9W8wXXTCEcWSp2ahFPYG1HBMRxHEZGRhgYuMZzzz2Hd1aSJJnDhw9x/PgpBCFIsQjp9M1WuIsb/S2ObuyW04bP3sU/BH22lVsVwS9P5zKMtRXBLxYmiwXK7eYVngCx7YWLSGtrC62tLaTTGc6fP09/fz+aVuLcuXOcO3eOtrZ2Dhw4QGfnvpqzrY3G3BmeYzsUCgUikTWKpbIr016ZiJm2yZWZK0tSqS5NX1yTI5V9C0eqk80nlxSJL3ek2gnS6QylUpGWlpYdHceaWCZArl7dOSesXDbH+MQ4qbq12ZruRURBpC3eRlu8jZd2vnTJc6ZtMjo/6naDTw/QP9dfESnD2WvYlnRTWpdjqRzuOMS3/u+3+OpXvko2m8P9djnE4zH+7TvewdHjR3n++8/Q3tbE/t597O/upD4ZIxSQyZcjILFo7Uf0KotX9tYJkHQ6w9WrfVy92k+h4KanOQ4kEo10dR2hubkL21YZH1+90d/iYvE9cnr32UP4AsSnZvDqQJbPm9dSBO/1NHFfv7YieFmWaGioR5JuTq9KJhM8/PBDPPjgAwwMDHLhwnmmp6crURFBEGlpaeHgwYM7KkYWX1QkSUJVA+i6RjabXbMAsZ3aLMhdLzOFGX78Cz/OCxMvbMqRSlXlBUeqFldw9CR7dlxsrESpVCSTmd8dAiSx9K5hmAwODXJg/4FtH4rt2Lv+eN9KZFGmK9lFV7ILeGTJc7qlM5wZZjA9yMDcAP3pawzNDTJbmuXtr7iHNz90gvzP/Qcmp9NcHRiif+A610fG6NjXwejIDT77fz5HoVDEEyd1qToeePH93H3qBNmMxczpq6SnS+yPh0nIIUKGharUVjGCJLrjqXbUOJOZp7//KsPDw8zOzmLbAoYhYVlhWlu76ew8RF1dClEUsO2ljf4WRzfusGxan12KL0B8ap7NFMHr+q2K4FWi0X2YprsPWb55lUiSJA4c2M+BA/srF4f+/mtks/OMjd1gbOzGEjGyb1/HupoAVpt4PM709BSZdHptk1JBqKQR7Nb5mKVbFDMlhi+MMvbcNPXaxh2pTjbdzaH6g7umo/R2FcFWhQAQAhYZB/Vd6dsRAeLYDqJfYbshVEnlQOoAB1Ir/9+CqkxQlamPhzja2wq4HeRt26FkmPy7H3gFE1OzXLk6yMDQKMOj48TjKeYzWUqaw99//u/I3pgk5TioDfXEDu3n//np9zJ+4zqmXuRAbxcHejqJRYJEQiryCgtIW41Y3ufiRQnPGWs9ncodxyGdzjAwcI1r1waYnc1iGBK6LmOaMVKpZg4c2EcgoBKLRWhoSFUa/S2ObuyCEkUfn5vYHVdZH58VuFURvJuu5aVxrVwEbxgOMzNFJEmpXDRuVQSfSMS59957ueeee5idnePq1T4GBgYpFPIVMQIC9fUp9u3bR1dXN6lU3basnDvlvOCGhgamp6fIltMZ1oJdfm8trvAvxzZtipkSo9duUJo3UFD5g9//Iy5dvEihVER4qQKN7Igjlc8aqAdGFu5evnKZxx9/fNuHYVkW4i443vcSoigQDiiEAwpNyQgnDu6rPKdpOp/+m79FMwX+6Ld/jdH+ASYu9jEwl2XEdrAshz/+07/k6uXL5Y0JNDY30dHWwTvf+W9pba5nbGSY/fs76dnXQTQcIBpSN1QMvxaE8ozfWNQJ/X/+z//Jf//v/51PfOITPPHEE6u+1zAMbty4wfXrNxgYGGNurohhSBiGjCDESKVSHD7cRVfXPkKhIKoKAwMXSaVkenoEv9Gfz57BFyA+exKvp8lyFhfBl0oOp0/309LSSSiUXEcRvEAolOK++x7g/vvvZ2Zmlv7+q4yMjJLJpCsNDs+cOYOqBmhra6Onp5v29vYtT9VKxF2robm52TW/xymHh2rN6cuxHbSsRjGj8+1//Q6Xz17h6pVBrvX3k57P0Nbaxq/96oeoSyZ541se5/CJQ3xbfoq/Gf7MjjhS7QReHdSuYZkAubJDTliKolS6WfvsPPl8jqAiEosoPHjPITjQgvDiwwjxJFZrK7mizj98+g+5NjxCX98g14ZHGL4+zvjEJIWCxv/+P1/gH/7P37sbUyTamltpa2/jVY8+wiMve4jrw9fY195MZ3srkZBKOKBsSpx450rPwANgenqadDrNO97xDt71rnfx0Y/+NrFYFMdxmJ/P0t8/xNWro4yPZ9A0AdOUEAQHUQySStXR29tFd3cXyWRgSXQDLGZnizQ1Nfniw2dP4QsQnzuKxUXw0ahAY6NJe7tJQ8Pq6VyWdasieAFVraerq56DB0HTcoyPD3PjxiCTk5Pousbg4ACDgwOAQDKZoLm5hX37Omhpadm0IBFY2gU7XnbCmp2dW9P7XfHhfTY7N5N1bAc9rzM7nub8cxe5ePYy/ZcGOHrsGHXJBL/zu79HJBRmf+9+XvGqRzh04gCnXnSClq5mPvyaX0Is9w04MN3Dq3Ov3BFHqp0gGo3WnBnCLWlYevfq1as7MozGxsYd2a/PyqQzaQDqkjebAoiiQDwSIB4J0FJ/lIfuOVp5zrRs8kWdN73mfn74hx6n/9qwK06GbzA6Ns7I6Bjf+d4ZPvyrvwY4SAGV1pZW2tpauev4Ed7+1h8gm50lEQ3T1tJANBQgqMq3FScr9QH5y7/8q8rv//RP/8z0dJ43vvFtlEoOmYyO47iF4oIgEQwGOHCgna6uNjo7m4jHlVUb/eVybs6iL5h99hq+APG5Y3EbMQmVrsirFcG76Vo3F8HrunsBWloEHyMWO8ahQ8c4fNgkk5liYuI609NjFAppZmczpNNpLl++BEAikaS9vY329naam5s3PZmMlyMgmlZak8PQ4gqC7YyA6Hmd+ekcl8/10VzXwunvPc9nP/NZRstpbKok093bQywe4WWvfIhTL7uLtu4WQokgkrp6jvXhhkMcbji0bX/HTuP9v3cNy1pv7JQTlm3ble+/z84zn5kHIBZbFqG8zf9HlkQS0SCJaJC2xpO84sGTled0w6KoGeRLBncd+gRX+gcZGBxh+PoYN8bH+e7T3+dVr3od73r3f8DWTdRwiNaWVjra2+jp6uBtP/QDxCNBRMeiuamOUEAhHHSruxcs3N1rwMTELL29J3njG3+MpqZOIIAgwMSEXu4sLlJfn6Snp5WDB/fR0pIgFBLWZIVbKBQQBIHg8iJIH59dji9AfO5oJEmqCJDVX+Pe1l8EL1Jf304q1YbjQC6XZ2JikqmpcdLpSXQ9Tz5fYHLyCufOXUSSHKLRGI2NjbS2ttLc3EwymVjTJMmrAQmHw8iyjGmazM7O0NS0eldiy7Iwy00IYetcsEzNpJTRuDEwxne+8T2uXLhKf981rg8PYwHvftc7aW/r4NhdR3nTD72Bo6eOcPiuA0Tqw8gB9xTVir9ivRIlrYRlWUTCtdmf5iaWBaUMw2RgcICDBw5u6zAGBgdQFZV9+/bd/sU+W0464zbVSySTVdumqkioiuSKk4ZTvPKhU5XnSrpJseSKk8/+r09w7sJlhoZHGRoZY3R0jMtX+jhx6j4++9nPcvqZ7xOOx2hrbaOttYV97a0cOHSQsekQeh4+9rEvUCzqvPKV7yhHOAAc8vk05849gyCUyOWm+KM/+l3uuuv4uv+OWCxGZ2enL5Z99hy+APG5o9nMyut6i+AjkRipVIwjR3qx7cWCZJrJySlyuRwzMzajo2OcOzeKJNmEQhItLSmamhpobGykqamZUCi4aAxLL0qCIJBIJJmZmWZiYmJVAfLMM8/w7nf/CG994k28qKFhxW1tBM+R6tqlQS48d4HLL/QzNjrOu37kR/iLP/8LXjh/jrbWNvYf6OWVj7+CYycPc+Le44Tqgrzpva/d9P7vNKanpimWits+gd8wYahvqmdmcqbyUN+Vvm0fv2VZiIHaqnm6k5kvCxCvmSpbbO7mOXXVxUN0NJ3gFQ+eqDxX0k3yRZ2iZnK4p5lvf+c0ozcy5IoCihxD11XOnStgSmGSzQo6OqJoUSjMMjBwkeef/y4DAxcxzQW7N0mSuPfee/joRz/K+973vnVFm0OhEKHlHX19fPYAvgDxuaM5duzYlmx3tSJ4214cNYnS0RFF13vRdVeQTE/PMD4+wezsHOl0hmzWZmIijyhmkeV+JMkiGlVpaIjT0pKiobmOvJRHkReM3+vr65mZmWZ6anrFsX3mr/+an3n/+7Eti6eeeooXvfnNG2pEuNiRanJ0hn0tnXzsdz7OmTNnyBfdrsbNDU0cOLSfeCrKf/2tX0CJSNQ1J1AjKsIWOdTcaey2ldH9vb1LBMjlviu8ntdv6xgce312qT5bh2VZ5PLlJoTxnTOJsG2bubk5xsdnGR2dZWpqnunpAqIRpjMVxnFsLMfBsMEUbQpoROMGVnaOL3/5H3j22WdW3bZlWViWxc/8zM/wuc99jr/6q7+io6PjtmNyHIfx8XFSqdSO2rv7+GwFvgDx8dlGRPFWneAj6HoEXe8su3TZTE6mmZqaZXx8gpmZWfL5AjMzMD09z6VL81jOVeaZQZZtDjb309SYRFZEN+Urn79pH5Zl8Tu/+7vYZc/64eHhRWNbfVXOc6TS5g2efvIZXnj2/BJHqoCk8Eef+B80NzXzhjc/xuEThzh+7zFa9jUSiAV8sbFF7Ko+IGUOHDrA9767MFm7cunyto/Bsi3/mKwR5rNZcNymfuHQ9hRaG4bB7NwME+PTjI3NMTOdZ3o2j6lL5WJxB1EsR7kDAi3NdTS3JGhvT9HR0cDk3Aj/8LV/oCnVxHt/7j/zxje+ite85jXMz8/fdt//+q//ykMPPcTQ0NBtFw9KpRJjY2PEYjFfgPjsOXwB4nNHMzIygmmadHd37/RQViiCF+nqSmFZKQzjALoO2azGxMQcY2MzTE9nmJ6dZX42TUlzGB3JM3I9j+MIQJLZGYO//MuvEosFCYUk/vrTf8Hw9atlRy6X+x94oPJ7xdml7Eg1N5HhhdMXKo5UdYk6Xv2aV/Nff/7DhIMhDuw/UHGkOnnvcdp6WvnZV7+34kjlsz3stghIz/6eJfd3wgnLsf1O6LVCpuKAlbz5WN7ksW2aJun0HHNzaebn55maSjMxMU82a2AYMrYlles2HARBQg1IJBJRGhtjtLenaG9P0dKSRF52TrsxZZaH545vfn7+luJDkiQsy+Khhx7iU5/6FJOTk2v63hYKbiTZT8Hy2Yv4AsTnjsa2bYrF4u1fuIMsLoKPxwO0t7cALTgOFEoGF25cZXx8FiUfYWJijqnJDPPzORxHZHYmz8x0HseBU6fewN13wxNvtJiavsH09A3iQYliSYasxZNf+C7JcIrx65N84hOfYPTGUkeqo8ePsP9oF3/zxb+koS11W0cqn61HkiRke3edxg8cWNpB++rVqxiGgaIoq7yj+hw8eLDm+t7cqVQcsG5Kv1q7+NB1nfn5DOl0hkwmw/T0FHNz8+RyRqXJn2nI5eiGgCCoqKpCsilOY2OC9rZ6WtuSNDRECQZvv1+v/4ckuue/H/mRH7npNZ4ZSDAY5I1vfCNve9vbeMMb3kAkEqGnp+em169EsVhEVVU/XdBnT7K7rlw+PlVGURSMRU5QuwmvCD6eEAmG4uxP7a8893/+z+eZmspQKto89e1n6OjoJRFvIBCIAiItzR00N3Ug2Bbp8TmKIzGupaeQhElisQAPPPx6YkmZ3iPt3HXvQZo6UijB7Zsg+qyNtra2nR7Cuuk92LvkvmlaDAwOcOjg9tkn76reKXscrwdIIpFceHCFzELTNMlm55mfz5LOzDE3M0c2lyOfy6EbOpYlousSpilj6DKWFUAQAkiySDwWI1WfpK4uQWNjjObmOHV1QYJBd3FnvXjXDFESKRaLjI2NAa7o2L9/Px/84Ad56qmneOyxx3j88ceJLPd2XyPFYnFL+n9cvHiRz372szQ3N/Mf/+N/rPr2fXzWgi9AfO5oFEXBNM1KU8HdyvJagKamFJnMDFNTo3z5y3+x6BmRhoZWmpo6aGrq4IH7XkI06kBUxEmCEBDQVYNgYwLdEbg4luHil76PKEMsohJPBkklIqRSMerqIiQSUaLRiL9C57NmEokETc1NTE5MVh7ru9K3bQLEMAxu3LhBU3MToaCf2rLTeBGQRDxOSStRyBfIj41RHLtB2naYVhRyuRyaVqq8x7VA98SGgmEEkWSFumSSeDxGLBalvr6OVH2MRCJQ6SoeCGw6qwtYECCyJDM35zZ9DYVCvPnNb+b9738/999/Pz/2Yz+26f1Eo9Gq136Ypsk73/lOTp8+DUBraytvectbqroPH5+14AsQnzsaL+3DMIw9syp648YNvvOd79DQ0EBLS8uyZ22mp0eZnh7lwoWnefbpL/NH//kDNMZMXvajbyGdLjA9nWVmZp5MVmM+U2Q+m8exIZfTyGY1Rq9ncBwBxwEEkGWLYEAiFlOJx0Ok6iLUpaIk4nFC4RDRSNRPd9kiRkZGsG2bzs7OnR7Kujh08OASAXKl7wpv4A3bsm/TMpnPzlPfUH/7F/tUFcMwyOXz5LJZ8oUCs7MzldqJb37rWzjlnkxyoUCoWEQLhykm4liWgGEoOE6AUKiOgBqjri5MIhEnEY8RT8QIBlUCKgRDDsEghEIrOxFWA693lKqqtLW1cf78eXp7e6veLLC1tbWq2wP4zd/8TU6fPs1HPvIRPvnJT/Ke97yHl7/85aRSqdu/2cenivgCxOeOJhKJcODAgW3vxFwtVorafP/73+fjH/84H/rQh5AkCUEQVnVL8nKZARKJMPX1cfbvXypaDMNmLp1ndibL9EyWmeksubxBNlsim8tjWyLFokOhoDE+ruM4rqe/JNtIoo0kW4SCErFYgGg0QKouTigcJhwOEQlHCIVDhENhX6RsAMuysJ1bN9KsRQ4eOsiTTz5VuX/l8pVt27dVdoDzo3bVxTAMCoUixWKBXD5HsVgkn8uTzWYpFApu00zTWvX9FfGhKMTjjQRUgUiiGamlh3AkRjzuOkFJkoAogiwLhIILgiMYdKoS3VgrgiBUisO3ws5d13VM0yQUClUtOv/CCy/w4Q9/mB/6oR/iF3/xF3nd617Hww8/zPve9z4+/elPV2UfPj5rZXfOunx8qoQsy8Tj8Z0eRlV505vexEte8hK+8MUvgAOnTp3iueeeY9++fczNzZHL5Sqv9VIJBMedmK0kxBRFpKkxRlPj0iJRxwFdd5jPaqTn8szNFZhL58lkihQKGtlsnkIxj1mSKBUF5uYsHKeAIOaRJAtZspEly/1dcQgGJWLRGKFwmFAwSCgUIhwJEw6FCYZChEJBAmpgV6fK+bgcOXxkyf2+vr5t27dtuRNdr4DY59ZYlkWxVKRULFEsFikUihQKeUpaiWKxRD6Xo1As3FJcLEaS3e95JBpF1zQmJqaJRhs5eff9SFIU05JhPouczyIkE4jNjYiiUIlueOlUirJzFtS6obu/bOGpaGZmhsnJSU6ePFmV7VmWxY/92I/R0dHBn/7pnwJw33338du//du8733v4+1vfztvetObqrIvH5+14AsQnzuesbExotEosdjONcHaLM6yqs3GxkZamlsYHx/nz/7sz1BVlXg8zgsvvMDb3/525ufnK5ER27ERWVgZXiuCAIGAQGMgSGNDEFhIaXE7wYOmQyZTZH6+RCZTJJstUipp5PMFstkcxVKJfNHAsQEBJElHFktIsuWKk3IUpRIcESAQCKAqKqFQiEAwQDgUJhyJEAmHCYaCBNQggaDqi5Ua5uDBpZ3P+/v7t80JyyqvtN/JERDLsihpJTRNRyuVKJaK5PN5CvkCxVKJUrFIsVTEMEzMdZh0CKJIMBggEo4QjUWJRqIEAkGi0UjlO+o4KpouUCrCU99+jukZnVR9F6JU555TVJBDAiHJIdhoE9znRjdqKUDqOSd6YnYryOVyRCKRqp3DJEnimWdubpb43ve+l/e+971V2YePz3rwBYjPHc/MzAyO4+xqAbISiUSC8fFxRkdHefTRRwF4+ctfzujoKGfPneXr//J1/uWrX8W0bGTWL0BuhdcJPhyGumQICAF15U7woOsCugGGDiXNIZvVyOeLbtpGvkguVyBfLKCVNPIFHcMqIaAjixYF2UaWCkhSDkm6xSqoAJIkE1BVwuEwgWAQVVVc8RIOEwoFCQaClccDagBZln3Rsg0cXFZwbpoWAwMDHDq09YXowWCApqamPZPyZ9s2uqGjazq6rlMqC4pSqUSxUMQwDXTdoFQsUigWMAxj/RNnwa2XCwaCFeHvRjEi5TTKMJFwGEVRlnx/bBuKJdA0gWJBYC7tdqEXRRBFgUwmg6I4dLQnqU/hplQFHdS8iZAxIGnD9vQmXBdetGerUncdxyGfz69Qw+fjs3fwBYjPHc+utuJFWHXC3NrayuXLl5mYmFjyuCiKnLr7FKfuPsX7f/qn+fzv/A5OsYS1hat5C/v2OsEvFw4BDCOArifRDQFdB6P807LAth0sy6ZYLFEqaRRLGvlcAV0vYRh5LLsIjo5pFjCMPAImAmCZJgXTrDT0ui1l0aIoMqqioqoqoXCoIk7UgEogECAYCKKqKoqqIsuS+7usbPuqelNz07bur1okkzc7YV25cmVbBEgoGKop9yvHcTBNE8M0MHQTw9AxDKMSodA1DU3TsCwLTdMoFovouo5uuDUCG16FF0CWFcKhEMFQEEmSCXtpj+EwkXCEQDC4rtRHXYeSJlAqQankLjKIgis2RBFUBSRJIBgAWdZRlDEaGyxOnIgSiSw6J+S9MdbmYoBpubVzirw1EbtCoYBt23tuUczHZzG+APG541EUBV3Xd3oYVcdbPSsUCpRKpVUdWiRJwgQsu3oRkI1Q6QRfSSdzf1qWO7HRDRFdD2PoEYxyipfjONi2W4/i3tz7lm3j2CVsW8dxNCyriGWXMPU8mu5GVrTyxE43DCzLxLEdcFzRYpkmpWJp9cGugiAKiKLkipJymphYNgJYLGoURUENqMiyjCzJyLKMJEvIsoIsSUiyhCIryLJ8y5X6WppIr5fDhw4tteK9uj11IIViAcuyiEXXP7lzHAfLsjAtE9M0sUwb0zQwLRPLtDAM93fTsNANDUM30HUdTdexyoYPpmm6IsLQXROBKgl/URJRFAVFVggGg6iBAMFAgEgkQiAYIBR0IxfVSlG0bShpbnSjVBQo6WBb7iKDIApIIoSCAooCoaBDMATBgFNZfJiYnCGguo36NtonY6fwBIisbM0UymtguBU9QHx8agVfgPjc8SiKQqm0/slmrRMOhwmFQhSLRcbHx+nu7l7xdd4E117kiFVLSJJrqRkKLRUmbi8AT5wIGBWRArYtYtsRbNuVM47t4DhgO+72VMUtYlVV96ciOwiCiaZrGIaJrmluOotWwjBMDF0nX8ijaTqGrldWoG3bXrIK7dgOlu0KGK2kkc1mN/8BCO7/yBM2iqygKG60xTAMRFFEVVVESUIUBYKBYCUSI4piRcTIsoIki+VtiQgIld8rj4lC5XFBFBEF0e0cLbrb8iasi39Wfl8UjfN+miscU6ZpYhgGvft7+da3nqw8fuHCBUpaCcdxKq5t3u+Vmw22Y+PYNrZtV2qYHNtZuF9+znbcn5ZlYVk2tmVhWRbpTBrTMInH45imiabr5fe4YsCyLERRrEQcTMt032/bFaemLaEcfZNlCUl0o2pqQEVRVIKBAOFIGEVRK+mCqqqiqgHUgJtWuNXRN8NYGt3Q9IXohiCAIoOoChVHqmDAIRRyVm30Nz09A0B9Q8MKz+5cgflacGx3fLK0NVOoRCJBIpHY1DYmJiYqi1D/9E//xOte97pVX/ve976XP/zDP+QlL3kJTz31lJ+G6rMt+ALE544nFovtiYLUlZopNjY2Mjw8zNDQ0MoCRBAqbkC7zc7V6wTvtm9ZKk68IvhKOpcuohvu4+4qNhimQKHgpne5PU0kVCWAqjgoKoQjuL8r3LYA1rZtDMNw02gMN43GNNyJtqYvrIR7wsUwTARBwLJcoWIYBpZtYZpWeSJtL/mTbMvGtmxMw6DE7hHLWetmAfa5z3+OmBQjO7/0udOnn+Pv/8/fb9fQGB8f39T73WiXK9wkSUKWZBRFIRAIIJbPJ0uiXuqCeFAUV0TKsoKiypVoV61M/BxnWXRDcyORXnRDFCAYAEURCAUdAkE3yhEIrN0Kd2Z6GoCGXdiPRZTcE0IgWN0mgeCen6rRl6q5uZne3l6uXbvG008/vaoAef755/nEJz6BKIr8wR/8Qc0cgz57H1+A+NzxJJNJksnkTg9jQ9zuYtHZ2cnw8HClW+9KeBfTrXR02W4qRfDLhMlKRfALUROnPPESKGqUV9UFHED2oibqQtREVRYanYmiSCAQqFrXYm8l3zCNSqqPZZmVVB+rvJo/OTmJYRokk3VYlhuJcYWN63JkWZb7+vIKv3e8WKblRm4WRRLAPZ68/dq2A3jRByq/V2txurm5ecn9qclJTNNcWthbPrzdcbsr7UI5KiOKArLkRnds2y4/JlYiNaqqIopixSFOktwJvmHoiIJIKpWqRP8kSUKSZSRpQUxIkrRwk93IxOKUub1SxA6uMC+WBDRtIbohsBDdkCRQVYFAwItuuBFJWd74wTA7OwtAfeoWAqRGJ8NexLzajQfBTZm9fPkyhw8f3nRq2sMPP1wRIKvxvve9D8uy+Mmf/Enuu+++Te3Px2c9+ALE547HcRwKhQKBQGDXNiRcjfb2dgBm52bRdX3FVTUvAlJNF6xaZeUiePf3xelcbhG8uKQI3rRALwjk8+5926FSWOtFTTxhoiibmzsJglCZ/HIbTWPZFr09vRvf2SZYnCrl/Vz8+2xhlo/82UeWvOctb3oL9ZF65ufn+R//4xOLtgX3P/AAhw8d2tJV2P5r/aiKyr59+7ZsH7WM47j22G50wxXchgnSouhGQF3W6C/gVLXRn67rlQ7o9fW7LwJSyLumFlshQHK5HKIoVqX+46GHHuKv/uqvVhUgn/rUp/jWt75FXV0dH/nIR1Z8jY/PVrG3Zls+PhvAsiwuX75Md3c3qVRqp4dTVSKRCOFwmEKhwPj4OJ2dnTe9xouAWDVaA7Jd3L4I3kvnEtyaE2Oh6L1YEigUFxXF4wkTN2qiKKCqDorMqjnxG2Gn0yWW13wsZ6UiXVlxIwipVIqmliYmxxcK0a/29XHk8OGtGWwZRXYNAO4ULMtNpyqVBPemAY7rRiUIrogOBW+Obmxloz8v+uHVqe0mvAghQChQ/bFns9mq9f94+OGHAddq/urVqxw4cGDJfn7+538egA9/+MM0rFiL4+OzdfgCxOeOR5blXVuILixqxevgLLnvkUqlKBQKDA0N3SxABGFBgNwBEZCNsJEieMtyKivNJV0oF8ELqxbBe1GT9RKNRnf1/+3IocNLBMh2dERfSYTvJTSNSqO/krbICldaiG5I0s3Rje3MKJuecQvQU6ulXzm1W4S++DpRrZRLD8dxyOVyVev/cfz4cRKJBJlMhqeffnqJAPnVX/1VxsbGOHnyJO95z3uqsj8fn/XgCxAfH9xQutfddq/R2dnJyMjITf1APCThzknBqibVL4Jfns51+yL43R6xO3jwIN/85rcq9y9durTl+1zJrGG34lnhlkoLVriLG/150Q1VLUc3ysXiqrqzE/zpqSkA6ht23/HrCRBJkqpeB6RpGuAuLFQDURR54IEH+MpXvsJ3v/td/t2/+3cAXLx4kY997GMAfPzjH98TJiw+uw9fgPj44AoQLyd5r+HVgcxn5zEMA2XZUrt3X9uDvVB2ilsVwev6QhG8aaxSBF/y0rluXQTv9jlxqr4Su10cPrI03WqrIyCO43D+wnna2zuo24XGE4sb/WnaUivc5Y3+AkHH7b8RXN0KdydwHIfJSTfq1dzUfOsX16BQ9ATI8vNoNQgGg9x9991V3ebDDz/MV77ylSV1ID/90z+NYRj88A//MC972cuquj8fn7XiCxAfH9xc5Gw2u6tXRx3HYYUMLGKxGKqqous64+PjNxXfquXJq1FeffPZOkSRSp+EBTZeBD8+Pocg6Bzc31nVIvjt4uCBg0vuX7t2bVWzhGpgmiaO4yAKte9g5VnhLo5u3KrRX2BRdKOW//fz8/OUSiUEUdiVdQdepDwcCVf9WrEV15+HHnoIcO12NU3ji1/8Il/72teIRqN89KMfreq+fHzWgy9AfHxwnVh2oxvLWi9WTU1NjIyM3CxABAFVLUdAfAGyo2ykCF5VQNdFiiVxSRE85cZwW10Ev1kOHjy05L5l2QwMDHL48KFV3rE5LNtNM5Tk2hMgixv9aZpbLL5ao79AwI1u3KrRX63ipYI2NjSu7jq4C2pAIuHqdm93HIdz587R3t5e1WvRgw8+iCRJ6LrOU089xQc+8AEAfvmXf5m2traq7cfHZ734AsTHZxG7OQJyK7q6uhgZGamkPizGW20u+QKkJrlVEbwgmORzOs3N7EgR/GZJJOI0tzQzMb5Qn3TlyuUtEyBeZ/adznmv/G9KW9for1bxBMjyPjC7hfn5eRycin15tchms5imWXVXsGg0yokTJzhz5gw//uM/ztDQEAcPHuT9739/Vffj47NefAHi41Pm4sWLJBKJPbkq5LmqTExO3JTi4v2u674A2U0IZUcjJ2yTqtu6InhV3dp0riOHDy8RIFtZB+I125Sl7b30meZCOpUX3VhshbsVjf5qlUr9x1oESA2qrVwuB7g1ICu5Dm6UTCaDqqpbYkv88MMPc+bMGQYHBwH4/d///S1Lc/TxWSu+APHxKSPL8q604vVwbtGiOh6PEwwGKZVKjI6O0tPTU3muIkBKvgDZbXhdv5ez1iL4xelctyqCX5zOpaogy0s7wW+GgwcP8o1vfLNyfyudsCKRCAcOHNjShqOOs6hYfA2N/hYXi9fgfLuq5HI58vk8CNDY2LjTw9kQ3jUiFK6eUHAch3Q6TTKZ3JII/EMPPcQf/uEfAvDEE0/w+OOPV30fPj7rxRcgPj5ldrMT1u0uWoIg0NbWxrVr1+jr61tRgPg1ILsPz+FsrdxcBL+QznVT1GRZEbxhgmYIkKtuJ/hDy9KttjICIkkSIam6K8yLG/1pJYFiObqx3Ao3EPBqN7a+0V+t4qVf1afqt8RFajvQNA0Hpyqdyhdv0zAMklvkzOZFVQKBAL/7u7+7Jfvw8VkvvgDx8SkTCoWYmprCtu2q+7tvJWtNAzhw4ADXrl1jYmJiSa2L54Ll2/DeuQhCdTvBe0XweVPGKaSwdANR0nGcm4+xQ8sK0bfSCSudzlAqFTfV6G15dONWjf4WRzd20Slly1hz/UcNF6Hr5fNkNVOlgsEgJ0+e3JLaJMuy+NCHPgTAz/3cz7F///6q78PHZyP4AsTHp0wwGATc1aityMPdaVpbWxFEAcMwmJ6erqRAeBM9yzSxLGvVi+Dly5f5/Oc/T2NjIz/2Yz+2beP2WZ3JyUny+fySiFa1uVURvJfOZZgrF8HruoBjJLBKAhbgyCLDQwqlhFgpgm9vP4iDjIBbIG7bDtcGBjhy+PDKA9oEhUJ+XZ2mFzf686IbXqO/xVa4qorbUTxUG43+apXdXoDuOA6GYQBuNKFa6VKO42xZWuDHPvYxzp49S3d3N7/wC7+wJfvw8dkIvgDx8SkTDoc5fvz4ri3Oc26zaihJEs1NzYyPj3P9+vWbBAi44mul1ALTNPmP/+k/cfb5s4A7gXj9619fxdH7bATTNCntUO2OIFBJK1pgaRG8nLYRQzNIBRVsFUGWkRWwLGFREXySxsb7mJyaRkAHdE6fHqS9/UjVi+BN00SSV19lNgw3mnOrRn+ieHN0Y7dZ4e4EhUKBbDYLuLbga6LGimI0TcOyXCvnai1SaZrGpUuXOHDgAJFIda19P/OZz/DBD34QQRD4kz/5k6qmjfn4bBZfgPj4lBFFcdd2lF4r+/fvZ3x8nJGREe69917ArQ+pdEPX9BUvUr/3+7/P2efP8ou/+It8+tOf4gM/+7M8+JKXkKqr29bx+yylVi2jvSL4hGMjRKZQSu5cUqgTaG+3iCssKYI/cKCTyakxHEQgxIULN3jJS4SqF8Fb9kKEb3GjPy+6YS+zwvUa/S2PbtTox17TeNGPurq6XXue9WoEQ8FQ1SIW6XQa27YrEfjN8qUvfYmf+qmfYm5urjLeX/mVX+HVr351Vbbv41MtfAHi47OImZkZstks3d3dOz2UNbOeSajXhHB6eppCoVARG0qlDuRmF7ALFy/y//72b/PEE2/kP//n9/OqV72Sxx9/nF/4L/+FP/7jP67CX+CzUQRBuKX7Wa0hCG7EIB5Zms516u4I3/3OAKACKqOjZ0kkVi6Cd7ILPU3WUwRvmjCfsRHECCOjIpoOArdu9BcMOlVx+vJZZ/pVjdaAZDIZANSAGzWuhg1vJpMhFotVrf7jqaeeYmhoiHA4zD333MNP/dRP8eM//uNV2baPTzXxT60+PouwbZvZ2Vk6Ozt3VSE63NqG1yMcDhONRsnlcgwODnLs2DG3G7ringp0bWmRsGVZvO9976OtrY3f+73fA+Duu+/m137t1/gv/+UX+IEf+AEee+yxqv8tPmvndql3u4EjR48gCCZgAgWGBp+mo93t2XFzEbzb02QtRfCqArrh2glbFlh2I6qsYNsCAXVvNvqrVXZ7/Qe4C1TgNverBqZpksvl6OzsrMr2AH7913+dX//1X6/a9nx8tgpfgPj4LMK7sOTzeWKx2A6PZmvo7OzkwoULDAwMuAIEUBUVLPOmPiiSJPF/v/a1m7bxEz/xE/zET/zEtozXZ3USicSeMEw4euTIkvvXrl1D0zQCgcCaiuDddK6FInivp4mmu1EiSXLFRjKZqljhBoN3phXuTlAoFCrRgzXXf9Qg6XQaoGrXBq+pYSKRqMr2fHx2E74A8fFZRDAYRJIkcrncrhEg600D2L9/PxcuXGByahLLspCBQDAAOYOStnsbMd6JhEKhPSFADh1aasVr2w5X+/s5XhbIK7GWInjdEJAlp9xp3CaXmyccDu/aHhS7ldHRUQDq6+vXd7zWWDjKEwypVKoq9VfJZJK77rrLPx597kh2V46Jj88WIwgCkUjE7da7R2loaECWZRzbYWxsDIBQuRYkn9u7f/deJJ/PMzU1tdPD2DTxeJy2ttYlj13eREd0WYZwGJIJh2jUjaBYlsHg0CCFQmGzw/VZJyMjrgBZc+PMGk0r9I6deCIObM4EwnEcHMfZta6LPj6bxRcgPj7LaGlpobW19fYvrDHWWgsgCELl7xseHgZBIFxelcztYeG1F8nn84yPj+/0MKrC0aNHl9y/fPlyVbdvHzb+4wAAjn9JREFUmm6fka3qt+CzMrZtVxY61ixAahBd1yvHUDSy+RqQubk5Lly4ULH19fG50/AFiI/PMqLRaNX92GuNgwcPAjAyMoLjOBU3rEI+z9NPP01DQyMNDY187nOfW/H9zz77LJ2dnTQ0NPLf/tt/265h+yxjt7lg3YrlaVgXL16s6vZ9AbIzTE5NYpoGiqJSX1+/9jfWWPqVZ2kbCARQ1M2nTM3OziLL8pZ0P/fx2Q34AsTHZwXGx8crRZO1zkbSANrb2xFFkVwux8zMDMFQCByHXD7P/fffz+seex0Av/Vbv3XTCl1fXx//9t/+WwqFIu94x9v50Ic+VI0/w2cDiKJYSeXY7RxeVoh+5cqVqm7fLB/HvgDZXm6M3gCgvb1t/c6CNSRCFgsQj43a8Oq6zvz8/PoEmY/PHsMXID4+K5BOp5mdnd3pYWwZiqJU3Giu9V8jEnIjIJZpous6v/LLv4IoCvT1XeVv//Z/V943Pj7O2972NmZn53jt617L7/3e79VsM7w7gj302a/mhFUtBARUJbDr7LV3O14B+m5OvwIq14NIdPPR8dnZWQRBoM5v5OpzB+OfiX18ViAaje6qQvSNpOJ4OfejYzcQpYUu8Ll8niNHDvPDP/zDAHz0o/8/DMMgnc7wb/7Nv2FkZJQHHrifT/7pn/qryTuMqigk4ok9EQFZyQmr7+rVqm2/ri7J0aNHfMG8jeTzeebm5gBoa2tb+xtr8Hj2/o5kIrnp71s2myWZTPrpVz53NL4A8fFZgUgkgq7r6Lp++xfvUrxmi6ZpMj09TbRc91IoC68PfvCDBIMBhoev88lPfpJ3veudXLhwkWPHjvLpT//1nrB/3e3EYjG6u7v3xKp+LBajvX3pJHUzTlg+O8+G7XdrkGw2C7gWvJvlwIED7Nu3b9Pb8fHZzez+q5aPzxawuCFhrbPRPGRJkipuWNeuXasUoufKVrytra385E/+JAC//Mu/wne+81327evgb//335JM+o2zagHbttF1fU9EQACOLEvDqqYT1tDQEIODg1Xbns/tGa3Uf+zu9CtYsOBNJpOVxzYSTTNNE0EQ/Oixzx2PL0B8fFZAURRaW1uXFBzuRbxO6JNTU0Q8J6zCguj6yZ/8yUqZQV1dkr/7u7+jpbll28fpszK5XI6Lly7umUjd4cOHl9y/VMUIiGEYfvrVNmLbNjfGNilAauT/pWla5Tu2WICsF9u2OX/+PNPT01UamY/P7sUXID4+q9Da2lqJCuwGNrIK3t7ejqoGME2r4nbldfs1TZP//IEPVNKxC4XCrk+j2Gt4E+q9EgFZ7oRVzQiIaVr+qvM2Mjk1iWWaqOo67XdrEK8APRqNEggENmx9nU6nsSyrEmH38bmT8QWIj88qWJbF1NRUVZ14toLNrOqKokh7h7s66V1kC4UCjuPwMz/zM3zln79CQ0M9nZ370DSd3/qt36rKmH2qg1f7sVcEyEpOWKVSqSrbNi0TSfaLfrcLz363rW0D9rs1djx7jRTj8fimtjM7O0skEiEYDFZjWD4+uxpfgPj4rIIgCIyMjFTcT/YqnZ2dAMxl0oAbAfnQhz7E3/zNZ4lEwnzmM5/hl37plwD4zGc+w6VL1e1Q7bNxPPFp2/a279vrP2LbNpblRtA8IWRZFqZpVpr/LX+f95x386JvXoPMhdfC1So4YTmOg2WZKPLmG8j5rI3h4WFgb9R/jE+MAzcXoK+n/s7v/eHjsxQ/Hu3jswqiKBKPx5mfn6elZe/WPTQ2NqLIMo5lgwRf+tKX+OIXv4QsS/zFX/wv7rnnHk6dOsXHPvYxzp+/wIf/+4f59Kc+tdPDvmOxbRvbthFFsSJACoUCpmli2w62YyNLEolEAtu2mZycrLzHtm0cx6G9vR1ZlhmfGCeXzS0SEw6NjQ3U19eTyWS4PjIC5eccHAJqoFKn8cILL2A7S4XPwQMHCYfDjI2NMTM7Q1pL3zT+QrHAjWs3ljwmSTJ3HT9OLBajubmZiYmJynNf+cpX6ezsJB6PMzE5wdTUNIIguDcEkskEra2t6LrO8PBw5XPxbp7Abm5qRtM0JiYnEAURURQrKTWe450oipWbJEm+TeoGmZtLMz8/jyAKm3N7qpEakEzabUrrXQc2EnEsFovIsuz3/vDxKeMLEB+fW5BIJBgeHsY0zZrPH99oXrIgirS2tTKXyfDMM8/wxS99CQT4+Mc/zqOPvsJ9jSDwC7/wC7zzne/in//pn3n66ad54IEHqjb2OwF3Fd5achNFkUgkUkn3W/ycbdv09PQgiiJDQ0Nks1lsx65MfjraO0ilUrS1tlWKfT0i4QiJRAJBEJidm0NAQBSFyuTc24YkSiiKsmTSrihulCAQCNDY2FBZ5RUEAWnRd6CtvLLtiSABAVVVAXelOBqNESvN3PQ5BNQAXZ3dSz6XxWmER44cXiJAZmamKykrkXAEp8EBZyECoy4yilAUpRKV8aJC3raLxSKFYhHHtiuf4759nQQCATKZzE2fYSwao7e3F9M0uXT5MpIoIYoCkiQhiiJdXV1IksTM7CyGoSNLMqIkIYkioVAIVVWXjOFOKoAfHh4CoLW1rXJM7FYMw6BYLALQ0NBQeXy9/89EIsGJEyfuqOPAx+dW1PaMysdnh0kkXLvZTCZTs6HzjdrwLqa3dz9//5m/5m/+5m/AgZ/92Q/wQz/0Q0te89hjj3Hvvfdw+vRz/Oqv/ipf/vKXN73f3Ypt20vSh2KxGADT09NomlZ53DRNmpubSSQSTE1NMTY+tmQ73iTXcRxmZmeRRAlJWlh994RCNBYjGAoiiRKCKCIKIuFwCEEQSKVSxOPxiohYHBkRBIFj5YaTK9HY2Ljqc8Fg8Ja56vW36IcQDocJh8HMGzc9J8syycjqNs533XUX3/jGNyv3h4evVyax0Wh01QJeVVXp6upa8blCoYAsyxw5fLgS1Vi8ip1KpYjFYhXhYllW5XWCINDQUI9jOxVhaFlW5TPOZbNkczksayHdrKO9g/r6eubSaUZGrpf/LxKSKBGLReno6MBxHMbHxxElEVmSkSQZWZYIh8O7vq+LZ3fcvcr/YzcxM+uKaEVRbjIlWauY0HXdj6j5+CzDFyA+PrdAURSam5t3/Sre7RgeHuKvP/UpHAde+cpHecMb3rDi637pl36Jt771h/je957hH//xH3n88ce3eaRbj67rFApFLMvEMA0s0yIQCNDQ0ICu61y5cgXLtpa858RdJxBFkVwuR6mkIcvuZCMUClUiZ/F4HEVRkSQRWZaXTEhkWeZ42RJ5JVab7FuWxeDgIM3NzTXprJMKpzj/nnP8yGMv5WUvfSn/4T2/SSp860Zuhw8vd8LavBVvsVRidm52ST3C4snjrSaHkiTd0nraEz1eRMY0zcq2opEI+/Z1YlsWpmViW3bleLBtm3Q6g2WZS46nY0ePIYoig4OD5PJ5FFlGlmUURaGuro5YLIau65RKpcrjsizXzMp6Op0hk8mAwIbTr4QaqkGfnnItczezAHX9+nUMw7ipz42Pz52ML0B8fG7DXiiivB133303n//853mubHu6WuH9I488wvT01HYObdN4qU+GYVRshKenpykWixiGUbm1t3dQV5cknU5XIhWSJLupNeUVaVmWaWxqRJYVZElCLk8Ovclfd3f3quO4XURho+TyOeqMzXdn3gpEQaQh0oCoC6gE3N+FW6/uHz26dJI2MDBAqVTa1GdnmkY5hWrrIgtemtXixYpAILBqLyFJkip/6+LCfE+gJJN1BENBTMN93I2suUIlm80yMjqyZHvxWJyenh4cx2FsbAxJllAUFaUsUgKBwLaIlKHhQcBNv9p0H6UaEFWeO+DiOsD1pLtqmkYmk6nUIvn4+Lj4AsTH5zY4jkM6nSYYDNZ0H4yNW7G6F/me3t7bCpBaxHGcShGxIAhEo1EMw2B4eBhdNzDMhU7hiyMVuq6jKAqRSARZkQkG3clSKpWirq5uxVVlURRpbmre9r9xNfaaDS+s7ITV19fHiRMnNrxN0zCRa9gBy6u98epvAJLJBLByqlpdXR3RaBTTNDEME9M0EMtRF9u2mZ/PYhj6EpOAY0ePoSgKN27cQNM0VFUt71MlEglXLco7POS6X3XtkQm3V4+0UgRkLemvk5OTSJJ0k4OWj8+dji9AfHzWwMjICMlkcnOOLltEtVY1o5EIyaQbAcjMZ24qDt4pvAiGpmlouk44FCIYDDI7N8fY2BimuVBnEI24NQJeSk0iESqnqCioqrKmSEWtmw0sxlt1d3bAhnc91NXVkUqtzf0nGo3S0dHOyMho5bHLly9vToCYJvIe6gEiiuKq0RVJkjhyxHUq8yJ/hmFUjmtJlnBKDtlsriJSOjr2UZ9KMTM7y9TkFKrqRkxUVSUUCq05vS+TybiLFwJ7YsXfNE2y2SywsRQs0zSZmZmhqalp19f1+PhUm91zpfXx2SEEQSCRSJDJZOjo6KiJSflyqlGIDnDy5Em++c1vggNz6TSpbbSMNE2TUqmEpuvUJZOIosjIyIjbPXhRjnxbaxvBYJCAqpKqq6us5KqqWlnFFUXxliJjLyEK4o70AVkPv/Ebv7mudJqjR4/eJEA2Qywe31NRorXiCfHF6WvNTc3Q5P7uiXvvnBZQVWKxKLquk83m0A2NeCxeiSpe6esjoKquOAmoqEqAZDJRef+Q537V0rq5dEPHqan0K0mSiEQi636/1/X8VmYPPj53Kr4A8fFZA4lEgunpaUqlUk2nYW0Kx3FXLQXAgSuXL/Pggw9WeRduupRlWYTDYRzHob+/n5KmLXERioTDbspbOIyiKqhKgEDAnfh4Bb6RSGRDk4K9RmtbG6Ea76z8K7/yy7zi0Vfw7lMvW9PrDx8+zFe/+rXK/YsXN1eIvp1CejchCMKSiN9ylzHP0tgjVVeHpmkUCgXS6TTgpYq5zld9V/oA110tn88TCoV29cr/5OQkQMXS2mOtYjYQCHDgwIEtGZuPz27HFyA+PmsgFoshCAKZTKZmBchG+4AsRhRFYtEY2WyWoaGhTQkQL4WrVCoxOTlJsVhE192UD0VROXb0KIIgEAwGicaiqGqAYCBAMBisTFpuZfXq47IbPqOpqSmmp2/uCbIa1XbC8r63e93NrtoIglAR/Iqi0NraWnluefTEsizy+Xzl96v9V+nt6SUWizE7N0epWCQQDBIqmzGsSZjscBRkbMw1o1jc/2Mxt4qGZ7NZbNuuWLn7+PgsxRcgPj5rQBRFmpqaNu/qsgVsOv1q2UV03759XLhwAU3TSKczlRXOW6FpGrl8Hq1UolgsUiyVqEsmaW9vx3EcSqUS4XCYuro6AmWR4dHR0bG58d/hpNMZZFmqSRvejeLVMHgMDA5SLBY3JP5t22ZwaLBS5+BTHZZHTwqFAgAtrS3cc889lEqlyvnSNAwymXn0RQ56LS0tNDc1V2yvw2G3XquWUly9FKyNnKNu3LhRSd/18fG5GV+A+PiskT1tx7voor84X7mv7wovfvGLK/cdx3EFRvlWV1dHJBIhnUkzPj6OoqiEgkEa6usr6VGhUIhDh/7/7f1ZcCR5nh92fv2OE4FA4L5vZCbyqKw7u+6ju7preoY7JlK7fJDEkY1sNTt6WFstJWrNyF0uRcmkIc24WlHztCQf1kzctX0YNqd7uuuu6rqzu/JOXIn7PiOAuNw9wt33wREOIBPIxBEIBJDfj1laVwOIiH/giPj//P87ekv3XJ4yS0uLByoUPg0e7oQFB3jw4MGhCtFzObdJgXKKmgucRlNTbver1pY2iKK4Y2hfbW0tamtrYVkWdF3f0VY5mUphZmYagNv2OuD3I5LJoLqiovRPYpt0Ou2d6Gw/+TnIbTs7O49jaURnAl+RiQ4gk8nANE1UVlae9FIeceQi283bRyKV3ocGh4bwzDPPQFEUTE9PI56Ie4+jqT5vAnh1rBrVsWpO+j0Bolj+RegHFQqF0NLSjOnprVkXg4ODRwtAlPJtw3vaJRLrWF1d3ex+tXenwEIx9/barapoFOFQCJlMFrqeRSaTQc4wALiNKQbv3oXf70cgGEAw4N62FK8zs7NuE4Sqqqo9T773On1eXFyEpmk8/SB6DAYgRAewsrKC9fX1R4oSzwLHcZBJp2GYuleI7tg2hkdG0H/hAgLBIDRNczcDgcCOTQADj5NzGgKQwuT3gzh3/vyOAOSwnbByObe5AQOQ4zM2NgrAHT64/eRjPwrDG936HHfDLszOAVYejuOgqqoKmUwGy0vLWLAXIAoiLl++DEEQsLGx4bULLvbr8eSk29EresAGBm7qagItLS1n7j2CqJgYgBAdQCwWw8rKCpLJJCpOOEWg4LBvcrZtI51Ow1xbRWwz93pichKWlYff50c2mwUAjAwPo//CBebPlylRFGFZ1pO/8AT9+X/x52hoaDzQbc719eHDDz70/v/A4OEL0TXVxyD5mNi2jdFRNwDpKXLHJ0VV0bg5f6NQS2YYhjv7xnEwPj7uNrWQ3YGioVAIVVVVRflZLy+79Sq7tfN2HGfP0w9ZltHU1MTBg0RPwACE6AACgQA0TcPq6mrZBCAHYVkWlleWkUqmkEqn4DgO/MsrqKyrgwigq7MTqqoivhb3rgBubGzsuxidSs/n98HKl3cA8uDBKBT5YB2oent3FqIPHTIAiUYrEY1WHuq29GQLCwvIZrNQFPVYG0oIggC/3+81IhAEAf39/UilUshkMkilUpidm0VlZSUkScLKygoEQUA4HD5w97NUKgVd1wEcvP5DkiTU1dUd6DZETyMGIEQHIAgCYrEY5ufnYVlWWV1V3a0Nby6Xw/r6OnL5HBrqGyAIApaXlhEIBNBQ34BwOIxArBrY2IDjOF5haKy6GpOTk5BlBfl8Drdv38Lrr79e6qdE+1BfV3/SS3iiX/71XyOTyeDNv/Of7vs258/vbMU7MTmJTCZz4BSfQjtoOh4PHjwAAHR0tO/oinUk+6xnk2UZlZWVXk3e9tfk9fV1bCQ3AACaqqGiogI1NTX76mRYqP94UvDy8O/V/Pw8HMdBY+PBTvuInkYMQIgOqKqqCpZllc1k5YdTAfL5PJZXlrGxvoFM1m2NGQqG4NQ5EEURFy9e3PHGKayuPRK61NTs7Hs/NT0NwzDKsg3x085xHDiOc6oHvu1m105Yow9w+dLlA93P6OgofD4f2z0fA8MwMLnZ/aocBu5tvyDU1dWFXC6HVCqFVCqFRCLhzfNYW1vzZnTsVhs0M+PWHtXX7z+4z+VyWFxc5NRzon06W+9YRCWgqiqampqKd7XviBzHQSqTQjwe9z62vLQMTdPQ2tKKSxcvoaenxws6HrkavMvV4VhVDBCAfD6HcDgM27IweMRhcHQ8FhcXj1QfUa6CweAjHZUGDzERPZfLn7ngrFxMTEzA2dzIxzZrNcqJoiiIRqNoaWlBf3+/dwElmUxiemYad+/dxdDQEBYWF7xuaQDcjl7Yvf4D2P20eXFxEQCYfkW0T3xVJjoEy7KwsLAAY7NdZKk5joNUKoXp6WkMDA5ganIKK8srcBwHsizj0qVLaG9vRywWO1SgJMuyG4RgKwf63t37ZV/s/DQSRRH2Gf25nDt/fsf/P2gnLMdxkMub7IB1TMbGxgC4pw3HkuZWxPsUBMFbY1tbGy5dvITWllaoqrrjtXxpaQmpVAoQ9h9MmKaJ5eVl1NXVlc2FKaJyxwCE6BAEQcDCwoJ3paxUCgGAYRgYHh5GIpFAZWUl2tvb0dXdtfcpx348lFJWuKLpTjx2a0GGhoeP9gSo6CRJgu3YZZMSWEzn+nYWog8c8BSukCopywxAii2RWHc7RQko/sC9Evwuy7KMWCyGjo4OXLp4yZtNUghyg4Eg1tfXH3vRpZD+ur6+DlEUUVtbe+zrJjorGIAQHYIoiohGo1hbWzv2jZ9t21hdXcXQ0BAGBwe9YvFz587h4sWLaGpsQsAfKPoVyO350hcuuFei7965cyY3uqeZsJleVM6zQF599TX091848O16e3t3/P+hA6ZgbQ0h5FXpYivM/mhsbDpwY4ByI0mS9/qZSqcAAJWVlZiZncHdu3fdE5HHqKmpwYULF8qqKQlRuWMAQnRIsVgMpmk+8c3psCzLwtTUFO7cuYPJyUmIoriju0ogsC3oOErssUfgUl3tFlOurK6ir68PgihC13WvPS+VB+kUBCBvvfkmOtoPfpX8/EMpWJNTU8hkMvu+vaZp6OvtO/Ub5HKzffZHd1fXCa+meBzHweqKe6p94cIF9F/oR119nff7Mz8/j6WlJeTzee82mUwGjuMwzY/ogBiAEB1SMBiEqqpFT8Mq9J8XRRHZbBbV1dXo7+9HT08PotFoyVqKRiIVUBQVzubAws6ODgDAnTt3SvL4tD/hcBjnz50v69zz/+F//B/wwQcfHPh2PT09O4NrBxh5MLLv24uiCJ/PxyL0Its++6OlpeXJNzisErdPTiQSME0TENwOWKqqor6uHqIownEcmKaJ2blZDI8MY3FpEel0GoODg1hbWyvpOonOAr4qEx2SIAhobm72UpWOwnEcJBIJDA0N4f79+9B1HYIgoK+vD01NTftqf7tbZ5ajEAQB1ZvteJeXV/DMM89AEAXE43FvSjCdPFEUoapqWc+6ME0TZs488O0CgQDaWlt3fOwgnbDW4nHMzc0d+HHp8YY3a8E6OzvOVNrR+Pg4ALcL4MMnGoIgoK2tDf0X+hGtdNNvHzx4AFmWEY1GT2K5RKcaAxCiI6isrEQoFDrSfaRSKQwPD3sdZTo7Ow80b+PhOSCHtkttR81mcLWysoxgMIiOdvcU5OatW8V5TDqyXC6HiYmJA6UmnSZ9Dw0kPEgnrPTmDAgqnkwmg6npY5794TglP/0AtuZ/PFx7tJ2qqqirr0NrixsYF7oEzs/P70jNIqLHYwBCdESZTAYPHjw4dIvawlCs7u5u9PX1obKysmyuZld7AcgKAOBCfz8AYH5uDhsbGye2LtppfWMdppl78heeQud6d3bCGjxAAGKa5mMnWdPBjYyMAI5beF2Osz8OK5VKea9zbW1tT/z6tcQaFEVBLBaDrutYXFzEvXv3sLi4WNb1WETlggEI0RFJkoSNjY195wE7joP5+Xnvza6pqQnnzp1DRUXFkdZx6O5UgvCYQnQ3AEkmk9B1HVXRqLfpuHHjxuEej4qqkAJj2WdzFkjfQ614hw4wdNE0cwxAisiyLAxufv8f/rmcdoWi+kgksq+mBcFAEI2NjRBFEYFAAP39/YhGo5idncX9+/d58kb0BAxAiI5I0zREo1EsLS09MQjQdR1DQ0OYn5/3Tky2t4AsNz6fD+FwGMDWKcjVq1cBAFPTU17BPJ2cwu+OU8ZXXUOhMCIVkUPd9txDKVj77YTFIYTFNzk5CcMw4PP59nVKcGQlfF0spMB2bDbbeJJYVQxV0Srv/yuKgtbWVly4cAGqqu6YrE5Ej2IAQlQEtbW1MAwD6+vre37N8vIyBgYGYFkW+vr69j1l90mKFrzsETsVhmstLCwAcHOeg8EgHNvhKUgZEAQBkiiV9QnIP/kn/3f8+Mc/PtRte7p36YQ1sr9OWPV19d6AOTq6Qv1NX1/fmSo+13Ud8XgcwJPrWuLxOGbnZve82OTz+byOhY7jYHZ2FtlstuhrJjrtGIAQFUEwGEQwGPROCR7mOA7W1tYQi8Vw/vz5stoUOU+IXwpFloVuQoIg4LnnngMAPBgdPbPFz6dJfX09QsGjNUM4Tv/T/+N/wjfffHOo2wYCAbQ/dLV9YGDgibcTBAG1tbWcAVIkq6urWF5ehiAKbnvkY1XaYaeF7leBQOCxqbCWZWF2dhb5XB6CIOx58afwcdu2sb6+juHhYaZkET2EAQhRkbS3tz9yfG/bNgzDgCC4b9qtra3HNpOg2G14CwoBSCKR8IKNtrY2xGIxOLaNu3fvHsvj0v5VV1eXVVD7sPGJcczOzR769r3nHqoD2UchumEYSCTWD18bRTsUgr7WltYzF9SNT7gByJPSypaWlpC38qir39/ptSRJ6Ovrg9/vx8jICBKJxFGXSnRmMAAhKhJN0yBJklfb4TgOJicnMTIyAtu2T+0wNL/f7/W5L6RhCYLg1YIMDg3y6t4JS53xdrPn+x5qxbs5h+JxNjY2MDU9eVxLeqrouo7xiQkAj06nP1YlqAHJ5/NYWlwCgMee7BiGgcWlRdTW1B6osYEkSeju7kYkEsHY2NiZ/jslOojTuSMiKlPJZBJ37tyBYRhYXl5GPB73OqUcl+OcA1LwcBpW4WORSARwgOvXf1ecNdChLC8vY2lp6aSXcWwe7rg0uI8UrFwuB0Uu7wGNp8XIyAgc20ZVVRVqampOejlFNT09Ddu2EQwGH9tWeGNjA4qsHKp2TxRFdHR0oKWlpaxPKolKiQEIUREFAgEIgoC5uTnMzMygtrYWVVVVT75hmWtsbATgDtsqpLQIgoCXXnoJADA9M8W5ICdo+8nbWfRwJ6ypqWmk0+nH3sadAcIOWEdl2/aO4vOzFtAVnltDQ8Njn1tNTQ3OnTu3o/j+IBd/BEFATU0NBEFAJpNhaiA99RiAEBWRJEmorq5GPB6Hz+dDU1NTyR77SHNAnqC2thaCKCKbzSKR2Or0VV9f7wZYDvDd998f7vHpyGRZhmWVbxvexxXs7scjnbDw5E5YpskWvMUwMzODTCYDRVH33aL2yEq0ObdtG4uLiwD27n5l2zZWV1fhOE5ROn/l83kMDQ15XbeInlYMQIiKrLa2FoIgIBQKlexq4XE/jizLqKtz2/HOL8zv+NyLL77ofnxubkdwQqUjSiLyVv6kl7GnP/3T/wxvvvnmoW/v9/t36YT1+IGEqqrC7/cf+jHJNTDoprv19fVCluXSPvgxv67NzMzAsixIkoT6+vpdv2Z5efmRmUdHOb2QZRnhcBiLi4s8BaGnGgMQoiJTFAXV1dUle3MpXvDx+PU21D9aBwK4AVehK8zNm5wLchIURYVWxhO/15PrMAzjSPfRd25nGtbw8OM7YbW3t5+5eoVSW1lZweLCIiAAvb29J72coit08Gtra9u1Ti+Xy2FhYQHVsepdg9nDvvbW1tYim82yhTk91RiAEBXZzMxM6SYFl1ChDmRxcRH2Q1O3n3/+BQDA1NTUnrNQ6PjEqqpKMJvh8P6///b/g6+//vpI93G+EIA47r/79+/v+bW2bT/yO0oHd+eOu0HvaO9AKFS+c2YOQ9d1LCy6Xf36+/t3/Zq5uTkIguA14SiWQiH69lMVoqcNAxCiIovH48jlct7wQdM0S/K4h54Dss+reFVVVVBVFVY+j+WV5R2fi1VVoXGz3uX69euHWwcdieM4ZzqlQ5bkHYd0H3/0Cf6T//g/wXfffvfI1yaTSdy5ewe5XK6EKzxb4vEEpqenAAAXL14q7YOX4Pd4dHQUcLBnZ69MJoO1+BoaGhoeST076swlSZLYDYueegxAiI6B4ziwbRvT09Pe7IzjUrQ2vE96HEHw8qTn5+Yf+fyzzz4LwM2ZXlxaLMmayJVOp3H7zu0ze0X1X/+rf41/9s/++SMf//Xf/Bo//4Of49/863+z4+OmaUIQhNLXLJwh9+65px/NzS2IRitPdjHHYHDQrSHa6+TQrTtqR3V19bE8fl9f32Pb/hKddQxAiIrM7/cjm816hY0rKytnZmNYSMN6uA4EAKqiUe8U5Ntvvj3TV+PLTaE7z1lsxfvtN9/iv/r7/9Wun7NsGw6Av/9//vs7TkI4A+RokskkxsbHAACXLl08uYUc089vaWkJ6+vrgAB0dXU98nnDMCAIAqLR6J6/Q4IgHPriT+ECFdHTjAEIUZH5/X6k02nYto2amhooioL5+UdPDMrOPgKGQlvhlZWVXecwvPzSSxBEAevr63jw4EHRl0i7KwQg+fzZC0D+8i//8ontTyVJwl/+5V96/98wDGha+Rbll7t79+4BDlDfUH9yhfzHGDwW6ofq6+rh8/l2fC6dTuP+wH03QDkm8XgcN2/ePHJjBqLTjAEIUZFVV1ejubkZgiBAFEU0NDQgHo8fe8eTUpw4BINBb0MyOTX1yOdDoRDO9bnFwjdu3EA+X76tYc8S7wTELs8A5Mozz6Cr89ErzU+SzWbxN7/6G+SfcLKTtyz86pe/QjabBQAYhgm1jLuClbNMJoORzYsHly9dPuHVFJ9lWZicnAQAXLq0s7bFtm1MTU3B7/OjoqJiz/s4ymut4zhYXFxEOByGpmmHvh+i044BCFGRaZrm5fbato1YLIa2trZHrrQVy5HTTA54+5bWVgDA9C4BCABcvXoVgUAAuq57bS7peImiCFEQYZVpwPcf/p3/EJcuH7yQOZlMwt7nZs92HCSTSQBAT0/3nnMd6PEGBgbg2Daqq6tRV1d3Mos4xosp4+PjsCwLiqI8Mih2YWEBhmmgra1tX6+rh3ntjcfjyGazRe+sRXTaMAAhOiYzMzMYG3PzqGOxGERRLO+6iH2urW0zAFlcWvSuOG8nyzKef/55AMCdu3e8TSEdr56enrItav0n/+0/wQe/+eDAtwuHwxD3uckTBQHhcBiAeyLEAvSDMwwDg0PufJVLly6dyRqa4eFhAG7tx/bZH5lMBotLi6irqzu2AZbZbBZTU1OorKw8c22NiQ6KAQjRMYlEItjY2MDs7CwA9+rayMhIeQch+xAOh1FVVQU47tyP3bS1tSESicCxHXz9zdHmP9D++Hy+J9ZKnBQ9m0Ume/AURL/fj5+9/zPIT3hesiTh/T94H36/H5lMBqOjoyVrf32WDA4NwsrnEYlE0NzcfNLLKXodSCqV2nP2h6ZpaGhoQH3d8Z2cybKMaDR65mZEER0GAxCiY1JRUYHm5mYsLS1hdnYWfr8fqVTq2Iobj3sOyHaFN9DJqck97lLAK6+8AgBYXFg8HUX4p9xZbX/8Z3/2Z0/s7mVZFv7sz/4MAKAbBlLp1K6TrWlvuVwOA/cHAJzd04/BwUHAAerq6hCJRLyPW5bldi2sq9/X8z7oa61pmtB1HYqioK2trWwvFBCVEl+hiY5RTU0NmpqasLi4CNM0EQqFMDc3V9RTkFLNAdmudTMNa2FhYc8Ww9XV1d7XffXVV2w7ecyy2Sw21jdOehlF9/K1l/EX/+wvIACPnITIkgQBwF/8s7/ASy+/BAAwTQOSyBSsgxoeGYFpmggGg2hvbz/ZxRzDKbHjOF76VWdnp/fxdDqNu3fv7trV70n289qbyWQwNDS052kx0dOKAQjRMRIEAXV1dejp6fG6Y+m6jqWlpZNe2pFEIhFUVlYCDjA9Pb3n17388ssQRHHzTXi4dAt8CsmyfCbb8ALA3/uTv4e//uVf46c/+6lXEyIKAn76s5/ir3/51/h7f/L3vK812QHrwEzTxJ3btwEAFy9ePJOnRxMTE9B1HaIooru7G8BW1yufz4dAIFDUx3McB2traxgeHoYsyycf1BGVGV4iIiqBQnFswfr6Ompra4ua5nDkU5UD3r6trQ2JRAKTU1N7ThP2+Xy4cuUybt64iZs3b6Kzs4OtJ4+JJEuwrPLsguX3BxAIBI90Hy+9/BJeevklZLNZJJNJhMPhXYuFDcM4to5zZ9XAwIB3QrvX3/Jpd+PGDQBu8bmiKAC2ul719fYd6LV4P6+109PTWFlZQTQaRWtrK9OuiB5y9i5zEJUxTdNQXV2NVCqFkZGRokxIFwThRPK1W1vdOpD5+bnHFvxe7L+ISCSCXM7E9evXS7W8p44sybBsqyybHPzDf/gP8d57PynKffn9ftTW1u7Zqai2ttZtkkD7ks1mcffePQBuC+2yOv0o0uva4uIiEokEIADPPvssADf1anFpEfX19YfuevXw667jOF69UiQSQUdHBzo6Ohh8EO2ijF5piM4+SZLQ2tqK7u5uZLNZ3L9/H/F4/GQXdcg3+Wi0EhUVFXBs57FpWKIo4rnnngMAjI2NYXV19VCPR48XCARQX19flgHI//pv/1fcunmrJI8ViUTY4vQA7t69CyufRzQaLZ80oSL/DhfmETU1NiEYdE/iZFlGdawadbXFmXWSTCYxNDTkDTmMRCKIRqNFuW+is4gBCNEJCIfDCAaDkCTJu/qWSqWe2O2n3HjdsCYfX2DZ3NyM2tpaAMAXX3zBgvRj4Pf7UVdbV15XsDfduX0bY+Njx/44hmFgeXn51P0dnZRUKoXBoUEAwHPPPXcmO18lk0mvW9/zzz/vnVJomoaWlpYjP+dMJoMHDx5gZGQEgNt4hIierPzeqYieAoIgoKWlBbZtY2VlBY7jYHx8HHfv3sXc3BxyudyB7/PQbXi9Ozj47Vs3A5DZudknppO9+uqrEEQRyWQSd+7eOdQSaW+2bSORWH+q51+kMxnMzc+d9DJOjZs3b8KxHdTV153Zydy///3vAQdoaGxALBbD0tIShoaGjhSkFl5rLcvC0NAQDMNAR0cH+vr6Hqn3I6LdMQAhOiGFwVdLS0vQdR19fX2oqqrC0tIS7t69i8nJyX2dFJxEG96CqmgU0WgUjm1jbHz8sV8bCoVw9ZlnAAC3b9/GxsbZaxl7khzHweTUBFKHaCd6VpimAUmSmXO/D/F4wjuVevbqs+V5+nHENRmGgfEJ93XpYv9FpFIpzM3PobKy8lC/I4XOVpNTk3AcB7Iko6enBxcuXEA0Gi3P7yFRmWIAQnSCamtr4fP5sLy8DFVV0dLSgosXL6KxsRGWZUEQBDiOg/X19eNLWzrCm6YgCOjabGn5YB9T3vv7+zcDFgfffvdtWdYrnFaiKEIQBFj58uyEVQqGbkBjC959uXHjBuAAzc0tZzZt6M6dO3BsB8FgEPX19ZiYmEAwEDzwaY9pmlhYXMD9+/e9dK785t9ZKBRi4EF0CAxAiE5QoSd9S0uL9zFZllFXV4fOzk4IggBd1zE6Ooo7d+5genoamUzmBFf8qM6ODgiiiEQi8cQCc0EQ8Prrr0MQRSzML2BgcLBEqzz7BEGAJMlPdf2DYRhs87wPS0tLmJmZBgS381XZKcKFCcuyMDDgTna/cuUKpqam4DgO2tvb9xUw2LbtXSCZnJzEwsICQqEQ+nr70NbaxlkzREfEOSBEJ6zwRpZKpaBpmtejvsDv9+P8+fNYXV3F2toalpeXUVFR4Q3TKij1HJACn8+H1pYWTE5OYmRkBNXV1Y/9+kgkgmeuXMGNGzfw+9//Hm2trV5nGjoaRZYPVT903P53f/fvPvL7ehyCwSB8h2yp+rRwHGdrJkZnF6LRypNd0DEZGhpCLpeDoijo6enxJp0/LnBwHAfpdBqJRAJra2vo6OhAOBxGS0sLFEWBJEnu62y2VM+C6OziCQhRGbAsC6Ojo5idnd31836/H83Nzbh06RK6urq8OQemaeLBgwdYWVk5WvHxEVMIent7AQBj4+NeasLj9Pf3IxQKwbFt/Pa3v2UqVpH4/f6yrH8IBoJQleO/YtzU1IQYZ4A81tzcHBYXFyGIIq5cuXLSyzkWjuNgcPN0ta+vD6IooqKiAhUVFXveZnFxEffu3cPIgxEkEglUV1d7wYrP59v174qpV0SHxwCEqAxIkoSmpiasra1hfX19z68TBAGRSMQLQCzLgizLWF5axvDIMIaGhrC0tHSwBy/Cm2h9fT2CwSCsfB4TExNP/HpRFPHGG28AgpsO8uDBgyOvgYCWlhY0Njae9DIe8a/+1f8Ln33+2bE+Rj6fh2EYDGYfw7Zt/O53vwMAnOvrK+t5KYIgHPq1aXp6GolEApIkQdVULCws7Pi8bdvY2NjA9PS0171PEARUVlaiu6sb/f39aGxsZDof0TFiAEJUJmKxGCoqKjA5ObnvNBq/34+Ojg709vWiubkZqqp6b6iWZXlvxMddFyAIArp73BSb0dHRfd0mFovhXN85AMD3168XZSo8FSEV7xg4jnPs60okEhgcGizL518uBoeGsL6+DkVRcenSpZNezrFwHAfffvstAKCurg6SKHlpoWtraxgbG8OdO3cwOjaKjY0N7+S4trYWzc3NCIfDPNkgKgEGIERlQhAEb7Df3NzBZhlIkoTKSCU6OjrQ2toKwC3I3djYwPjEOO7cvYMHDx48/nTkiBu3rs4uQHBTGRKJvU9xtnvuuecQCARg5fP4/vvvj/T4BKyureHO3TtP5SbcMAyoilaWgxjLQSaT8Wo/nn32Knw+3wmv6HiMjo4ilUpBEAXEYrEdpzzpdBqWZaGuvg59vX24cOHCY9OydrN93tJJtkAnOu34Sk1URhRFQVdXF5qamvZ9m73eBAOBAC5cuIDz586jsaERgiAgmUwCcK8STkxMeDNIirFhDYVCaGhw039GR/eXUiVJkpeKNTExgampx09Up8eTN4tky7EQ/bjpug6fjykze/nhhx9g5fOoqqpCT0/PSS9nb0d4LbJtG9999x0AoK62DrIiI51OwzAMAEBzczN6enpQX1ePQCDAkw6iE8QAhKjMBINByLIM0zSPnJYkCAJ8Ph9qa2vR1dWFzs5OAEAul4Npmpibn8PwgxGMjIxgemraC0QOG5D0bm5sHjx4sO+5JTU1NV4q1m+//BLZLFvMHFahg9p+GgGcNbphnNmr+ke1vLyMsTF36OCLL754ek6JHhMgWJaF9fV1zM3NYXh4GJZl4f79+zAMA5Ikoa+vD329fV7DC/fuGHAQlQu24SUqU+Pj47Bt2+vi8jgChH0FDYU3YFVV0dvbC9u2kZmdhY4J6KLgfX5wcAiKIiMYDMLvDyAYDDzSHng3hToUwzAwMzPjpYM9ybPPPovJyUlks1l88skneP/997lZOITCz8g0cwgETngx23R1dqG5qfnY7r8ws0Fl0fAjtp8KdHZ2ora29oRXdHCO48A0TWiaBsdxMDQ0hKzuXqiQJRnhcBiGYeDWrVsAgMuXL6Orq+vY1kJER8cAhKhMtbS0YGhoCHNzc2huPp7NmyiKCIVCCNVUw9m8euw4DmKxKmQyGazF48gvu3Ujfb198Pl8SCaTEARh15avkiShu7sb9+/fx+DQ4L4DEFmW8fbbb+OXv/olVldXcfv27TPbIvQ4ybL7km5Z5XUC8uf/xZ8fa3AgiiIu9vdzc7iLkZERrK2tQZJlPPvssye9nH2xLAuZ9Q0k5+aQzmaRyWQgCAIuXbrkdgKsjKBGqUEwGISmaRAEAbdu3YJhGFAUBf39/SVZJy+SEB0eAxCiMhUIBNDY2IjZ2dnH9rAv2pvg5uZNEIQdV0lN00Q6nfFaUi4sLCCTdaexq4oGv9+Hmhp3M+A4Dvr6+nB/4D4W5hewurqKWCy2r4ePxWK4+sxV3LhxA7du30JjYyNqamqK89yeEoIgoK+3b1+nVaX0j/7R/xXvvPMO/rPn3z7Wx+GGcCdd1/HDD27h+TPPPINAOR2Lwb3Yoes6MtksDF2HJEuoq66BbTuYmZuBpSoIhsOor6/fsfaG+oYd96Pr+rYC+2c5pZzoFGAAQlTGamtrsbGxgampKfT395/IBktV1R1v6N3d3chms8jqOvRsFtls1rvyvLi0iJWVVdRU12B5eRk/3LiBV370I/h8vn3lnV+8eBGzs7NYWlrCl19+iZ///Odlt5kud+VYB5FKJbGR3Di2+19YWEA6nT62tJvT6ubNm8jlTEQiEZw/d+5E15LL5aDrOhRFgc/nQzyewPTMlPfaoSgqKiMRAIAsS+jp7oF8/vy+ZoF8+eWXsG0bfr8f58+fP9bnsb0LFhEdHgMQojImCALa29uRz+efGHwc+o3xgEGNIAgIBAK7Xk0Nh8KAA9i2heXlZczPzeHevXtQNRWqoiEYDHhpWdlsFpq2s22qIAh488038e///b9HMpnEt99+i9dee+1wz+sptbKygryVR31d/UkvpWTYuOBRq6urGB4ZBgC89NJLJSs8z+VykCQJoihiZWUFiUQCumF4aYF1tXWor6+H3+9DQ30DfD4f/H6/lz4I24YgCFAUZV+vaMlkEtMz0wBK9zx50kZ0dAxAiMqcoihQFMUtGM9kynp6cTAYRDAYRH19PRYWFrAwvwDTNNHZ2em1wgTc1IuRByNu4bCiQdNUaJqG2tpa+Hw+vPLKK/joo48wPj6Ouro69Pb2nuCzOl10XUc6nX6qAhBdN1BRET7pZZQNx3HcuToO0Nraivr64v4u2LbtbfSXlpZgGAZ0XYdhmrCsPLq7ur2UTEVREAqHoKk++Hyad0Ln8/mOfFrnOA5+97vfwbEdVFRUoKOj48jPbb84A4ToaBiAEJ0Si4uLWFhYQF9f347Th2K9EQoOippc0H+hHwvzCxifmMDzzz//SC1IV2eXu2nZ3LxsbCRRV1cHwN1E19XVYXFxEd9tDihsampCMBiEvXmFlFchd6eoCnKJp2cOiG3bMHMGfD7WCxUMDw9jeXkZoiTh+eefP9R9OI4DQRCQy+UQj8dhGIb7zzTh2DYuXrwIAFhfX4fjONA0DeGKMDTV59WLHaqGa5+NBLLZLIaHhzE+MQ4AuHbtGl8TiE4RBiBEp0RdXR0SiQTGxsbQ11fEQuNjetNubGxEZWUlEokEhoaHcPnS5W0PKXinJbupra1FMBTEV19+hVQqhVu3biEWiyEYDGJtbQ2zc7OQZQXaZn1KMBhELBbz2nWqqvrUbkYURYVlW7As65EuZSfFTcE7nsLgQvpVOda+nIRUKoXf/f73AICrV6/ueWJqWRYEQYAoikilUtjY2IBhGDBNE7lcDhUVFWhtbYVt21hcXISquqeUoVAIiqp6AcpJDDXM5XIYGxvD+Pg44LiBzkGGtx4FO60RFQcDEKJTQhRFdHV1YXBwEOPj4+ju7t6R71xub4yCIODChQv4+uuvMXB/AP0X+ve9IQ6FQgiFQvjxj3+Mv/p3/8672nnt2jWEQiE0NzXDNE2YpukNHgPcjcng0CAAdyOuyDIURUFraytEUfRaCBfS2k7NQLYDUL1ZICb8fv8Jr8b1X//9/xrRqqpjuW+/34/uru6yea4nyXEcfPPNN7DyecRiMTQ1bm3KFxYXkElnkMvlkMvlYNkWWlpaURWNwjAMrK9vQFUVBINBKKoCv8/9fqqqiosXL55MQL/LY9q2jbGxMayurmJtbQ0QgFdeeaX0ayOiI2EAQnSKqKqKzs5OjIyMYH19HdFo9KSX9FgdHR24ceMGstksRkdHD1zLEQ6Hce3ll/H1119jZGQEbW1taGxs3PNqtyzL6Gjv8Ca953K5HQX8c3Nz0I2t6fKSJKOluRmRSATJZBLpdBqyLEOSZCiK/EgHsNPA5/Ohvr6+bE4/AODjTz/B1avPoPcY9omiKO55knbWWJa19XttWcjncpAVBVXRKHK5HL755hvMz88DAlBdXY3JqQmEwxchSRKsvOWdPCqqAkVREdr8vsVisT3bZZfTSaLjOBgfH0cmk8HU1BQAN9Wz6piC28cpp+8L0WnEAITolAmFQrhw4YKXZ12UN0JB2Hfu9UFIkoTz58/jhx9+wP3799HT03Pg9XZ3d2NpaQkPHjzAZ599jvfffx+VlZFdv1YUxT3npRTuq7CBy+VyyOVz3vfRMAysrq0hn9+qn6iMVKKtrQ2maeLB6CgUWYa8eaoiyzLq6uogCALS6TQANwCSZRmiKJ7YBkWWZdTV1p3IY+/l66++gqZp+Nkx3Pf8/DxUTUPsBDahR+E4DvL5PPL5PCzLQjAYhCAIWF1bg6Hr3udyuRzq6upRWRlBPB7H7Nysdx+i4P6+V0Wj0HUdU9NuN6jz587j/PnzO075SpWidJwEQUBVVRWmp6e9VMtSD1dkG16i4mAAQnQKFTbNy8vLyIvlNfX6Yb29vbh1+zY2NjYwMzODlpaWA9/Hiy++iNXVVcTjcXz44Qf4W3/rbx3qZEKSJPj9/l3Tdaqrq1FdXQ3HcWBZFnK5nBdECIKAaGWld6KSTqdh247XXWh6egaGuXWyIggCWlvaNjeNCayvJyBJktueVBLh9/kRiURg2zbS6bT3uWIFL8lk8qk4GXAcB6urq6iuqT6Rx7dtG5Zlef80TYMsy8hkMkilUjs+r/k01NXWIZfLYWhoCJZt7bivi/3uSUVyYwPZrA5Zdn8fgsEgZNk9zaqoqIDP5/MC4MIpl+M4+O7772FbFmKxGJ577rnTm164y4UQx3EQj8cRjUZhWRbGxscAuKlXnBNEdDoxACE6pRzHQSKRwMrGCgJ1AfiUQxbhHvOVelVV0dfbi/v37+POnTtobm4+8AZblmW8/fbbXj3Ip59+ip/85CfHcsogCIJ3klGgKAoaGhr2vE1nZ4d3xTpvWbAtC37/1s/Dtm2YpgnLsmHZFiIVFYhEIm4x7eZmarvLly5DEARMTU1B13VvroIoiojFYgiFQt4mVxRFCKIISZSgKO6GdWFhAZIkobGx0btdoeD4LKWO5PN5WLYFn7Z3/Ydt23AcB7Zte/+tKAokSfI6sNm2A9uxYVsWVFX1fjYLCwuwLMu7rWVZ6O3thSAIePDgAdKZ9I7Ham5uQayqCplMBouLixAlCZIoQZYlL2CWJAk1tTWQJTfVrxBoFAKG9vb2PZ/LXimBo6OjmJudhSAKuPajH53e4KNg2++o4ziYmprCWnwNmqbh888/Bxy3KUcp2+4+skS24SU6EgYgRKeUIAjo6OhA4l4CU9NT6Gor3ynQFy5cwMDgIFZWVjA9Pe0NIzyIYDCId955Gx988AEWFxfxu9/9Di+88MIxrPbgHlcrEo1WIhqt3PN2fb19266i27BtywsSfD4fBEHwNr+5XA62bQNwuz8tLS3tuJIeDoXR2dkJRVGwvrGOoeGhHY/Xf6EfsixjYmICqXTaDUjgtjSuratFVTSKjY0NLC0tea2OBUGAz+fzArDpzTSf7YFMXV0dFEXBWjwOfdtQQEEQ4C/MfdB8mJ+fhyBu1aaIkujNK5mfn4dlbT0Xx3FQW1sLTdOwuraGjc12r4AbVEQiEe8kcG5+zq19AGA7bpvmC5sTsYeGhmHmtmbQAEBbazsqKyNIrCewsLCwY72VkUpENidy67ruBXCqqu7Y2FdX1yBqV0ESJUiSCEmSvPUUTtN2I4piUVPkMpkMrl//HQDg8uXLqCrzurCDcBwHMzMzWIuvoa21DTMzM1hfX4cgCnjjjTdOenlEdAQMQIhOsULR9fStaczOzqIt2nb4K9zH2EUrEAig/8IF3L17Fz/88AOam5sPdZW2vq4ezz//An53/ToGBgZQU1Pz2CvG5a6wud9LbW3tnp8rFA47juOljRV+9pqmQZJktG22UXUcd2NeSNmJRCrh8/s2p9a7AU2he1Zhs104LSj8A9wN4fap49s/DgDG5jyX7R3ZxM39sKIoSKyvQxS33nZUVQE29+LpdNoLQArPwwtINtdQCIjcVDbJDRAEERXhsHe6UzjpKWhoaIDt2BAFEaLofq7wPY9VxRCtjHonTNv/dhRFeWyL2b3qkErJcRx8++13yOVMRKNRXLp46aSXVDQO3KYRK6sraGlugd/vx/Xr1wEAzz/3/IkNZC23boNEpxUDEKJTzu/3o6W5BavLq7Btu6y6H23X39+PoaFhbGxsYHR09NDzAy6cP4+V5WVMTEzgq6+/RkUkcqau+h7UbptuRVFgWXmEQqFdA9K9TmSArRbIez3W4zqZNTQ0PJKqZlt5/OEf/RH6+vpw/tw5iNLubzvd3d173u9eXZrS6TQaGhr2PG0AHh8obE+zO43Gx8cxMzMNCMCPXnnl9KdePUTXdTQ1NqG6uhoffPABTNNEZWUl+vv7T3ppZyqVkegknK1XK6KnVDgcRltrGyRJOvgVuhK9kWqahkuX3OnJN2/eRD5/+OL5V199FXX1dbDyeXz04YfQdf3JN3qKaJqGYCC4I6XpJLW3tyEWK36XqmAw+Njg4yxLp9P47rvvAbg1Q6etC9ieHMdrGdzZ2Yna2lrMzs5iZmYGAPCjV85AjQsRMQAhOu22d2rSdR0DAwNIJpMnvKrdnTt3Dn6/H9lsFoNDQ0++wR5EUcQbr78BVVWh6zo++ugjL5WI3IC0u7u7bK7w/y//8n/BRx9/XNT7tG0by8vLyOVyT/7iM8a2bXz55ZdbqVeXzk7q1crKCkbHxrwudJZl4YsvvgDgFugXaoZOEk8/iI6OAQjRGaKqKjRNw9jYmDebopzIsowrV64AAO7cvgPTNA99Xz6fD++++y4EUcDa2hq+/vrrYi3zTCjUhZSDQpF9MWWzWczNzz2VAcidO3e8LluvvfZ62aZdHtTq6irm5udQWRmBvFmT9PXXXyObzUKW5bKYeM45IETFwQCE6AwRRRHt7e3w+/0YHR3dUTD8RCUqruzu7kY4HEYuZ+L+/ftHuq/q6mpce/kaAGBsbAwDA4PFWOKZMDg4hMXFxZNexrHJZrNPLOI/ixYWF3Dr9i0AwMsvvVQWxfDFsLy8jJnZGVRFq1BTUwNBEDA7O4uRkREAwI9+9COvy1g5YBteoqNhAEJ0RhSuzEmShK6uLqiqirGxsSenJpU4nUAURVy9ehUAcPfePWQymSPdX3d3N/r6+gAA13/3Pebm5o68xrNAVRUYhvHkLzylstksNFV7quoBdF3Hb7/4LeAAHR0djy3cP01yuRwWFxdRU12DpsZGCIIAwzC81Kuenp4z81yJyPX0vHITnVG7XYkrBCFtbW1luUFra2tDLBaDbVm4c+fOke/vxRdfRHNzC+AAn3z6KZaXl4uwytNN0zQYxuFT3MpdJpNBIBA46WWUjOM4+PKrr5DNZhEOh/Hyyy+f9JKOrDAgUlEU9Pb2oqGhAYIgwHEcfP31N8hms6ioqMC1a9dOeqketuElKo7y25kQUVEoioJQKATHcTA/P//kXPkSvrEKgoBnn30WADA84rbmPer9vfHG66hvqIdtWfjNBx8gHk8UYaWnl6qqyOXMstgw1dbWoqameN2qHMdBMBhEKBQu2n2Wu/sDA96089dffx3KZo3EaeU4DqanpzE5OQnHcaCqqlfcPTLyACurK4AAvP7662XTTGE7FqITHQ0DEKIzYq+NZi6XczvLjI6WTVEysDUzwrEdfH/9+pE3ypIk4c033kQoFIJtWfj1r39dloX4paKqGmzHPlK742L5x//4H+Ptt94p2v0JgoDm5ubHzjM5S1ZWVvDDD78HADz33PO7zkQ5TWzbxsTEBOKJOCKVlTs286tra7g/cA8A8MyVZx47jJOITi8GIESn3JOuxKmqiq6uLpimidHR0UdrQk7wSt7zz78AQRQwNzuLqampI9+fqqr42c9+Bk3TkMuZ+Ju/+ZszXQfxOBUVYVzsv1gWV8r/m//Lf4MPPvxN0e7PMIwjdVA7TUzTxBdffAHHdtDc3ILz586d9JKOxLIsjI2NIZlKor2tfccQUcuy8PlnnwE2EK2MerViRHT2MAAhegoEAgF0dXUhm81ifHy8bGZmRKOVuNjvDif8/vvvi7Kp9Pv9+OlPfwpJlpHJZPCb3/ymLE4BSk0UxbJpz5qIJ4qaEre0tITx8fGi3V+5chwH3377LVKpFPx+P370o2unPvUnHo9D13V0dnQiEtnZwev3v/890uk0REnEK6++UpbPlW14iYqDAQjRUyIYDKKjo2NHrrXnBN/oL126hGAwiGw2i1u3bhXlPiORCN77yU8giCISiQS++OK3ZRN0ldL09PSZLMh/WgrQh4aGMTEx4dZCvPH6qW45XPj7i8Vi6O3tRSgU2vH52dlZDA66bbSfe+45+P3+kq/xINiGl+hoGIAQnRH7uTJXUVGBlpYWCIKAdDq9c1N+QsXKsix7HX0GBgewurpalPutrq7GjzcHFc7MTOPzz78oi4LsUjJN88zVwViWBd3Qz3wAsrCwgO+vfwcAuPrMVdTV1p3wig5P13UMDg0hkViHIAhQVXXH57PZLD77/HMAQG9PD5qamk70oggRHT8GIESn3GGuxFmWhdHRUYyNjcEqg5OBpqYmtLa2Ag7w7bffFu20or6+Hq+9+hoAYHp6CtevXy/K/Z4WPp8Pun62amAKc2POcgCysbGBTz/9DHCA9vZ2XLx48aSXdGjpdBoPRkchCiICgUdPNWzbxocffggrn4ff78dzzz13Aqvcv6ftIgbRcSm/3nZEdGAHzZWWJAmdnZ0YHR3F6OgouhT1xOsFXnzxRczOzWF1dRVDQ8M4f744xbbt7e1IpVL44YcfMDg4CFVV8cwzzxTlvsudpmlYWV2B4ziHzqfffttcLgfbtuE4jvdPVVXIsuwVhhc+DritoH2aCp/fh6qqKNY3NiCKW79nFRUVEAQB2WwWlmVBEATvn6q6v5OFxyt8PJfPQ1HUU52O9DimaeLTTz9FLmciFovhRz/6UVnWQuzH6toaZmdn4Pf50dHR8Ug7Xcdx8MUXXyCRSEAQBbz9zjuQy6RuiYiOFwMQoqdUKBRCT08Pxu/dw+TcHJpbWnCS/ZICgQCevfosrl//Hj/c+AFtba1Fu8p98eJFZLNZDAwM4Pbt27Bt25tDchY5jgPLsiBububW1tYQiUQgyzI2NjaQyWRgWRYsy4Jt2wiFQqiurkY2m8XExCRsx4Zj27AdG6IgelfgHzwYhZnbeaLS3taOSCSCeCKOxcXFHZ+LVETQ2tKMP/8//DlkWcHkxASEbRvMy5cuA3Dz/9OZnalizU3NiMViiMfjmJmd8T4uCAJCwRAEQYBt23jw4AFEUfSK7kVRRENDA2RZxvr6OvKWBVEQIcsSJEnyAqZy5DgOfvvll1hfX4emaXjzzTfLdq1PYts2lpeWEa2MoqmpadeBqHfu3vG637326muIVVUBun4q0q9Oa1BIVC5O5ysbET3iMKkBhe5Yi6trgH3yqQV9fb0YGxvF6uoqrl+/jjfeeKNo9/3CCy/AcRwMDg7i7t27kBXZ2wCfBoUZLpIkwTRNrK+vw7Is5PN55HI5CIKA9vZ2AMC9+/dhWVudv2ZmZ6CqKsLhMDLZDNbicYiCCEna2SlLkiREIhUQJRGi4G7qhW0bx+bmJu80QhRFCIIATdMAANWxakQr3Zaqhc1ZYdN55+499Pf34/z58xAl+ZHf1ZaWFu+kA3A3r4X7DYVCaG1p2wqKbBuKslVDEAgEYNu2973YPutmbW0NG8mdQy4b6htQW1uLRGIdM7MzkCUZiiJDlmX4/D6v1mJ9fR2yLENRFCiKUpIN582bNzE7MwNBFPH2228jGAwe+2MWWyGwVVUV3d1dkCRp1+/d3Nwcbt68CcBtRFH43T0NWIBOdHQMQIhOuaNujHw+H1rb2yAAyG1uZk+qA40oinj55Zfxy1/9EpOTk5idnXULUovkxRdfhKZpuHXrFm7euImcmSuLnHPLsmCaJkzTRDAYhCzLWF1dRTweRy6XRz6fg+3YqKmuQWNjI3K5HOYX5iFJMhRZ9jbKBY2NjRAgeFf9JUnyPl9fV4/6uvpd16GqKhobG/dcZzi89+RxeXMdD7OtPD74za+Ry5l453/7pxClR7+mEGzsRtM07/OGYWBwaBBdnV0A3N+X5ubmPW/b0dHhnQYVgpPC90HTVFRXx2DlLeRyOS+IAzYH5U1O7LgvSZLR29MDVVWxuraGfD4HRVGhKgpUVT1ykDI+Po47d+4AAK69/DJqamoOfV8nRdd1TExMQpJEdHd373l6E48n8NlnnwOO+zPaNSWyTE8Y2IaXqDgYgBA97TZz6+E4WFhYQCKRQHt7+yNtMkslFovhXN85DA4O4quvvsIf/dEfFTXf/8qVKxBFETdu3MC9e/eQz+fx4osvHusVbsdxkMvlYBgG8nnLm+A9NjbmpkPZW1ftO9o7UFFRAcDd1AcCAXdzryjwb34fAoEALl28tOeatw93SyTWYdm6m95yyqU3C9AP8vsgCMKuwZHf798z0BYEARfOX/ACk3w+j1w+591HNpNBIpHY8XMrnKykUinE43GomgpV0aBpKjRNe2yN1crKCr786isAwIULF9Dd3b3v51cuNjY2MDU1BUmSvU57uzEMAx9++AHy+RxisRiuXTuds014CkJ0NAxAiMjT0NAAXdcxNj6Gtta2RwaFlcrVq1cxNzeHjY0NfPX113j7rbeKukm5dOkS8vk87ty5g6GhITiOg5deeunIj+E4DnRdB+BucHVdx9TUFAzDgO24nb0EQUBlZQSCICAQDCAQDEBVNaibqT6FFqWxWAyxWGzXxznIOlOpJNLp9JkIQLKZDFRFO/a6CEEQvNSr3TQ3N6O5uXnHyVUhKMrnLWQ2A5TCzzwYCKK7uxu2bWN+fh6q6gYlfr8fuVwOn376KRzbRkNj46msTVpZWcHs3CxCwRDa2tr2/PnYto2PPvoIuq5DlhW89dZbj34tu0wRPRUYgBCdEUdODXAcrzvW5OQkJiYn0NLSuuNqeqkoioLXXnsNv/qbX2F2ZgZDQ8M4d66vqI9x9epViKKIW7duYXh4GLZtH+hqbKEWIplMIh6PI5vNwjANOI6DinCF1/XH7/cjUhmBpvq8q+GFx9grFaqYNE3DWnztSJ2wykU6nUYwWD7tdyVJeuQkpbIygsrKiJf6ZRhbRfv5fB7JZApmzv09sS23iD6bzSIcDuPZq1eh6zp8Pt+uRdvlSpYV1FTXoKGh4bG/Y19//TVWV1chiAJ+/ON3T2UrZbbhJSoOBiBEp1yxUwFEUUR7ezump6dh5fNPvsExicViuHr1Wfzw+9/j+u+uo66uzktdKpYrV65AEAXcvHETDx48gKIoeP755x/ZRFmWhXQ6jayeRTaTRSabRV1tLWKxGPJ5C7ruDsarqqqCz+fzrobLspuOcpI0TYPjODAM41S3rrVtG7qh73kqVG52S/1SVRXnzvXBcRxkMhl88cUXyGazUBQVb731Nubm55DLmRAEAT7Nh0AggOrq6rL8ueVyOazF11BbU+sFXY8zODiEsbExAMC1l689ucbllAfLRPR4DECInna7vNELgrAjj3stHkekoqLks0L6L1zA/Nwc5ufn8eWXv8XPfvazoqffXL50GaIg4ocffsDAwAAsy8IzzzyDdCaDykgEkiRhenoa6xvrEAURfr8flZGItymMRiuLHhgVU+HqfDarn9hG9s0338KlIw7TE0UR/Rf6i7Sik+U4Dq5fv47l5WWIkoR33nkblZURhMMhZLNZ718qlUZ1dTUAYH5+HplMBsFgEIFAAMFg8MRm96TTaUxOTcG2bUQro49MNn/Y3Nwcrv/uewDAuXPnTmWNy8NO+2ki0UljAEJ0RhQ7NWD78LnZmRksqyra29sf27Go2ARBwCuvvIJf/OIXiMfj+OGHH/Diiy8W/XEuXryIfD6P27dvY3h4GMvLy2hpaYHa1YVwOIy6ujrU19fvSJ86LRRFQawqBkU5uZf7l19+CdXVR+/qdNLDMovBcRx8//33mJqagiAKeOvNN1FbWwvAfX6hUGjXBhCqpkHXdaysrsJacuetFGal5PN5bxbKca99aXkJCwsL8Pv8aOvsfGLwsbCwgI8/+RiO7aC1tRUvvPDCkx6kiCsmonJ1epJMieh47fHGrygKuru7Ydk2RkZGkEwmS7qsQCCAV199FQAwODiImZmZJ9ziyWzbRjKZxPz8vBe4hUIhbxZBPB7HzMyMF2z5/X74fL5TF3wUNDc3n1hXMwD45//8n+ODDz440n2MjY1haWmpSCs6OYWaIwB49ZVX991mOlZVhY6ODvRfuIC+3j40NzV7c0JWVldw995djI6OYnl52WuEUGxr8TgWFhZQW1OLnp6eJ16MWFxaxIcffQTHdlBbW4vXXnvt1P4NFbANL1FxMAAhOuVK8Ybu9/vR29MDv9+PsfExrK+vH/tjbtfc3Iy+PrcI/auvvkJmsx3rQTiOg3g8gYmJCdy7dw9j42NYi8dhmiYAoKurC6+//jreeOMNCKKAtbU1/OIXv0AqlSrqczkJ+XweGxsbT/7CY5LL5ZDL5w59e8uykEwlT1Vh9m7uDwzg9u3bAIAXX3wJHR0dB74PQRDg8/kQi8W20gAro2iodwvA5xfmMTQ8hIWFBQDu7/1RT0cLhfRV0Si6u7qfWGwOuJ2xPvzwIzi2jWg0inffffdMnGAVsA0v0dGc7ldzIjq6fQYwsiyjs7MTDfUNjx1Id1yee+45RCIRGIaBr77+el+bKsdxvI23IAhYXFyEYRioqa1BT3cPLpw/713FLWyo2tra8NP3fgpJlpHJZPCrX/0Kq2trx/fESiCZTGF8Yhy53OGDgJOUTqcB4FROBi8YGxvD765fB+A2PyhmVzdN01BTU4POzk70X+hHW2u7N0tmbW0NA4ODmJ+fRzabPdD92raNubk5DA4NIpvNQhCEff0MVtfW8JsPPoBtWaioqMBPf/rTQ9RucYNPdJYxACE6I46UGrDPIEQQBNTW1kIURWSzWYyOjnonCMdNlmW89vrrEEQR83NzuHnz5p5fm81mMTc3h3v372N8Yty7gtvT042+vj7U19UjEAjseRW3pqYGP/+DP0A4HIau6/j1r3+N6enp43haJeH3u1fKD3NyVA4ymQwkUSrLblD7MTs7iy+/+hIA0NfXh8uXLx/bY0mShMrKiNfi1u/3oyIcxuraGoZHhjE8PLyvE0xd1zEyMoKV1RU0NjTu+3u/sbGBjz/6CFY+j2AwiJ/97Gd7zlMhoqcXAxCiU+6kUgEcx4FuGBgeGSlZmlJVNIprL78MALhz547X1nO7iYkJDI8MY21tDVXRKHp7er1TjoOkgEQiEbz//vuoq6uDlc/j088+xcDAYHGeSIlpmgZREKEbx1MbcNxSqRSCweCprB9YXFrEJ59+CjhAe3s7XnzxxZI+j0AggObmZlw4fx6tLe6QQNt2L1bour5jTknBxsYGRkZGYNsOuru6UVNTs681p1Ip/OY3v4Gu64hEIviDP/iDgzetKPMidM4BISoOdsEiOgOKsqE54BtrIBBAb08PJiYmMDY+hsaGRsRisWPfXHV3d2N9fR337t3DV19/jVAoBEVREQ6HIMsyQqEQKiIRVEYiR64Z0DQN7777Lj755BPMz8/j+vXvkUold50VUs4EQYDf70c2c7AUnGKpqKhAZWXloW/f2toKy7KKt6ASWVhcwMcff+JNOX/llVdO7PdGFMVHWkYvLi4isZ5AZaQSdXV1Xpe3QCCAWCyGurq6fQftmUwGv/zlL2EYBoLBIH784x+f2hOrJxLYhpfoqHgCQvS0O8IbqaIo6OrqQlW0CgsLC8iXaHDh1atX0dTcDMe28eFHH2F09AHWN2s9qqurURWNFq1gWZIkvPvuu+jp6QEADAwM4NNPP4Nt20W5/1I5yROEf/pP/yl+/O6PD317VVV3TBs/Debm5vDhh24qUl19Hd58442yK8Jubm5GU2MT0pkMhoaHcO/+fWQyGciyjMbGxn2vV9d1L/hQFBXvvffe4aec5/KAaXIQIdEZxwCEiI5EFEWvS5WiKMjn88feJcuyLLS1tkLTNFj5PGZmZlBxjIXxgiDg2rVrePbZZwEAMzPT+Ojjj46t3elxaGhoQFtb24k89l/8j3+B3/72t4e67eLSotfR6bSYmZnBx59snXy88/Y7ZVkHIUkSotGo97dj29aBA+tUKoVf/OIXyGazkGUFP/vZzw7W8tm2gVQKWF6GMDUFYX4OsB04wUMGMMeMbXiJioMBCNEpt/2q9knmJxc2WGtra5iYnMDMzMyxpc3oug7dMPDqq69C0zRsbGzgt7/98tif/8WLF/H6669DlCQszC/gr/7qr7C4ORTuNHAc50RSmaamp7CweLggIr6WOFXduyYnJ/HpZ5/CsW00NTfj7bfeOkQHqNJIJpMYHBpCPB5HY0MjLvZfRCgUQj6fx8TExBO/72vxOH75y19C13XIsoL3fvoeKisjj39QxwEyGWB1FcL0DISxMQhLSxDSaUAQIFRUQKivB2KxIj7T4mMbXqKjYQBCRK4ibd5ramrQ1NiEtfgahodHvBaqR+U4DtbicTiOg3A4jPPnzqGpqQlvvfUWBFHAzMw0bty4UZTHepz29na8//77CAaDME0Tv/nNb3Dnzp1TUZw6MDiI5eXlk17GvpmmCcPUEQqVvu3zYYyNjeHzLz73pn6/9eabZZd2BWxdqJAkCQG/H319faipqfHSFnO5HNKZDIZH9v77nZubw6//5tcwDAPhcBh/9Ed/iFhV1e4PaBhAPAFhbt4NOBYWICSTgGMDPh+EcBiorgaamuB0dcFp3t9wRiI6vRiAEFFRCYKA6upq9Pb0QpJEjI4Vp1XvwsICpqenvI5bhY1dbW0tfnTtRwCAu3fv4sGDB0d+rCepikbxh3/4h6irqwMc4MaNG/jo44/L/kq93+crWkBYCslkEgAQDp/cFPf9GhkZwZdffgk4QEdHh3tSVmaDEx3HwerqKkZHR2HbNgKBADo6OqCq6o6vKwweVRUFY2Njj/zOjI6O4qOPP0I+n0Ntbe2jaVf5PLCxASwsQBgfhzAzA2E9AeRMQNMgBAJANAo0NgKdnXDa2oDaWiAUAsrse/aw03Chgeg0KO+/dCI6fsdU7Onz+dDT04P2tnaoqgrHcQ4diCwvL2NpeQmNDY27DkHs6urCxYsXAQDffPsN5ubmjrT2/VBVFT/5yU+8mQ7zc3P4xS9+gUSitFPiDyIQDCCTyZyaTVQqlYLf5y/bFKaCwcEhfPPNNwDcLm2vvvpq2QUfuq5jdHQUM7Mz3t/j4yiKgs7OTvh8PoxPTHgNJu7cuYOvvvoKcNzg/91334VPVXfWcUxMQFhdhWAYgCxD8PshRCqB+nqgrQ1OZyfQ0ABUVABl/rMlouPBv3yiU66Qi5w0k0iaSfhlPxSpPApeBUHwJjKvrq5ifn4ejU1NqIpG992RyTAMzC/MozpWjZqamj2/7urVq1hf38D09BQ+/uQTvPvOO2hoaCjK89iLIAh45plnUF9fj08++RTpdBq//NUv8aNr19DR0XGsj30YAX8AtmMjm80evkvRIYiiCEE8eKBbU1NT1u13HcfBvfv38cPvfw8AOHfuHF544YWya9G6srKCufk5yLKCjvYO72/ySSRJQkdHB7LZLCRJwnfffYehoSHAcdBWX4/XnnsO0sIioGfdkwtRBCQJgt8PaD44AT8QDMLx+c5cV6ty+xkTnTaCc1ouhRHRrhzHwVp2DSPLIwiqQTiOAwECNEmDKqvQJA0+2QdVUnd/08zlgPFxwDDgdHUd2zoty8Lc3BzW4muoCFegsbFxX0PKFhYWsLq2hnN9fU/Mp7csC59+9hnmZmchShLeffcd1NfVF+spPFYmk8Fvf/tbLC66RemdnZ340Y9+VFZXwi3Lwt17d9HS0oqqaLQkj2lbefz1v/l/ormpEc/8+D+AKJ2N6162beP777/H8PAwAKC/vx/PPvtsWW1MHceBIAiIxxPIZjMHmuuxnW3b+PaLLzA1OAjZNHGutQ0XL12EIEle4CFoGhy/HwgEAL8fKMPal2KIZ+OIG3FUh6pRHyrNawvRWcQAhOgMsGwLK5kVGJYBI2/AdmzYtg3bseHYDmzHBhxAlVQvKNFkDZqkQbIdYGzs2AOQgkRiHbNzs7CsPHq6e/Y138GyrH1vnCzLwieffor5uTlIsowfv/suamtrj7rsfbFtG99++61XhxKJRPDuu+8iGAyW5PH34yDfy2KwrTz+9V/8Q/T29OKV/81/tO8AZGVlBY7jPPbU66SYponPP/8c8/PzAIBnn30W/f39ZRN85HI5LCwswLbtw7dezueBTAb5ZBLffvopVhcW4QgCLl25gu5zfRBkeSvgCASAMmwzfBzWsmtIGAkGIERHxACE6IxxHAemZXrBSOF/83YejuN4wYnjOLBtG7INhGeWIOcdSD290CTt2FO4LMtCPB73JqdnMpmipgTl83l88uknWJhfgCTL+MmPf1zSjezo6Ci+/uYbOLYNUZLw4gsvoKenp2w2qIUr46VgW3n8/KXzeOvtt/Ff/vf/ct8ByMDAIEKhIFpaWo55hQeTTCbxySefYH19HYIo4vXXXjux+SoPsywLyyvLWF5ahiAIqKurQ3V19f5+1rYNZLNANgshkwFME4lkEl9/8w10MwfIIjrOX8DVV191A459nF6eRYUApCZUg7pQ3Ukvh+jUOhtn4UTkEQTBPd2QNWDbHiFv52HkDeh53QtKcnYOtmnCdEzoOR1mehk2bAgQ4JN8O05M9kzhOgRJklBdXQ0ASKfTeDD6AJGKCBobG3d05NF1HWPj42hrbT3QKYIsy3jrzbfwySefYHFxER9++BHee+8niJVotkBXVxeqqmL45JOPkU6n8e2332J2dg4vv/zSiU/0TqfTmJicRE939yPdj8qFruswcwbC4eOt4Tmo5eVlfPLJJzAMAz6fD2+//bb3e3zSbNvG0PAw8vkcqmPVqK2tfXzxvuO47XEzGQiZLGDobp3GZkrVxMICrt+9g5yqQqiM4txzVxEIBN3uVURER8QAhOgpIYsyZFVGUN3ayNuODUNPwwxlYWADWX8YpmXCdmzk7TzMvAnHdGBjM4VL3AxIZB80SYUmaxCFo9U4BAIBtLS0Ym5uDkNDQ95VW1EUoaoq8vkc0un0gdOYFEXBW2+9hY8//hjLy8v44IMP8d5P3ytZ7UM0Wok//uM/xq1bt3Dn7h1MT09hbn4OL7/0ErpKkOq2F03TkM/nkEyl9p7bcMLWN9Y3GxiUz/yP8fFxfPnVV3BsG9FoFG+99dbBJn4fk2QyiWAwCFEUUV9fj2AgsHdtlWkCmSyEbBbIZtwgpFDHoWkQVBWWquGrmzfwYG4OTmUUVVVVeO+99zAxMXHiwTMRnR0MQIieYqIgwq/44dMq4DgqUNkKx3GQ25bCpecNmJYBy7Zg2zZ0W0dGz3jpXIqgQJM1KJIK3+bJiyzu/6VFEARURaOIVFRgYWEB8wvzcOCgrrYOoigiHApjdXUNNTU1Bz6BUVUV77zzDj788EOsrq7ig9/8Bj95r3RBiCiKuHr1KlpbW/HZZ58hnU7jq6++wtj4OF5/7bV9FeEXmyzL8Pv8SCWTZRuAbKxvIBwKl0UBv+M4uHP3Dm7euAkAaGxqwhuvvw7lhGsestks5ufnkUwl0dzcglhV1aO/15blTh3PZNygw7K2ulWp6iN1HBu6jk8//RQrKyuAKOL8+fN46aWXYJomdEM/9q5ypwGz1omKgzUgRE87ywJGR2Fns0BPz55flrdy2+pKTBh5HXk77xW7F+pKHDgQIXppWwdN4cpkMtA0DZIkIZFYhygKGJ8YR319PepqD5dzbRgGPvzwQ6ytrUGWFbz99luory9tAallWfj+++8xMjICAJBlBa+++gpaW1tLug4AmJ+fx+raGvovXDj2WpDD1IBsbGxAFMUTP2HI5/P49ttvMTY2BsBts/v888+faGCUy+WwuLiI1bVVKIqKhvoGVFZG3J/jjjqOLGAa7gmHILjtcSUJ8Pnd9riBAODzefc7OTmJzz77DJZlQVVVvPHGGzvqb3Rdh6ZpZVPHdFJWM6vYyG2gJlSD2mBpmlsQnUU8ASGifZElBbKkIKhubQot24K5rdjdzLsnJ47j7JrCtRWUaHumcBWK0R3Hwdz8HKx8HgF/AMmNJGprag+1AdI0De+++y4+/fRTLC8v48OPPsS1l6+hu7v7aN+UA5AkCdeuXUNnVyc++/QzGIaBzz77DN3d3Xj++edLWo8RDAaxtLwEXddLklbz/AsvoLend99fv985FccpkVjHF198jkQiAQjAC8+/iPPnz530spBOZ5BIJNBQ3+CmKpomkEi4AYee3VHHIfj9gKptzePw+x+Zx1FoJ3z//n0A7vf+vffeQzgc9ianx2Ix+LYFK0RER8UTEKKn3T5PQParkMK1Vexu7kjhsp3Nk5LNFC5VVB8JSgopXPl8HktLS1hZXYEoiKiprUFVtOrQ6S/5fB5ffvklpqamAABXnrmCy5cul/yqbj6fx/fff++161VVFa+88krJOj7Ztu0VUpfiBOTGb/5/CFWE0XPtvSeegMzNzSEYDCISiRzruh7nwYMH+Pa772Bvnga8/vrraGxsPJG15PN5rKyuwNANtLW1wTEMWKkUFDP3aB2HKEJQ1Z3tcR/TcjmTyXjpiQDQ3t6ON954A5IkwbIsTE5OYn1jHd1d3QiHy6ce5yStZFaQzCV5AkJ0RAxAiJ522wOQ7u5jm1ict3KPBCW7pXDZjg1JkLxZJaqkQrAFJFYTMAwD2WwW0WgUdXV1j+/yswfHcfDDDz/g3r17AE52YODC4gK++PwL6LoOwJ38/corr5TFCUCx2FYef/vNq3jrzbfx5/+3f/7YAMQ0TQwMDng1DaWWy+Xw3XffeSlXdfV1ePWVV09kjksul8PKygpWFhch6FlUB4Kor6iAsL2Oo5BW5Q94pxz7mcfhOI4bZH37LXK5HARRwLWXr+HcOfeEJ5vNYnJyEoZhoL29/USDwXJTCEBqQ7WoCZbfjBqi04IpWERPuxJd/ZclBSFJQQhbV1K3p3DpeR2mZcK0zK0UrpwJx9hM4QoASlCBkTQxsTCBuaU5NNY2oqGh4UDBgyAIeO655xAMhvD9dXezmclm8OYbb5a8LW19XT3++I//GN9++y3Gx8exvLyMv/p3f4Xenl4899xzx1ronEqlMD8/j66urmMPvvSsDt3Qn/h1iUQCgiCg8gQ2vGvxOL74/HNsbGwAAnDl8hVcunSp9IGp48BOpzF68yaQzaIhFEI0Vg1ZVdyAQ1V31HE4B0yNSiaTW4XmcIdlvvnmm16L6mw2i6HhIaiKip6enqLO5yEiKmAAQkQnRhIl+MUA/MrWJscdpLhziOL26e6BiB+WWIG5uTksTS7h/ux9NDU0oy5WB7/ic6e7i0+e9H3uXB9CoSA++/xzLMwv4Ne//jXefvvtkhc+K4qC1157DRf6+/H1V18hHo9jeHgY09PTeP7559He3n4saVKyLCOTzWBjI4nKyvK4wh2Px1ERrijppHbHcTA8PIzvr1+HY9vw+Xx4/fXXS9ukQNdhJBKIz86iNhSGpMhoiUbhb2yCrKlbdRyBgJtedYigyHEc3Lp9Czdu3IBjOxBEAc9efRaXLl2CIAhIpVIIhULw+XxobmpGVVVVWXQhI6KziQEIEZUVd5CiD5q888puzjK9oCTir0R1tBqLy4tIpVOYnptCMruBSGUlZFmCLMhuwbvs1pcUUrke1tzcjJ/99Kf4+OOPkUgk8Ktf/QpvvPnGobttHUWsqgo///nPMT4+jh9++AGZTAa//e1vcfv2bbzyyitFH3jn8/mgKhqSyY2yCECy2Sx0Q0ddXek2/qZp4ptvvsHk5CQAoKGxEa++8srxF+bncm573GwWejyO+PIK1jMpyJKKynAFAsEgQtXVbuH4E+o49mNtbQ2ffvop1tfXAQCVlZV48803EY1GsbGxgcXFRaQzafT29CIYDJbNcMVyxKx1ouJgAEJEp4IiqVAkdUcKV2u0DWbeQDyZwPTcFBZm5iGpEgL+AKJVURiO4aVwCRCgiTuDEk3SEIvF8P777+Pjjz/G+vo6fvOb3+DKlSu4dLH06TeCIKCzsxOtra24d+8ebt+5jfX1dfzqV79CW1sbXnrppaJ2I6qsjGB1bQ3NjnPi7VVVVUVLS2vJhg/Ozs7im2++QSaTAQTg6jNXcfHixeP5PhTmcWQ3hwDm84AoYmV1DcvxVSiaD3U9fahsaoQYCsEpUiqgbdu4fef2I6cely9fRiKRwODgIHRDRzAQRGdHJ9OtDuCk/16ITjsGIERPu+1vpI5TspqQYihMdw/EgmiINmB1ZQWzc7MwdRPxmTgCFUFUVkXgiG5xu2VbSOfTSJkp2HCL3lXRDUauvXkNt364hdmpWdy6eQsL8wt49dWTKUCWZRlXrlxBV1cXvvr6KywuLGJychLTMzN49tln0dfbW5Q0pYqKCiwtLyGVSh1rlyO/P4Bg4PHfR0mSSjIgMpvN4vr165iYmADgtn1+7fXXinvq5Tg753EYOiCKsBwHiWQS/mAQwcoo/OEwars6UdXQAKHIwe7S0hI+//xzJJNJAEBtbS1eeuklVFZWQhAE6Ia+GfS1nPi8FSJ6+rALFtHTznGAkRG3C1ZX16Hyy8uJ4ziIr61hcXERuVwOtm2jprYWsirBF/Qh5+RgWCbMvNuFq9B5q9CFa3xyAndv3wEsIKSG8KOXX0F3excU6eQmX8/NzeHrr792r9YD8Pv9OH/+PM6fP3+kQMRxHC/3/7iu6NpWHvc++/cIBAPoeOGdXbtgra+vI5FIoKWl5dhOnRzHwejoKK5f/x1yORMQgPPnzuOZZ54pTrG/YQCZLIRM5pF5HLphIp5OY800kNdU1LW3o77heNr6JpNJfP3115idnQXgBrP9/f3w+/0wTAMNDQ2or6uHUwanXqfRUnoJ6XwadeE6VAeYqkZ0WAxAiJ52ZywA2c6yLCQ3NrCysoJUKgXA3bxXV1ejMhqFIzgwN+tK9LwBM28gZ+ewvrGB7777FmvxOACgo70dFy9eRFANupPdN9O39jvdvRhs28bw8Ahu377lte2VZQWXLl3EhQsXSlq4fRC2lcff/5O/jZdfegn/wX/+93cNQMbGxpDP59Hbu/9hhQexsbGBb7/7FgvzCwDcGohr166hpuYIbVS31XEI2aw7hXz71HFFgeP3Y03XMbmyDMXnR6w6hlhV7Fi6rem67s6WGX0AbL6r19TUoL6+HqqqIhKJoLKyEpFIhIHHETAAISoOpmAR0ZYzdj1CkiRURqOojEaRSacxOTmJbDaL6elpZHUddbW1yGfz0GQNlaEoBEGA7dgwKwx01Lbj+99/j7uDdzE9PY2N9Q08/+ILCAWDXgoXHLiDFGUVqqRBk9V9d+E6KFEUce5cH7q7uzAwMIA7d+4in8/hxo0buHPnLi5duojz588feDZKPp/H5OQk6urqji0VZ+D+PdTX757iZBgGkqkkmpuai/64tm3j3r17uHnrFhzbhiCKeObKFfT39x/8pMW2dwYcudzWPA5ZhiDLgM+PjACsZLOQNA2N9fWoyOfRGY2ioqLiWDb++Xwed+7ewZ3bd5DP5wG4rXVfffVVhMNh6LqOSCRStgHqaSWAQRzRUTAAIXraPSVXQwPBIM5fuABD17G8vIy11VUkNzbctr+mCVEUEQ6HEQqFEK2qQlUwhp++/jNc7LiIzz//HOl0Gjc+/wHnLp1DR1cH8k7eS+HSbR2ZfAaO7qZzKYICTdagSKoXlBQrhUuWZVy6dAnnz59/JBAZHBzExYuX0NPTve9ARJIkGKaJeDx+IrUA8XgcoiCisrKyqPe7tLSE7777DvHNU6y6+jq8/NLL+x+q5ziArgOZzI46Dm8AoM/nzeOwfT7Es1msrq0hnUlDkRVUh9yaF1mWiz7Iz7IsOI6DwcFB/PDDD17g4ff7ce7cOfT29nq1SywsJ6JyxACEiJ4qms+H5pYWNDQ2wjQM+Px+JOJxTE9PI5PJYH19HeFwGLIsY3VlBYqi4Cc/+Ql+97vfYX5hAQ9uj2JlcgUvX7uGlvpaGHl9sz2w6aVw2bYNwzGQNbNwDAcOHIgQvbQtdTMoOUoKVyEQuXDhAgYGBjAwMLBZYP09bty4gYuX+nHh/IUnBiKCIKCqKorlpWU0NjaWfAbH6toaqqqqiva48XgCN27cwMzMNABAUVQ8//xz6O7ufvL3ulDHkc0C2cyOOg74fBA0zZ3DEQjA8vlg5HLw+/0wdR1TM9MIh8Job2v3Cr2LxTRNpNNppNNpb4Dk/Py8l4qnqiqee+45nDt3julVx4y1M0TFwRoQIgKGh90akM7OI88cOI1ypoml5WUk4nHkcjmoqorq6mqYuRzWVlfdAnUAyY0NTE9PwzBNAED7Zmvc4LaTA8u2kLNM6HkdhmXAzLvT3QuF7rZjw7GdHSlcmqxBlTVom+2BReHgdTiWZWF4eAQ3b950i6wBCKKI9rY2XLp0+bGzPgzDwODQIJqbWxCrqjrwYz+ObeXx85fO462338Z/+d//y0dqQMzN7+VR6yJSqRRu3bqF0bFRtwZCALo6u3D16tW9TwHyeTetKpPZvY5Dlt05HJv/bFH0CuY3NjagKArOnz8PQRBgmmZRajtyuRwymQwy2QzqausgiiIePHiAjY0NpFIpLC4uep2tJEnC5cuXcfnyZaZYlchiahFZO4v6cD2q/MX9WyF6mvAEhIieeoqqoqmpCY2NjUinUojH48hbFpqbm1FfV4eFxUUosoxcdTUuX76MwcFB3B8YwMTkJKamptDR0YGe3l4EAwEEAgH4VD98ytYwO8dx3EGKluEGJnkTpmXAsi3Yto2snUVaT3sduQopXNuDEll8/Mu1JEk4f/4cent7MDAwgLt378I0TYyPj2N8fBz1DfXo7elFa2vrI/UPmqYhGAhiPZEoegCyF8dx3DbIR9y067qOu3fvYmBwEI5tAwCam1tw9epVRKOVO7/44ToO03QDjkIdhyQB/sDW1HFN865467qOoaEh2I4Nv8+Puvo6VEa2TjoO+jxs24ZpmvD5fHAcB2NjY8hkMshbbjqVJEqIVrptiVdWVjAyMoJcLgcAEEQBfb19eP7554+loJ2I6LjxBISItk5AOjqAAxYxn3XJjQ2MjY3BcRy3PiQaRaSyEsvLy/j+u++wurYGAPBpGpqbm9HZ2YnmlhaYhoH5+XlomgafzwdN06D5fDs2/3krB8MyYOQ3u3BZbmvgwklJoTXwbilcPtkHRVT2TAdxHAczMzO4d+8elpaWvI/LsoKenm709/fvOBnQdR2KohT9Srpt5fFv/+f/Dh0dHXjpD/6udwKyFo9jfn4efb29By6cB9zi6+01MIA76+Lqs1e3ZnoU6jgK8zj07M46DlEENJ8bcASDgM8HCAJs28b6+jrW19dhWRa6urrgOA6WlpYQiUT2PQyyEGSJogjTNLG8vAxd12EYBgzTgCy5aXQAMD09DVmW4fP5EAgE3JqjGzcwNT0Fx3bfplVVRX9/P86dO3f809ppVwupBei2zhMQoiPiToOI3JQT5jXvKlxRgYuXLmE9kUAikcD09DSSySTaOzrw8z/8QwwODOD27dvI6joejI4im81CVVWEw2GYpolkMukVCSuKgv6LFwG4k7glUYSqqtA0DWFfGLKiuF24NoOSQgqXYRlwHAd5Ow8zb8Ixt1K4toISDT7Z/W9RECEIAlpaWtDS0oJkMomBgQGMPHiAfD7n1owMDqCutg6XL19GfX29t6m2bbvoszgkUdpxn47jYGlxCT5NO3DwYZomRh48wL27d70aiEgkgueeew5NTU0QcjkgnnBPOPSse6M96jgcv39HyqFpmpiZmUEymfROOiqjld4pSF3do5287M1TF1EUkUqlsL6+DsMwYJomDMNANBpFa2urF9RomoZIJAJN0+D3+737bmlpgeM4mJ2dxXfffYe5uTnvMUKhEC5duoTeIg2gJCI6aTwBIaKtOSDt7TwBeYJ8Lod8Pg+f34+N9XX3dATA8tISZjaHvwFAfX09rly5gsbGRliWBUPXYVkWKiIROI6DByMjMAzDC04A4Ny5c/D5/VhaXEQ2m4WiqlBkGbIsQ9IkQAL0vA7Tyu1I4SrUlThwU7hUUfWCku0pXJZlYXR0FPfv38fGxob3uOFwGE1NTWhqakI8Hkdvb2/RUnsKNSBvv/MO/k//3f8MUZKRSKxjcmoCnR2d+57AvrGxgcHBQYw8eABr83sWCATwzMVL6Kyvh2jobtBhWY/WcWwGHAgEgM2hg4XgMJVKQRRFtLS0wLIsjI+PIxQOIVIRgaIoyG3+vAvrnF+YRzaThWmaME0Tlm2hva0d0WgUS0tLWFlZ8YJKVVURCASe+Byz2SyGh4dx//59ZLNZ7+O1tbV49tln0dDQwMLnMlE4AWkINyDqj570cohOLe40iIgOQFYUyJub2HBFBXp6erCRTCIYCCASiWBldRXLS0tYWFjAwsICqmMxXLlyBa1tbd4mUhAE9GwO3bMsC6ZhuMXvmuY9Ti6XQzqdRi6Xg+M4aGhoQF19PbAOLE4uQlEU2IINW7QhqiIqq6IwLQOriTXkhDwyYhaiIACC+3iyKMMn+RBrjuGdtneQWk9hdHgUE5OTSCaTGBwcxODgIFRVxfLyCq48cwXRInZzKlzrchwHCwsLCAaCT9yYO46DxcVF3Lt/H7MzM+4HbRtVPj/Otbeho7YWsm0D8bWttCpVddvjBgNeHUfh+yyKojcPxjANAIAiK1BVFSsrK6iurkZraytGRkawsLCA7dfnrly+AlEUkTPdn0cwGESkMgJVUb2Wt7W1taitrd3X90PXdYyOjmJkZARrm2l8gFvLc+7cOZw/fx4VFRX7++YSEZ0yDECIaAsPRA9EEAQEQyEEQyE0NDQgn88jn8vBsizcuHEDDx48wMrqKj7+5BOEQyFcuHAB5y9c2JGOJEkS/IEAtmf019bVoXYz3cdxHFiW5X1O0zTU1tYil8/DyueRz+ehCAoaKxrdtrYTazAtA6ZtwrRN5OwcWjtaIcsyZpdmkdycCC+KAoRKAZebLyG1kcL0+DTS62k4hoPp6SlMT08hGAyis7MTrW1t8Pt8EAQBouimdwmCAFmWIQjCjo36kwKWXC4HQQAaGxu951f4X8dxvLqXyclJ3L9/H+uJBMR8Hpphor4ygq7GRjS3tMB2gPWNDTiCAFtRkVMVWJqGlq4uQBAwMTGB1OwsLMuC7bhpUu1t7QiFQpBl2QtALMtCPp/30rkkSUI0GoUsy1AUxftXeF6tra0H/j0p2N4UYH5h3qvtANw0q96+Xlw4f4GF5WWMSSNExcEULCLaSsFqa/NSVOhoHMfBeiKBO3fuYGxsDNZmrUA4FEJ3Tw+CgQCi0SgCgQD8gUBR6i4KG3grn/c21pZlIRQOw0IeC8sLWEvGoZtZ6DkdeTuPiooKVFRUIJVKYXxiHBvJJLIbGWQzWciQoQgKZMjQVB+i0UpEIhG3eF0Auru6EQwGMTs7i5XVlR1rqamuQWNjI5Ib6/jmF/9vyLKC2LkXIEgSREHExc1amIGBQZg5A3CATCbjtrhdXYWdSkExc1DyeVRWVKCyuhpawIdIRSWaOjtgSBIGp6cAfwDCZiBUOD1YXV3F9OYcEEEQ4NN8CAaDqK2thaZpyOfdQn9Zlote7/KwXC6HiYkJDA0NYWl5yW0RvCkSiaC1tRV9fX087Tgl5pPzMBwDjRWNqPRVnvRyiE4tBiBEBDx4ADuTYQByTHKmifv37+PevXvQDcP7eCgYRDQaRbSqCuFQCF1dXZAVBTnThFSKzbFlesXuRt6EkXeDksXFRaTSKViOjdnpGSwuL0FwBMiC5LYIljQ01DagubEZjQ2N0DTNm+cBuIGQz+dDKBSCoWfx3/4f/1P09HTjlb/1HyMQDEFVVcRiMTiOg6mpKcxMTmJpchL5xDrkXA6ibUML+NHe2YmG5mb4gkEIwSAQCEIMBaEEAlhbW0MikUAmk0FuswtWfX09GuobYBgG0uk0AoEANE0raf2EbdtYWVnB3PwcFhcWMTc/t+Okw+/3o6OjA319fYhGWUNw2jAAISoOpmARER0zRVVx5Zln0H/xIiYnJvDgwQPMzc0hlU4jlU5jdnYW1TU10DQNLa2tGB8fRzabhd/vd4uZNQ1V0Sg0nw+2bXspUEdel6RCkVSEsFWLkbfzaAw3wrTd4ORS30WksinMzM5gfHwca/E1ZPM64rMJ3J8dgCxI0CQNscoYWhtb0dXWhVgs5gVPiqIglUwhHKpAMplERaQSAoDb33yDmZER6KtrkCwLgiBAkyXUtzSjpa0dDV2dSFoWDFFCShRgGAayS4voCHZAAWDmTNi2jaqqKvj9fgQCAS91SdM0aNvqaY5TIeCYmprC7Ows1uJrOwKOwnra2tpw/vx5VFVVsaCciJ56PAEhoq0TkNZWgPnnJZFJpzE2NobR0VFvlggAaJtDESsrKxHanLBuGAba2toQCocxPz+PpcVFr8uSqmmoCIe97lqFuRNHVUghkyQJwXAI5uZJSdbMYnF1EbOLc5ifn8fy8hKswrySzZklPkVDfXU9qqM1qKuqwfr93yO1ugol2orcehLptVVsVsfDkQRUxapRWVeHQHU1bJ8f5569CggCBgYGYJgGNNV9rn6/H7FYrGTBxW4Mw0A8EcfM9AyWV5axvLS8o5MZ4NaR1NTUoLW1FQ0NDQw6zpDCCUhTRRMivshJL4fo1GIAQkTA6CjsdJoByAlZW13F6OgoRkdHkdnWhhUAKiMRNDQ0eP9s20YqlYJhmjA3501URCJobGxEJp3G8PAwJEny/qmqio7OTgDA0uIiHMdx2/puft4fCECW3Ra9O94OHAcTExPQdR19fX3u0L7tHAeO6CBjZjA1O4XJ2SnMLc4hsRFH3spDzFmQDROinoVvfgKiIMKpaYMsa5AFBVW19Wjq6kFOVqBEItA2TzBUTUV9XT0EQUA+n4ckSSXfvDuOg2w2i/X1dcTjcayvr2NhYQGpVMqbRr6dLMuoqqpCU3MTWltaGXCcYQxAiIqDAQgRMQApE7ZtY35+HrMzM5ifn99xMlJQFY2ioaEBtbW1iEQiqIhEvGF++VwOGxsbbjcuy4JtWYAgoLm5GQAwMjwMfXMeSUF3dzdC4TDm5uawtLi447Gi0ShSqRRkWd4xnwJwi7uvPPMMcqaJW7dvY2NtDUYigfTqMoz1BGzbQA4WLMFBXrBhiUBOUWDKMkxNgbUZ0Kiiikgggkg4gmhFFFWRKvg0dxq43++Hz+eD3++HUqTaJNu2YRgGdF2HbugwdPe/s3oWK8srWF9fRzqd3vE9epiiKIhGo2huaUZLcwsDjqcIAxCi4mAAQkQMQMqUoetYWFjA/Pw85ufnEU8kdv26wgySSCSCiooKRCorEamoQDAU2jUdq9Da17YsyIoCURShZ7MwthXIA4CqqnAcB0PDw5BEEZIkIZ1OI5VKIZVKQV9bQ35jA7JpQsrn4Yiim1YlCAhFIog1N6OmrQ3/0X/+v8c7f/g+/vbf/TtYWlvCSnwF88vzSKfTbttdODtSuGTIkAX3X6ELlyRJCAaC8G3WwQDYMVfFt9km2DRN7yRHEAT3edo2crkcstnsI+lSj6NpGmKxGKqqqhCJRBCNRlFZWck2uU+xuY055JBDY0UjAxCiI2AROhFt4fWIsqL5fGhrb0dbezsAQM9mvYBkZXUVG+vrMEwT6UwG6UwGc/Pzj9yHLEk75lnIigJl24wLSZKQz+dhmqY79duykNv878I/e/P3QsrlIJumG3CYJkRBgCqKUH0+hGpqEKmtRU1bG2ra2rCRyyGdzaKzqwszyysQHQlX+q5463IcB3pOx3J8GYuri1heW0baSEM3dCSTSWSyGRiGgYyZge3YkCwJ8Vwc8obstQeWBOnQ31tp8/uiaRrC4TB8Ph8kSUJdXR0qKytRWVnpnSwRPYwnXkRHw1dXIqJTwuf3o72jA+0dHQDcTbxpGO7sjI0NrG9sYL3w3+vrsB0HectC3rKQ3Ry0dxCCZUE2TWimiYDjIBwMwl9VhXBFBSLRKELRKMJ1dVCjUSAQACQJhmFgamoKyWQSDQ0Ne27UBEGAX/Wjta4VrXVbw/1yVm6zLbBb9K7ndGTNLLLZLDLZDDLZDExj65RDERSokgpVUKFKKkRH3DpN2ax3CQQC8Pl98Gk++Hw+aJp27C2OiYhobwxAiAjg1bxTSRAEaD4f6urrUVdfv+Nztm3DNIwdJxm5zUnt2z9m2fbWKYkoQrMsyLkcVMuCAkBWVSiaBsXngyBJGFtYQNpxgIYGaA0NcBQF9mYa1+LiIubn5yHLMrq6uhCJuCkqgUDAHV64D4qkQJEUhNSQ9zHLtnYEJUbegGmZsB0btm3Ddmw4tuNOPHcATdagSio0WYMmadBkDaLAgIOIqFywBoSIgLEx2KkU0NICnGCLUyoxxwGyWSCTcf9X191uV6IISBIESQJ8Pvd0IxgENA3W5tyLpaUlryNUT08PwuGw97H6+npI0lZ61NjYGGpqahAOh/daySGW7sC0TOh5fUdwYtnWVlCyeQpi2zYUUXEDkm1BiSzyGhwdzOzGLPLIoynShAqN0+uJDouvvkRETxPDcAOOzaBDENx5HJAkCH6/24QgGHSDDr/fDUa2KdRJ1NTUQNd15PN5+P1+AEBtbe2uD/kv/sW/wPvvv4+f/vSnRXsa7uBCN5DYrpDCped1LyjJ23m3+5VjIGtkvaBEEiTvtMQn+7z/JnoSATw1JjoKBiBEBMDd0PFA9AzK5XYEHLDtrVMOTYOgKG6wUfi3z8JrURT3nVb1V3/1V4hGo0UNQPaynxQuPa/DtNw6krydh5k3kTSTj6RwbQ9KmMJFRFQ8DECIiDUgZ4lt7ww4crmtgEOWIciye7JRSKt6ClrKSqKEgBhAQNkKmBzHeaSuZHsKV8bKIJ1Lw4F7WqJK6o66Ep/sgyQevgsXnU6O44CHH0RHxwCEiOg0e1Idh8+3FXAEAm5NBwNOd3aI7INP9u34uGmZjwQle6VwyaIMTdKgyqpXV8IULiKiJ2MAQkR02hTqODYDj+11HPD5IGjazrQqtpzdt8JJRxhbBfN5O/9IUGJapjvg0MnByBnYMDZgOzYECI8EJZqkcW7EGcOfJ9HRMAAhoi2sASlP+bwbcKTTu9dxyPJW4fgB6jhof2RRhqzKCCLofcx2bO+0ZHsnLtuxYdkW0vk0UmbK68b1cFtgTdKYwkVETy2+SxERU3LKzcN1HKbptsQt1HFI0s4TjjJvnfwP/sE/wLVr1056GUUlCqKXwhWBO+/EcRzk7NwjQYnluHUluq0jk8/A0R9N4fLJPmiSBkVSTviZ0eM44EUaomJgAEJEdNIcB9D1raDj4ToOv3/nPI5TVsfR19eHmpqak17GsRMEYSuFS9s7hUvP68jZOXdYpGM+NoXLJ/ugSipTfsoM2/ASHQ0DECKik2CaWylV2ay7nTmjdRx/+qd/ij/5kz/BP/pH/+ikl3Ii9krheriuZK8ULjibtSkP1ZUwhetkMBgkOjoGIES0hTUgx6dQx1FIq7KsrVMOVXXrOLYHHMrZScWxLAuWZZ30MsqKKIjwK374Fb/3scJ094eDkrydh+M4j6RwFaa7b68vYQrX8eKsJKLiYABCRKcqnefUsO2t9riZzM46DkmCoKpue9xC8XiZ13HQ8dsx3X3br0Pezu+Y7G7kDS+Fy3AMZM0sHMOB4zgQIHhpW4WghClcxcfvJ9HRMAAhIiqG7XUchXkcguAGHKK4s44jEHCDD25iaB9kUUZIDe2Y7l5I4dpe7G5aJmzH3nW6eyGFq1Dsrskap7sT0YlhAEJEdFimuWMeBxzHTauSJLc9rqruTKuSmLNPxbGfFK5CcFKY7q7bOjJ6xhukWEjh2t4eWBa5LSCi48dXGiLawvzmx7OsnfM4nqI6jqM4d+4cOjs7T3oZZ95eKVw5K7ejrkTP67tOd3ccByLEHXUlPtkHRVSYcrTJgcMOWERFwACEiGgv2+s4slnAMNw6js1uVV4dRyHg8PlOesVl6YMPPjjpJTzVFEmBIik7Urgs23qk2N2wDDiOs2sK18PF7k97CheDEKKjYQBCRKxF2O7heRwP13Fo2lbhOOs46JSSRAkBMYCAEvA+5jjOrkFJIYUrY2WQzqe9FK7CzBOmcBHRQfGVgoiebqzjIALgpnAVprtvl7NyO4rdDcvYNYXLtm1IguR24do2s0SV1BN6RkRUrhiAEJHrabmSX6jjKAQd+fzOOg5J2go2gkHWcdBTr5DCFcbWdPftKVyF4MS0TNi2jZyT2zHdfXsKl0/2eScmp7GupNDq+DSunaicMAAhoi1nsQjdcdxAo1A4/nAdh9/POg6iA3pSCtf2ExPbsbdSuHJp2I4Nx3F2pHAV2gNzujvR04EBCBGdvdOP7fM4stnd6zi2z+MQn95iWqJi2Z7CFUHE+7hpmTvqSvS8DsuxdqZwbU53l0XZHZ7IFC6iM40BCBGdfrnczrQq295Zx6EoWylVrOMgKqnCScf2FK68nX+k2L2QwmU65o4ULgHCI0HJSaVwOTiDp8REJ4ABCBFtOS0pWI+r41CUnXUcgQCg8goqUTmRRRmyKiOIoPexwnT3hztx2Y4Ny7aQzqeRMlNeCtduQUkpUrgEQWAbXqIjYgBCROWvUMdRCDh0fSvgKNRx+HxbpxyadvbSyojOuL2mu+fszS5c24KSvJ2H4zjudPd85pEUru0T3hWJjSSIyg0DECIqz826Yew45RAEYWfhuKrunMfBOg6iM0cQBC+Fa/t09+0pXIXgJGfnvBQu3dQBA4+kcBWK3VVJZScrohPEAISIysNedRyiuLOOo/BP5ssX0dNqPylcel5360p2SeGCs1mbspnCVWgP/KTp7s5pSVMlKnN8Byeik2FZW2lVmczOOg5ZhiDL7slG4ZSDdRxE9Bh7pXCZlrmjrkTP695094dTuBRR8TpvFdoD7zbdnacnREfDAISIthzn1b0n1XH4fI/O4+CbPBEdgSAIXj3I9hSunJV7pNi9kMJlOAayZhaO4cBxHIgQvaAkmUsiIkf2fkAi2hcGIER0fBv9Qh3HZuCxvY4DPh+E7fM4AgHWcRBRSRSmu4fUkPex7dPdC/9bSOHK23mYeRMpM4VYMMYuWERHxACEiIonn3cDjsLU8YfrOGR5K6WKdRxEVEb2mu5eSOHS8zoi/giawk1MwSI6Ir77E9Hh2fbOwnHTdGdwFOo4Hp7HoWlPvk8iojKxPYWrQqs46eUQnRkMQIhoy5NqQBwH0PWtoONJ8zhYx0FEREQPYQBCRI9nmlspVdmsm/nMOg4iIiI6JAYgRLTzlKJQx1FIq7KsrVMOVXXrOLYHHAqnDBMREdH+MQAhIlci4Z50+Hxu7UZh6riq7pzHwToOIiIiOgIGIEQEhEJAOAzBtnfWcQQCbvDBOg4iIiIqEsFxjnPyGBGdGtmsm34VCLj1HURERETHgAEIERERERGVDNvVEBERERFRyTAAISIiIiKikmEAQkREREREJcMAhIiIiIiISoYBCBERERERlQwDECIiIiIiKhkGIEREREREVDIMQIiIiIiIqGQYgBARERERUckwACEiIiIiopJhAEJERERERCXDAISIiIiIiEqGAQgREREREZUMAxAiIiIiIioZBiBERERERFQyDECIiIiIiKhkGIAQEREREVHJMAAhIiIiIqKSYQBCREREREQlwwCEiIiIiIhKhgEIERERERGVDAMQIiIiIiIqGQYgRERERERUMgxAiIiIiIioZBiAEBERERFRyTAAISIiIiKikmEAQkREREREJcMAhIiIiIiISoYBCBERERERlQwDECIiIiIiKhkGIEREREREVDIMQIiIiIiIqGQYgBARERERUckwACEiIiIiopJhAEJERERERCXDAISIiIiIiEqGAQgREREREZUMAxAiIiIiIioZBiBERERERFQyDECIiIiIiKhkGIAQEREREVHJMAAhIiIiIqKSYQBCREREREQlwwCEiIiIiIhKhgEIERERERGVDAMQIiIiIiIqGQYgRERERERUMgxAiIiIiIioZBiAEBERERFRyTAAISIiIiKikmEAQkREREREJcMAhIiIiIiISoYBCBERERERlQwDECIiIiIiKhkGIEREREREVDIMQIiIiIiIqGQYgBARERERUckwACEiIiIiopJhAEJERERERCXDAISIiIiIiEqGAQgREREREZUMAxAiIiIiIioZBiBERERERFQyDECIiIiIiKhkGIAQEREREVHJMAAhIiIiIqKSYQBCREREREQlwwCEiIiIiIhKhgEIERERERGVDAMQIiIiIiIqGQYgRERERERUMgxAiIiIiIioZBiAEBERERFRyTAAISIiIiKikmEAQkREREREJcMAhIiIiIiISoYBCBERERERlQwDECIiIiIiKhkGIEREREREVDIMQIiIiIiIqGQYgBARERERUckwACEiIiIiopJhAEJERERERCXDAISIiIiIiEqGAQgREREREZUMAxAiIiIiIioZBiBERERERFQyDECIiIiIiKhkGIAQEREREVHJMAAhIiIiIqKSYQBCREREREQlwwCEiIiIiIhKhgEIERERERGVDAMQIiIiIiIqGQYgRERERERUMgxAiIiIiIioZBiAEBERERFRyTAAISIiIiKikmEAQkREREREJcMAhIiIiIiISoYBCBERERERlQwDECIiIiIiKhkGIEREREREVDIMQIiIiIiIqGQYgBARERERUckwACEiIiIiopJhAEJERERERCXDAISIiIiIiEqGAQgREREREZUMAxAiIiIiIioZBiBERERERFQyDECIiIiIiKhkGIAQEREREVHJMAAhIiIiIqKSYQBCREREREQlwwCEiIiIiIhKhgEIERERERGVDAMQIiIiIiIqGQYgRERERERUMgxAiIiIiIioZBiAEBERERFRyTAAISIiIiKikmEAQkREREREJcMAhIiIiIiISoYBCBERERERlQwDECIiIiIiKhkGIEREREREVDIMQIiIiIiIqGQYgBARERERUckwACEiIiIiopJhAEJERERERCXDAISIiIiIiEqGAQgREREREZUMAxAiIiIiIioZBiBERERERFQyDECIiIiIiKhkGIAQEREREVHJMAAhIiIiIqKSYQBCREREREQlwwCEiIiIiIhKhgEIERERERGVDAMQIiIiIiIqGQYgRERERERUMgxAiIiIiIioZBiAEBERERFRyfz/AYD4VGuaWLC+AAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zhuyk6/.pyenv/versions/3.7.5/lib/python3.7/site-packages/mindquantum/io/display/bloch_plt_drawer.py:495: UserWarning: jupyter environment detected, if animation not work, please run '%matplotlib notebook' in cell.\n", + " please run '%matplotlib notebook' in cell.\")\n", + "/home/zhuyk6/.pyenv/versions/3.7.5/lib/python3.7/site-packages/mindquantum/io/display/bloch_plt_drawer.py:50: MatplotlibDeprecationWarning: \n", + "The M attribute was deprecated in Matplotlib 3.4 and will be removed two minor releases later. Use self.axes.M instead.\n", + " xs, ys, _ = proj_transform((x1, x2), (y1, y2), (z1, z2), renderer.M)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7f98ff8c0fce4d89abb346988c62de44", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3hcZ3rY/f8p01EGvVeCJNh7UaEkqpfVarVdu16vvbbjGjuOnZ44iZO8TpzkcrxObK/brrevdrUradWpRpESxd5JkASIDqJjgOkzZ855PwwIAiRAAiAwA4D377okEFPOPABIzLnPcxelrv4eCyGEEEIIIYRIATXdCxBCCCGEEELcOSQAEUIIIYQQQqSMBCBCCCGEEEKIlJEARAghhBBCCJEyEoAIIYQQQgghUkYCECGEEEIIIUTKSAAihBBCCCGESBkJQIQQQgghhBApIwGIEEIIIYQQImUkABFCCCGEEEKkjAQgQgghhBBCiJSRAEQIIYQQQgiRMhKACCGEEEIIIVJGAhAhhBBCCCFEykgAIoQQQgghhEgZCUCEEEIIIYQQKSMBiBBCCCGEECJlJAARQgghhBBCpIwEIEIIIYQQQoiUkQBECCGEEEIIkTISgAghhBBCCCFSRgIQIYQQQgghRMpIACKEEEIIIYRIGQlAhBBCCCGEECkjAYgQQgghhBAiZSQAEUIIIYQQQqSMBCBCCCGEEEKIlJEARAghhBBCCJEyEoAIIYQQQgghUkYCECGEEEIIIUTKSAAihBBCCCGESBkJQIQQQgghhBApIwGIEEIIIYQQImUkABFCCCGEEEKkjAQgQgghhBBCiJSRAEQIIYQQQgiRMhKACCGEEEIIIVJGAhAhhBBCCCFEykgAIoQQQgghhEgZCUCEEEIIIYQQKSMBiBBCCCGEECJlJAARQgghhBBCpIwEIEIIIYQQQoiUkQBECCGEEEIIkTISgAghhBBCCCFSRgIQIYQQQgghRMpIACKEEEIIIYRIGQlAhBBCCCGEECkjAYgQQgghhBAiZSQAEUIIIYQQQqSMBCBCCCGEEEKIlJEARAghhBBCCJEyEoAIIYQQQgghUkYCECGEEEIIIUTKSAAihBBCCCGESBkJQIQQQgghhBApIwGIEEIIIYQQImUkABFCCCGEEEKkjAQgQgghhBBCiJSRAEQIIYQQQgiRMhKACCGEEEIIIVJGAhAhhBBCCCFEykgAIoQQQgghhEgZCUCEEEIIIYQQKSMBiBBCCCGEECJlJAARQgghhBBCpIwEIEIIIYQQQoiUkQBECCGEEEIIkTISgAghhBBCCCFSRgIQIYQQQgghRMpIACKEEEIIIYRIGQlAhBBCCCGEECkjAYgQQgghhBAiZSQAEUIIIYQQQqSMBCBCCCGEEEKIlJEARAghhBBCCJEyEoAIIYQQQgghUkYCECGEEEIIIUTKSAAihBBCCCGESBkJQIQQQgghhBApIwGIEEIIIYQQImUkABFCCCGEEEKkjAQgQgghhBBCiJSRAEQIIYQQQgiRMhKACCGEEEIIIVJGAhAhhBBCCCFEykgAIoQQQgghhEgZCUCEEEIIIYQQKSMBiBBCCCGEECJlJAARQgghhBBCpIwEIEIIIYQQQoiUkQBECCGEEEIIkTISgAghhBBCCCFSRgIQIYQQQgghRMpIACKEEEIIIYRIGQlAhBBCCCGEECkjAYgQQgghhBAiZSQAEUIIIYQQQqSMBCBCCCGEEEKIlJEARAghhBBCCJEyEoAIIYQQQgghUkYCECGEEEIIIUTKSAAihBBCCCGESBkJQIQQQgghhBApIwGIEEIIIYQQImUkABFCCCGEEEKkjAQgQgghhBBCiJSRAEQIIYQQQgiRMhKACCGEEEIIIVJGAhAhhBBCCCFEykgAIoQQQgghhEgZCUCEEEIIIYQQKSMBiBBCCCGEECJlJAARQgghhBBCpIye7gUIIYS4sy2rreLJJx5iYGCQ7//wxXQvRwghxDyTAEQIIUTaaJrG//rTP2LtmpUA9PYN8PY7+9K8KiGEEPNJUrCEEEKkza//2i+wds1K/veffYO2tk7++D/+IdnZmelelhBCiHkkAYgQQoi0WL68ht/+za/y+hvv8dd/8x1+9/f/iKysDP7o3/1+upcmhBBiHkkAIoQQIuVUVeW//7d/S3d3H//2P/x3AM6eu8B//9P/xyeffpQHd9+T5hVe897bP+bS+f1s37ZpXo7/xqvf49L5/WzetG5eji+EEAuN1IAIIYRIOdM0+cznf+2G27/7/Z/y3e//NA0run0et4uv/fJzPPbo/ZSXlWCaJs0t7bz62jt853s/IR43Jn3eO+/uZ1ltFQ8/dC/Hjp9O8aqFECL1ZAdECCGEuE2lpUX8/KV/5Hd/52usXLEMRVGw222sX7eKf/Ovfocf//AbZGVNXttytej+oQd3pXLJQgiRNhKACCGEELdB0zS+8Zf/g4ryUnp6+/nq1/4ZG7Y8wrpND/N7//yPCASCrFm9kv/9p/9h0uefOHmWvr4Bamsqqa2pTPHqhRAi9SQAEUIIIW7Ds596nPqVdQD8zu/9Oz46cAQAy7J47fV3+Q//8X8C8MD9d3PXzi03PN+yLN59/0MAHn5IdkGEEEufBCBCCCFSalV9HZfO75/Wf7/xT76S7uXe0qc/9QQABz4+yokTZ2+4/5XX3qa9vQuATz3z+KTHuJaGde88rVIIIRYOKUIXQgiRUlVVFfT1DUx5v8vlJCPDA8DZcxdTtaxZcTodY92rPtj38ZSP+2D/Qb783LPce8+2Se//6MBRAsEQG9avJi8vh4GBoXlZrxBCLAQSgAghhEipN958jzfefG/S+0pLi/jON79ORoaH997/kIMHj6V4dTOzrLYaTdMAuHipecrHXbx0GYDCgnyyszMZHvZPuD8Wi7F//0Eef2w3D+6+hx//5JX5W7QQQqSZBCBCCCEWhIryUr79rT+nvKyEt97+gH/2z/9oyta1kEx9+h9/8u9m/Xpf/sV/yqHDx2f9fICiwvyxP/f09E35uPH3FRbm3xCAALz97n4ef2w3Dz+4SwIQIcSSJgGIEEKItKuuruA73/xziosLefX1d/iDf/HHJBKJmz4nEo3eNJXrVuLx+Kyfe5XH4x77czgSmfJxkXH3jX/OeO+9/xHxuMHdd23F5XISDk99PCGEWMwkABFCCJFWdcuq+cdv/h8KC/J58eU3+Ff/5v/DNM1bPu+119/ltdffTcEKU2NkxM+Roye5a+cWdt27nbf2fJDuJQkhxLyQLlhCCCHSZuWKZXz3H/+CwoJ8fvzCK/zLf/3fphV8LBTBYGjszy6nc8rHOcfdN/451/P5RgDIzs6ag9UJIcTCJAGIEEKItFi9egXf+cevk5eXw/d/+DP+7b//71iWle5lzUhPb//Yn4uKCqZ83Pj7esc9ZzybTWfXvdsxTZP33v9o7hYphBALjKRgCSGESLkN61fz93/zv8nOzuRb336e//YnX5/xMZ584kH+/b/5vVmv4bd/999x/MSZWT8foOlyC4lEAk3TWLG8ZspWvCuW1wLQ29c/aQE6wF07t5KR4eH4iTP09w/e1rqEEGIhkwBECCFESm3ZvJ6/+8b/JCPDw9/+/ff40//1V7M6jtPhoKAgb9brsNlss37uVZFIlGPHT7Nt60Z23buDv/uHH0z6uF33bAdg/4eHpzzWw6NDCN9+Z/9tr0sIIRYyCUCEEEKkzI7tm/jGX/4PPB43/++vvsX/+frfzfpYP33xdX764utzuLrZr2Pb1o3s3LGZDetXc/LUuQn3P/H4g1RWlgHw4ktvTHmcB0cDkHfe3Td/ixVCiAVAakCEEEKkxD13b+Vv//p/4vG4+bM//9vbCj4Wkp+9+AYNFxpRVZX/++f/lbt2bgFAURQef2w3/+2P/yUA739wgAMfH530GBvWr6aoMJ/mlnaaLrembO1CCJEOsgMihBAiJX7/d/8JLpcT0zT5hS99ml/40qenfOwf/Ms/nvJkfaFJJBL8xm/9a77zj19PDlP85p8TCoVRVRWn0wHA2XMX+IN/8cdTHuOhq7sf78juhxBi6ZMARAghxLxTVZUVK2rH/nyr2o3Wto5ULGvOdHZ18/QzX+VXvvYcjz5yP+VlJRiGwekzzbzy6tt853s/uelU94cf2gUkp6ELIcRSJwGIEEKIeWeaJus3P5zuZcyrYCjM1//vP/D1//sPM3peZWUZy+tqGBgY4tjx0/O0OiGEWDikBkQIIYRIo0ceug+A997/aNHNQRFCiNmQHRAhhBAija7Wf7wt3a8AUG02VJsdzWYj5h/BMs10L0kIMcckABFCCCHS6M//4u/QNI0jR06meykpo+q2CYHG1T+rug1UFVXTsWdmEejqINzXjWnE071kIcQckgBECCHEvNI0jUQike5lLFgHDx1P9xLmhaLpaPZkUKHa7WijH1VdB1VD1TQUTUPVdBR99KOmAxamEceWlYUzkkvUNyABiBBLjAQgQixiLs1FwkpgWAamJWkKYuGx2+2cPPoWr7/5Pv/8D/9Tupcj5piiaeN2MeyoNhva6EcU9brgQkPVkx8BTMPATBhY8TiJcBQzHk9+PpZypWDGJfAQYimSAESIRcqtuanJqCFqxgCwsDAsA8M0SFgGhpXAMOMYVoKEaYzdZyFFriJ1PvfZT6DrOpmZnnQvZdZ2P/y5dC8hrZKBg21CcHE12FDUyXYxkh9RFSzDSAYaRpxEJIZpxDENA8uc5o6YhRTmC7EESQAixCKkoFDmKcOrZdFn9KEoKqCgY8NSbaAwIcwY/2eTBIaZuGmQYlhTzysQYrrsdju//ZtfxbIstm/dyG/++i/yV9/4drqXJSahqOpYUKHabGi6HdVuQ9WvBhk6qn7143VBRsLAjCd3M4xoBGs0yDAT8ntECDE5CUCEWISs0X2M/tgAXaEuTEx0NDRVQ1N0VFVDR0VTdTRFQ1U0dEVFUTQ0dGyKhqXYpw5UFEhMEpQkzGS619XAJWFJXr+Y2uc++wny83JRFAW328Vv/+ZX+dHzLzM45Ev30u5MijppqtSEnYxxwcXVz1HVZJBhGFjGuCBj9LZ5W66izNuxhRDpJQGIEEuEMbqzATGYIi5QUVEVFV3RUFUNTUkGLLqioo7+WVM0FEVBQ8dSNFAcoF0LTiYkQyjcmPI1trtyLXCR+pQ7j65rY7sfV08kdV3nV772HP/zf/9Vmle3hCkKqm6bUPx99fOrQYai6ckCcH30o6ajaCqYCRJGHMswSMSjmGFjNGUqAWlK3ZSUUSGWJglAhLiDmJiYlplMsbpJTKCijgYnGpqqjgUmyc81NJK7KslAxYal6KAwZaBiYd0y5SthJjBvtiixqKiKSjxmoKrX5t1qmsZXv/JZ/v4ffiC7ILdDUVB1fdLib2V052LCLsZosKFoGpjmWJBhxqMY4as1GgbpCjJuSWpAhFhyJAARQtzgaqASt+I3DVQ01NGUr+SuytUdFVVNpnxpio6qaFytT7ErNtCcE1K/JgYq5i2DFMOSQvqFzm6z8U9/+5cpKsq/4T5d1/nVX3mOP/1fsgtyK6rNNlr8feOsDEVVJ9ZlXBdkmOOKv41IGMuIk1jIQcZkJANLiCVLAhAhFrl0vkcnMElYU6d8XaUzLuVL1dEZTflSr6WAKYoGJGtXblpIr4BpJcaCkrGUr6ufjwtcRHp87nNP8+v/5CuT5vBrmsay2urUL2qBGj+QL1n8PdmsjBtTprDMZA1G3MBMxDGi4dGOU3HpGiWEWPAkABFCzDuDBFxtuzlFsKKgoDGa8jVaPK+NFdZfrU9RURQVDR19kvoUmBiojK9PmWo3RQrp59bVzlc3k5eXw6aNazl+4kyKVpVeiqZPKPoeX/x9w6yMGwbyjQYVhoERiiSDjAmzMpY4iaWEWJIkABFikUpe5Vw6OQoWFgYGhgmMzjaZzLVCen2sPiXZ5ev261Om7PplGlKfMk3jO19NZcP61XznW3/OfQ9+hsFBX+oWN4+uzsq4vvj7aoepq/UY1w/lQ0nOyhgr/g5HrwUdd0qQIYS440gAIsQipyyhIGQ6ZlJIr4+rT0kGKdfqU1SS6WDJ+hQ7dsWCZLnKLepTjMlTvkY/v5PrU6az+3GVruv86tcWVy3IDbMyxg3lUxT1WoqUrt84kG/8rIxIGCthkIjHpz+QTwghlhAJQIQQS5KJSWym9SmKhjZaPK+Nu02dcX1Ksi4lfl0KWNwylnR9ygP37yQvNwdFUW6oQ7Asi9NnzpOdlUVVVTmapvHcF59deAGIol7bxZh0VsaNhd+qpk09K0MG8t2mOzegF2IpkwBEiEVL3pjnwoT6lClMqE8ZG/R4rT7lagrY1fqUsUGPN6lPuemgx6ufL7L6lI8OHOULX/5NsrMyKSkuGrv9D37/1zl67CT/4l//N3Jzvdy1YwsAV7p70rNQRZmwe3G129QNszLGBxqjszKsxGgNRvzqrIzg6KwMCTLmjRTVC7HkSAAixKJ3Z6VgpcOE+pQZDHrUx+pT1GspYLMd9Dhl16+FM+gxEAhy4sTZG27/zV//Rc6dv4TfH8DvD9Da2jH/ixkdyHd9qpRms00+K0O/dltyIJ+R3MFYLLMyliCZhC7E0iUBiBBCzJHZDHrUVW10Cv24z6/Wp1hcK6S/aX2KdcuUr6U66HH87sWE4u+rszLGta6dfFZGfHRWRmi0GFyCDCGEmG8SgAixSN3Jxc6L3UwHPV6rR5mqPmV00KNqA8Aad+H4+kL6WwUpC7GQ/oZZGeMG8qGqN+xiTDkrY1zxtwQZi4fMNRFi6ZEARIjFTkHOpZaomQx6vDrUMVmfMprypV5LARsb9KioyfqUmxTST6xPmftBj7quk5nhxjfsHzu5VDR9yuJvFHVccDHZrIz4uOJvGcgnhBALnQQgQgixyBkkO2/drD7laiG9ro7r+oWGw2bH6XBg1+3YdRu6pqHpGrqu47DrOF0u3G4HTqeDcCSKkTCw2e0oqkIoHCYQDhAKR4gaUSLxKJF4jGg8SiQewR8KEo3FOHj4OI2NLXzmM0+wctUKiooLSSgK+w4co7t/iOzsbBRdw2a3YXc40O12TBQSFsmPpjkWZJjxGIl4cm5GJBgk4A8RiMcIhEOEItGUft/FfJMaECGWKglAhFik5NqumA5dU8nwuPF43BQW5JDhcaHqGnm5XjIzXDfuElgKKiqKpUz4s2KpZOMe+7OigKrmoagKqqqOflRA00DXQNdB17BUjcF+i9XrdmKpFqEENHX5SShQXL2cghoTU1VBsVBMEywTxTJRTBPVSoBlJdeCdsuvNZEwCQZDBAIhAoEwgWCIIZ+fvn4fsXh8fr7BYn5ZFvLbToilRwIQIRa5O20QoZicqqjk5mRSUVFCRoaLDI+b/Lzsm3YSGh98KIqCBYyM+DGMBFnZmYBCIpHATJhYlkVPTz+RaIyq6nKyvTmoqgaKRgIFI6FgmKDpydtIABaYioVl86IoKsSG0bBQsNCw0AGnpWCaCVQgI9MNqoJBAkVXsBSTru4ezjZcxO1xcs+9W7DZdBQlufZ4LEbDxctkZLjJzHCjaSpZWRlkZWXc8LWGQhH6+ofo6Oihp3+QQCA81z8CIYQQ0yQBiBCLlOS339kyM9zk53mpr68lPzebm3UsTQ4GhFg8zsDAMO0d3QSC13YJEoZJdnYmGRluOjq7AXj6Ew9TXFpEdq4XT2YWaBpnfvomHQM+Mmpd2NzZxBMGiqKM7mCoWKqChYJimRixGDZVxa7pOGwm4ZEAHRdPUFJUiEO3kUBFAeIoyR0ORSEaiKBqCoqioKgq8biBvy+MI+pmqC/Ei5f3YlkmiqZic+jYHBo9vX0Ylsma1cvIzc/E6XbidOrYHDo9Pf24nHaysjJwu51UVZZQVVkCJHdLOjq7GRgYQVFVOjp78Pn8C64AXwghliKlrv4e+W0rxCJUnVGDAxs9oe7kxG+xZCkoFBbksKq+lpKSAuw2bdIAVFEUYvEErW1ddHT2jKUiTZZ+lJXpYfcDd1FSXkphcSGa3U4knuDP/+q7qDYbDz+8C03XGA6GCIWioKvodhtZ3kxsNjsKFkoiAZZJLBJhoH8Q38Aw/uERAsEQjzx4L5WVpbzx1j6e+uQXudzcyms//zHWuJkluqbidDlxO51kZbipLC8jO8ODaYJqXa2SV5OhiqWgKiqRWJz+/iGu9PQTDkduMpHeTHb1IoHdoVFWVkBhYS5ZXjd2pw6KlQw2RgM3h91ORkYmpmXRPzDM9374MgCu0doXkXoZxWWEBwfwt13GlBQ6IZYU2QERQogFyGbTKS0uoLKyhNrq0gkBh2VZmKbFwOAwkUiMjq4eurv78QdCE46h6xrFRQWUVZRRWlFKcUkxfb4RXtuzD0dGBsVr19HTP8SZk434/AECoQjOomJUXePQhRby87IpysumJCcTzESyRsOIkgj6GRgapm/Ax0C/74bXvXvnZqqqynj1tfdobb8y5ddoJMzRIClEb/8gjS3JAYU2XSc720NNdTm6ruFyOXA7HYCCoisUVGRQUJ6JYql0dfYyOOhnZDh4rWZFGS24V1Qc2CAOPS0+elp8WICmqmRle8jLycabl0leXjbEwR8KYmFhsxQ2r15Fc1snv/M7X8FIJOjouEJb+xU6Oq/Q2t6FYSyuKfWLmlwmFWLJkQBEiEVL3pWXmgy3ixUrq6lfXo2uq2O3W5aFoiiEQlGamjtoa+tiyOcnYV7bTVB1GxU11VRUV9DTP0hX3yDr1q/m4Ufuw0iY9PuG6RwYptMXxFlUjKXp/PSdj5PBjBHHMhIopkGeN4PSwlzyc7PRFAATKxLE5wvQ3++jb8CHz+efcvp6hsfNhvX1fHzwBC1tncnajxmKGwYlxcVs3rSOH/34NXzDIzgcNrIzM6msKKYgPwctuTiKKr0UVXoBBSNh0tZ+hba2K0TC8dHWxOrohPqr0+lVEqbKyGCAkcEANCXrVvLzvBQV55KX68Wm2dmyfB3bVmyg7dQVLMDrzWHF9uXYHTb+6m+/y4DPx9p1y1E1hdbOLq5095BYIBPplwyZhC7EkiUBiBCLncwBWdTycrOpqSpj9aparv9B+gMh2tq7ae/ooa9vCDQN1Z6c8q3n5GLXbSxbXsPqNSspKSvG4XIST5gcOXaWIfUynYEoP3nnAMO+EeKxGIxO+h6bk2EYWKZJjjeL8rICSksKsOnX3hZ8w346Onu5cqWf6DRTYALBED94/lWGfSNjtxlGfMY7BhcvXWbTxlXsvn8nP3v5LaLROL3RQXr7B4Hk7k5ebjaFBTmUlRSi6xq6plBbXZrcMQJaWrro6R9kcGBk0oBJQ022JI6pDIWHaOpowWl3UpSfS2FhHjlZWWiKCorCUO8gF8824RsOYIYgx+6lvqyOZTVVaDYNM2HS3dfPhweO0HHlCgnLHJ2XYmJaxuhsFROD2c9PEUKIpUJqQIRYpKozqpM1IOEeYqbUgCwmdpuN9WtXsGJ55YSdDoCEpdLU2sXF5k6C0fjYMD7VZsPtdlNeUUpZeSnnL11mwOdn9ZqVVFSU0t3Tz5Ur3fT19JOIxTATBlbcSH5M3Hjyb7fZqKwspqKsEI/bNXZ7OBKjs6uHjq4+AtelVt1Kff0yGhtbJgQbiqKyYvU2YnGDlkvHJ9SA3Ep1ZRlPf+IhXnv9fZqa22762MwMNzXVZZSVFaJdd+VcURQGfX7OnL3E8Ehw2q/vsNsoKcqjoqyEHG8WWMmC+cGBEdrbexgZDmHTbeTn5JCXl0NRYR6nz1xkyDdM/cpl5Obn0NXVTUdXD7HYaAA3rj4lQSL50TKSAYuVGBsCmUB2UzJKygn39zHSehkrIYGbEEuJ7IAIsUjJlYPFp7gwl7vu2kRmphtTUbE0nZilcKVviJ6BYXoH/cQTCRRNQ8nOw61pKLpG/erl1NZW4c3JRrUshoeGcbR2YETCnDx4hOMfTh5kTMbldFBbXUZFRRG6lpytYRgJunsG6OjqoX9geFZf27KaSh558B4ioQgtbZ0T7lu3ZiWdXT20XJrZMVvaOmlt7eSee7bQ2t55010UfyDEqTOXOHXmErqukZ/vpTA/l9LiAnRdJSc7g113bwIUWtu7uNjYRjR6812daCxOS3s3Le3d5Hgzqa0pp7goj+wCF9kF1Yz4g1xu6eR850XoAFVR0BQNRVUJGUGqvCXsqFjPdtOkv8/HuXON9PQMjNWngA30a/+WJ/ybViBhJjCtBAbJ3ZSEmcAkMTqNPhm4mPKbQAixCEkAIsQiJ1nSC5Oiqig2Gy6Ph+raCmrrqsjIygRVI6ok29U2j57cJlBQNA3V6yXH7aK8pIiKsgIOfHQU3+AQtmiEkc4Ozh04REfnFQLBmc+wyMhws6ymnLLSAtTRHYJhf5Dmlk66uwcwphnATEbXNe69ZyutrZ03BB8AJSXFs+4kte/DI9TVVc3oOYaRoLt7gO7uAU6faaSoKJd1q+twOGyARVVFCZUVxfT2+eju6aerq29CPc1khnx+jh4/j8ftpKaqjPLyQrIyPWxct4L6FdU0t3TS0nqFqBkDEw6fOcnhMyfJzPRQXVlGZWUZA/EBesO9rFxeQ0VZKZ0dPcnXjidQFRVN1RitWBktpNexFA0HTBmoWDCa4mWSsEZTvkxjbHfFsJJBzKIMVKQGRIglSwIQIYSYLUVFtemoNvtompR97PP8glw2rF+J3eUERcFUVGKKSjAS42JTG8PDfiwjjplIYBoGy2vKqV9WTWlxPmDR3t4NoQBGMMjhQ8dnvUSvN5PlNeUUFeWN3TYwOEzj5Q76+ofm4JsAWzauJSPDxUuvvD0nxxtvyDfM4SOnZv18C4vungG6ewaw6TrLasooKSnE43ZQVJBDUUEOG9etwDcS5PSZi/iGAzc9XjAU4cz5Ji5eaqWyspiaqlKcDjurVtZQVVlKw4UWurr7xh7v9wc5ffYip89evHYQDQqKc1i5uoZEIkFLawfHT5zjyrjnaWOF8yqaoqGioCk6iqqiKyoqGupYgb+OpQCKHZSpAhVrNMVrNFgxE+M+T9anJEjIHBQhREpIACLEImVZlmx/pIKioOq2seJv1W4f+1xRtWS61NX/dJ3ikgJW1S/DUhQULMxEgkg4QvPldq50dROPRDETCdxOB3W1VVxqbCYWjVGc6yVhxHn3/QM0N7cTid5eXU9Bfg51teXk5WYDyZPRnp4BGps78Pn8c/CNSfJ4XGzevIbjJ87jG1d4Ptfu3rmZ4RE/Z8/NMI9rnLhh0HCplYZLrWR4XNSvqKakOB/LssjOdHPvXRtJWBYnT13kypX+m56MxwyDxssdNLd0UVpawIq6KtwuB5s3rqTaV8q5801TBjPnG5o439BEZqaHuppKVq6oJSszgyvdfeTn5WC36XR19yW7at1iY0onmfKlKRqqoqGhJD+qyQBFQx3tRKago2ApOqhgadeOMX5+imWZGOPqU0xrNOVr9D9zdLZKaklQJMRSIwGIEIucIlHI7bsaZNiu/88+McAY+09H1TUUVcMyTUwj2b62tqKITI8TJRxAsUxGRkKcPN0wVvjscjpZs7KWumVVlJUWYQEj/gCtbZ28t/fjOflSsrM8rF5VS15OMvAwLYuOzl4uN3fMKnXrVoLBMK+9/j7dPX23fvBtyMhws7yumvPnm6ZsATwTgWCYI8fPo6BQkO9l3doVuF12NGDzhpVE62vo6h7gwsWWm6anJUyT9o4erlzpo6amnGU1ZeR6M7n3ro10dvVy/mIrkSnSz/z+IMdPnef4qfNjt61bs4K1a1cyPOLn4oXLNFxqvmlgZ5AAM0GcqetZFBQ0kileiqqiJfdX0NTRXRZFGw1UFCDZuvj6+hSYGKiMr08xTWMsQDFGg5SElZBCeiHElKQLlhCLVKWnCqdipz/cS8SUSc3TodpsKLoNzW5H0fVraVO6DqqKOrqLMRZkjAYclpUMMpLta6+1sTWNBBVlBaxfu3wsDLw6SfvkqQtEY3EcDjtG3CBhmjz91ENUVZTQ0dnNpaZWLl9um7Mp206nnRV1VVSUF6EAiYRJW3s3TS2dU54A3y5VUW8ZDCiKyu/87h9OOgl9JvLzc3ju80/z5lsfcLGxZVbHuBW7zUZVVTHVlaU47DYg2UGru2eQU2cuEo3duhWx02mnfnk15WWFQPLn0NTcyeXmjmnV2SgolJUVsnJ5LXV1Vdjtdva8+yENDU2398VNQ3JeSjLVS1WTwxwVJRmQXF+fAlzbIZoy7Wt8fcr4Dl+jKV/WzQvpM0orCPf2MNJ2edpNFoQQi4MEIEIsUpWeSpyKQwKQ60wILMbvZug6jKZMqaMBhqJf+9yymNi6Nh5PfhydlXG9qspi1q5ejjJ68mQBTU3tXG7pIhaPU1SQx9q1K1hRV8Nrb+6lta0TrzebaCRKOBKZs69XU1Vqqkupq61A15N5NZ1dfTRcbJmz4GYq9+zcgtebyatvvD/lYxRF5YEHP0H/wBBnTn446wAE4JlPPITL6eSHP3l11seYDl1VqaurpG5ZBYxOoFcUhf7BEU6dvkAwdOufnzc7g9Wrasn1ZgEQicQ4fa6Rnt7B6a9D16iuKudKdy/BYJi7dm4iPzeHs+cv0dzckbZ6DZXRlC9VHRv0OL4+RRm9/6pbByrWtRQvK5FMAbMSOEqKCfV242u+RDwRk/oUIZYQScESYtG781KwFE2/IVUqWfxtA0VNBhXjdjKSnydPiMbvZCRC0eSfp5iVMZnS4gLWra3DpmtAckJ5d/cgJ09fIGYY1NZUsG3LOgoL8/H7gxw5dpq+vgEAfL7ZtbidSklxPqtW1uB2OYBkp6azDZfntMZjKk6ng3VrV3DqzIVbPjYUChM3pjfI8GZOnm7g6aceIi8nm4Ghuf1ejmeYJg0XW7hwsZXy8kLWr10OlkVeTiYP3LeVIZ+fc7f4PvuGA3z08SlKivOoX1mDx+Vk2+bVtHX0cK7h8rQGMxpGgsam1rHPhwaGKS8r5qkndjM8PMLJUw2cb2giNs0hkXPFxEzufE27PkUdS/NSxwUuyR2WqetT7HYvGU6TrIw4WOa44MQgbhqjXb+Suypxyxgd/CjzQoRYDGQHRIhF6toOSB8Rc+6uqC8UyaBhkuJvmw1UdWKalH6tCFxRJgYZE1KnbiONw5udyaaN9XhGT/YVRaGru59Tpy+RmekhFjcIBIJsWr+K8opSTp+9QGtL57xctfVmeVi9etmEq+vnLzbT2XV7dRiqoqJqCpqmEYvGsbDweFzYbDY0RUHRkle7A8Eg69asZPPmNby5Zx+xWBxFSe52xOJxuke7OVVXloGq8sQnPkt3dx/Hj+ylq7ObWDxOfp4Xj9uNaVmAhWWB3x9geCSAw27D683CNK1k+ptpYSQMAv4wuTlZBEJhLNNMpvEYZkqujOfnZVNTXU5RQc7YbYZhcuDQyVsON9RUlZUrqqipLkMh2Unr5OmLDA7Nrmi/qDCPTetXs6yuip+88Do9fQNoqnrLVsIL0dX6FHW0HiXZ8StZn+IqLSfRP4TRcQVl7Ec8+tNWblKfMklQkmxJbGBc/dySlC4h0kkCECEWqQpPBS7FuagDkKuzMjSbffSjbexzFGWsHkMdly6laBqKqmAmEmPpUmY8jpUwMOO3F2RMxq7rbN+2Fm92BgBGIkFTcydtbVeoqCxl3ZqVlJcVc/TYGT76+Nicvvb1nE4Hq+prKC3ORyFZb9LY1M7l5k6qq8vJyszApuvoNh2bTafhQhPdPf3U1lSwYf0qdE1D0zR0XaOnu489732Ew2Hna1/9LJqqoqjXprL/3T/8iHAkytNPPkh1dfmEdez/6AibN66hv3+QysqyCff19Q6MpUj99m98GVXRCBkZoCi4NT/f++FLDA4N8/Duu1m1qm7Cc48cO82Bj49TXlbMs888OuG+gD/IN7/zAgC//IufISPDM3afaZq8+PIeOrt62LppLatX15FIJDAMk0TCoKm5g+MnzpLhcbNj2wbihoFhJIgbcWKxOCdPNQBQUlyAoijE4wbxePK+SCQ2oc4lM8PN1s2r8bidY7cFgxE+Pnz6lilv+bnZrF+/ArfTgYVF0+UOLl5qn3VRvdvlJBRO/tv/wmefYmQkwPFT58YCwMXOU1ZOpLcXf0szqpUMkHVFQ1U1dEVHVZIDHZMfk59Ptz4FBYyruyijQcnV3ZWxzy1jThoeCCFuJClYQix2Cz0DS1Gv7WJcNytDUdUbajHGisBVdawGwzQMEtHIWPG3NY30lbmwvK6K+uVVY3ULwXCMAwdPUFxcyC986VO43S66unp4860PuNzcPq1jaqqK0+XA5XTgdDpxOh109/QTCASpqiilrq4Kp8OO3eHAYbfT2dXNvg+PUFFezJaN9RhGMsUkIyODnNxc3txzgIRpsm7NSgoKcojHDQzDIB5PjA0FjMcNwsEwRiKBkUiQSBgMjk48N+IGHx04RiKRnA1hJkwSCZP46OscOHicYyfOYprm6H8WDocdTVP5+PAJ9u47hGVZo/9BYlwA+M1vv4CiqPzSr/wWbW2dvLvnJcKj9RP7PzrCx4dPosDo7okyVuTd09PPD57/ebLkWVNQFWWsn5LDbsOy4Pjxs/QPDCXTeTQV33ByN6FvYIjGprZksKVr6JpGbDQw0G06uXle7DYdTdex6TqWZY0FIA8+cBe5ud4JP6/XXn+fpuY21q1Zycb19UTjcaLRGNFIBE1Ltlr2eJw8+MBWBgZG6OjqJRAMEwlHbmil3D84zAf7j7F21TLKywqpq62goCCXEycv4g/cfBdlMleDD1VROd/QyIb19Xzu00/Q3dPHyZPnaWxqWzIn0FfTvgzL4GbNta7Wp2iKhq5qY7sqY5+joanJ9l4atmTal8Yt6lOmTvmKm3FJ+xJiFmQHRIhFqtxTgVtx0h/pI5JI8w6IolxXj2GbfFbG2I7G1doMNbmTMS6wuNZhKn1v6tlZHtauriPHmwmAhcKFxlaikRjtHd3k53pZs2YFZ89epH/Ql7wyq2vE4nGcDjvL66pxu1y43U7cbid2u52fvbwHgC998WnycnMmvN7rb+6lsamV+vplrFuzgmgkRjQaJRaL09Pbj4JFTXUpALG4QUvrFQZ9I8RjcUZGgmkpztV1bVp1DHPVBWu8z3/2SULBMK+8/t5tH2u85M/KgcOmY7PbsNtt9PT2EwyGKS8rprqqDIfdjt1px2m3c+VKLw2Xmtm8YeVYHY6qaXi9XrIyM/nLb3wf0zJ55MF7yMhwEwqFCYUjhEIRhn0+amrLcNhsmJZFw4UWLrfcOEV+JhQUqqrL2LR+Nd6cLL79nZ+SMM1p/6wWmvE7IMxxIKWNFs5r6tUA5frPk8FL0rV/YdaECz4K/vgIvZFeTGk5LMSMyA6IEItcyuaATDorIxlsTDYr41oRuIaVuNrGNo4Zi5G4Wp+RMMa6DC0EV9OtsrMzkq1sTYuhIT9FRQU88egDdHR0097RTWZWBhkZHh568B7cHhcel5NLjS28+fZ+7A4b9+/aPnaiGQqHCQRCJK+VW3z00TFQleQV8nCUcDRKLJq88t/Q0DSh3WqON5ON61fgcbsAaOvo5lxDc1pPJl1OJxbWvLX2nY6GhiZ23bsNp9Mxp+sIhZI/s8l0dHbT0dk96X3v7j1McXEem9bXAwkGBwYYGvJRUVFEa9sVfMMjaLqG2+OmoCAPl9vJ2+98yL79x9h192YcDhur62vYsL4eRdVobe3k6PGz6LpGeVkxAX8QfyB4yzbAFhYtLR20tHTgdDpImCaZGR6++LmnOHH6PCdOnB/b2VrwlPn9vZbAJGHFplVInwxK9GTqFyqaqqMpGlm2bDKcxRgk6I8sjbQ3IVJFAhAhxATXz8pIfrRdm5UxLrC42ayMRCQ8WgSemPOrl3NNQWHt6mVUV5eOtdxNJCzKy8uoq7uW63/ufHIKt6ZraKpKb/8AoZYwgVCIgUEfACMjQf7fX39vyl2Jq2lRN6OpKsuXV7KspgwFhUgkxskzl+jrH7rNr/T2bd2yhrpl1Xzr2z+d9s7L0PAwI/6ZpxhNpfFyK/fdu43q6vKUzMeYju7uAd7o/ogVdZWsWF6FZSZYt3oZK5ZXcfTYeQ4fPT3p8w4dPcuKZVUUFuUQj0WxAHX05Ds7M4Onn3po7LGRcATfsJ+f/PQNLCyqKsuIxWIM+UZuCMSufh43DBouXmbblvVsWLuKI8dOc+bcxUW2I5K+ixQGyc5bcGOwEk1EyHRkp2VdQix2EoAIsUhZlnXb9R+624Pmco2blWG7NpBvwlC+KWZlRCKjReDGgg8yIJkr73TaCYUjOB12Htx9F9nZmSSMOKFgEMs0UVSVg4dOU1NdSUFhjOaWDpqa2/AHggyPtl1tbGylsbF1yte5nZQob5aH9etXkpXhBqCzq5cz5y4viCvXuq5Rv7KOc+cbZ/Q17t93CGsOU1RCoQg9Pf1UlpcsmAAEkj/3C42tNLV0sGHtCkpL8nHYdO7esY6e3kFOnbl0wy7G8EiAw8fPkuPNZOum1TgcNrxeD7k5WQwOjfDNb79AZoabrMwMsrIzcDocY9/7B+7bQVZWsjlCJBzB5/Pzwf5D9PQNkOFxY5omoXCEfR8e4cTJ82zfup57795CjjeL9z44mPLvz1KTst1nIZYgqQERYpEqc5fjUV0MRgYIJUIzfr7qcOApr8CWmQ2WNWFWRsIw4IY2tvFJB/ItZBkeF1VV5RQW5FJQkEdebg59ff385Gdvoioqn3jyARKJ2NhphMvlprCokO99/yV8I/M/S+N6dcsqWFFXiaooRKNxTp9tpLt3IOXrmEpdXRVPPHo/3/n+i/h802shqygqv/br/5TLzW2889ZLc1IDAsmfbTAYWdDD6ZwOG8vrKqmsKBkttlc513CZpuaOSR/vcjrYunkV2VkZmJbF6TONtHf2THl8XdfwZmfh9WaRk5OF15vNoUMnGB4JsPu+Haxdu5JQKExf/yB9fQNcbm4nGktePBjxB6muKkPXdZqa2hbe91FR8ZSWjtaAXF5QqZpXeW3ZeBxZDMWG6I/2p3s5QiwqsgMixB3KlpGJ3ZuLoqrERnxzMisjnWy6TllpESUlBfT1D9HY1Epebg6779vBoG+Yvt5BLl5sprd3AFVR2bZl9VjwoWoaxcXFDAz4+Pmr76Y8+LDpGhvXr6SoMBeAru5+zp5tIpriAXO3srKuhu6evmkHH1c5HA4cDvucriUQDM/p8eZDJBrn9Nkm2jt7uWfnBrBMVq2sZtmyCvbvP0bourSpcCTKgYOn2bBuOSXF+WxYt5zMTDfnG1omDRAMI0H/wBD9Azem5h05fob29ivk5+dQUJhHfX0dkWiM4yfOUVpSyN13bSHD46akpJC+vgEOHDxB6zTSA1NqrPJ74QUfQojbIwGIEIvW7b8pm7EoZiKBEZy7/PxUq62pYOOG1ZQU56OqGqFQmBMnzwHJwuG//rsfTMh3z/C4eOKxu8d2PQzDwqHrvPr6+3R2TX21eb5kZnjYurkej9tFwrQ4c/bmV73Ty+LChcvpXsSYBx+4C0WBd947kO6l3JTP5+f1Nz9kw7oVlJcVYtc1HnxgO2cammhtuTIhuDASCY6eaEjWktRVUltdRkaGm2MnGmZUt+H3B/H7gzQ2t43ddjVlSNM0MjwuCgryAMjL8/LJTzyUbCm954NFEdwtDJKCJcRsSQAixGJ3O++Bi/DCotebxar6ZXR19tDa3gVANBJh3/4jtHd0M+QbHntswjQnzAyoX1HN8mUVWJaFoqqcOHWRrq7etE2QLi0uYP26OnRNIxSJcuzYOXy3mKqdTq++sTfdS5ggHA6zds1K3nv/4IKfd2FaFsdPXeBSUxv33r0ZXYO19bVUlhVxfJI5IBcb2/AHQmxct4LC/Bzu2bmRg0dOE4nEpniFW7sa6LR3XKG94wq6rlFcVEBFeTF2m52MDBdOp5NHHrqXxsttXLhwmViaduHmuQnWnFpw6WtCLAISgAghFoXq6nK2bFxDaWkRkWiUkeEAAJeb2285BNBhs7F58yrycrKwLAu7w8Hxkxdo75i8rep8U1BYVV9NbXVyinh/v4/jJy8suJSr8YqLC+jrHUhbsDaZ5tZOtm5ZT2FhLt09iyMHPxAM88aeD6mqKGbVyhqyMj3cf+8munsGOH7ywoTv75XufkKhMNs2ryEzw8Vd29dx4NCZOWs9bBiJG9oLF+bnoes6D+zazq57tnL+QhPHjp1heCQwJ6+5pCymKEmIBUZN9wKEELNzJ111W792JU8/+SCKAm+8tZdv/uNPODvaEvdWvN5M7rtvM3k5WSiKQjAU48WX36O5ZfJC4PnmsNvYuX3tWPDReLmdg0fOLujgw+Nx8dlPPcbKFbWzer5hJjDnIXDp7RkgFotRUV4y58eeb63t3by//yjR0RkwxUV5PPHoPeTnTmzrOjwS5KODpwiGI3jcLu7asW5s6OF86O0f4OVX3ubs+UZUVWV1fR333r113l7v5hbH77g76XexEHNFdkCEWORu7xqctaCzmL3eLHy+Ec41NNLfP0RXd++0n6ugsHH9SsrLCrAsC8NIcOT4OfoHhm/95Hni9WayZeMqXE47hpHgxJmLdHcvnC5XU1m+rBoLi8vj6glmYv++j28ouJ4LpmXS0dFNeVnxlHM2FrJIJMae9w5SVVnM+jUrsCyTndvXcamxnYuN1zpThcIRPj54mp3b144GIRv4+NApglMMTbxd0Vicd98/wOkzF3jwgZ3U1layZvVygoEQgUCQ/tGZN0IIMVuyAyLEnWqBd5ZZVb+ML3/xabzZmRhGYkbBR0lxAZ/+1MOUleZjWRbRWJy33z+U1uCjvKyIu7avx+W0EwiG2f/xyUURfAAsq62ktbWLSHR29QeVVRXkeOdnYNsH+w/zymvvzcuxU6W1rZs393yEP5As/l5eV8HOHetwOq91DgtHohw4dJpAIIzLaeeuHevJ8LjmdV19/YM8/5PXeX/vx7S2drJt23qefeYxXM7524EZswjSmxb+CoVYuCQAEWKRWtjhw+3bvnUDTY1t+Ian3xI3M9PD44/cy333biYaSZ7M9Q8M8/a7h9I6+bluWQUb1y1HUxW6ewbYf+AEgcDMZ7ekg8vppKS44JZ1NjdTW11JUWH+HK7qGn8guCCGNN6umGGwd/9Rjp+8gGEkyMvJ4pHdOyktKRh7TCQS48DhU4wEQjgddu7avp7MDM+8rsvC4vTZiwSCId548wOcTjtf+OwnyMuZ/wngi+V33AK/liPEgiQBiBCL3G1P412gl/HcbicDgzfON7iZjevrcTltBEc7Cl1qbOfjw6fTlqOtoLB21TLql1cByXqPI8fPpzUYmimPx0Vf/yAtrempmZmO3fftYMfWDelexpzovNLHvgPHsQDLMtm8YSU7t65FHd0RiEbjHDx4mmF/EIfDxs4da8nOmt8g5Cp/IEggGMLu0PniF57m7p2b0UeHl84fObsXYimSAESIO5VlLej39paWTtatq7/lFd7S4gLqV9Ti9WbicdmJx+PE4gYHj5zhQmNrilZ7I01V2bRxJdVVJVjAmfOXabiYvvXMVv/AED/6yWuEwvNTbzAXdF2ntrYi3cuYM8FghDfe+oghX3L3Lz/fy2OP3D1WfB6NJ4MQ37Afh83Gju3r5n0nBKC6soyMDA973vmQQ0dOsWH9Kp587IF5f92F6rYv/ghxB5MARIjFaonv++/dd5D+gSGiU9Qd2HSd++7dzqc/9RirVtaw666N6LpGMBRh/4ET9PX7UrvgcXRdY9uW1ZQW5yfnP5y4QEtrV9rWM1u6rpGfn5vuZdxSR1c3ebneOZ+2nk4J0+TDj09y+mwjiqKiqQq77tlEcXFyeGDMMPj48BmGfH7sus6OrWtwzlNtxtVdjrb2K7z51gc0t3Rw+MgpfvCjl/nwoyNAcsdSU+f4lGLR/I5bLOsUYuGQAESIRe92U7AW5lW8UDjCy6+8Qywex5uVybPPPEplRSkKChXlxXzpi59kdf0yLlxoIh6PJovNo3H2fXSc0Dx1B5oOp8PGXdvXkZ/nxTASHDp6lq7uvrSt53aUlxbz3Oc/QW4K8v1vx5XuPhRVpbio4NYPXmRa27t55/2D+Ib92HSdrRtXcc/ODWiqmvz7deQs/kAYp9PO9q1r5jQlymG3sWnjan7pFz5DcXEBpmVysbFl7H7fsJ+BoWRjh6ee2M2nn30Mb1bmnL0+IOf2QixREoAIsUjdbl2DNQfHSBWb3YbdZuOZpx/mK19+ht337yQYDHH6zDkcjuQJV//AMG+/l95ic4/byV07NpCdlUE0GufjQ6foT+NOzO2qqSlneHiEwaHb6x524dJluq5Mv4vZTPl8I4RDEUqK5qfQPd1C4SgffXyKptHZNTneTB5/9G7cbidxw+DwkTNEozGyMtxs3bQKVbm9t/aiwjweeuAufvkXP8vdOzdzuaX9lk0T9u0/jMvp5Iuf/wT1K5fd1usvNovl96gQC4kEIEIsdgt0B2Mu9fUPcujISfZ+cJArPf143C78/hFyvMmrrf39wxw8fCatJwLZWR7u3rEBj9tJMBTho4Mn8Y0E07ae26WgUF1VPicDG3t7+wkE5/d78caevZw53zivr5FOpmVxvqGFYycvoCgqCvDQ/dspyPcSikQ5dPQshpEgP8/LhnXLZ3Rsh91GbU0FWZnJOpKa6nLKy0s4evwM3/rOC7z7/gECgZv//Lp7+vnh86/QdLmNRx66h93375jtl5q09H+tCXFHk0GEQogFzeV0cv+921i+ooYzZy6w5+39hO7aSE52BgD9g362bd/EunWr6ejqputKD52d3fQP+FK2xrycbLZtWY2uawz7gxw+coZIdOFONp+OvHwvGRmeOel+dc/dW7l8uZ3G80fmYGWT6+jsmbdjLyRdV/oYHBrmwfu3oWKyY+taTpy+SEdnL0dPnGfbljWUlRYQjkRu2vSgtLiQqqpSykqLKCoqQFVV9n5wkFNnLnDk2Bk+PnRyxmuLxePsefdDWto6Fk/5xm1Q7oCLP0LMFwlAhFikLLi9q4SL4AxhRV019+/aDijs2bOfC5eaue/eLWRlJAewnTx9ia4rfbS1XaGysoSy0mLuuWsLly+38caefTidDrZsWktvXz99vYMMjwTmfJckx5s5Fnz0D/gWXZvdqbhdLgYHfVyZg/oVVVGZ6/rk67mcDnbu2MjJUw23nTK20EUiMd56+2Pu27UFt9POxnUryHC7aLjUyqkzl9i4bgV1tRVEIjE6unrJz8uhsCCPooI8Pj5yEr8/yMqVNdTWVNLV3csH+w7R1t7F8EgA4Lb//l4a133ukd134w8EOXTkNKZlzvhY1iL4PbXwVyjEwiMBiBCL3FK9BqfrGnft3ExHZw979x0kEonywH1b8LidAJy/0EL76FXvru7e0UnpJ9F1DbvNBkBGhoe6ZVVs3rQGgHgszpXuXl565R0gmeseCIYIBsOzWqM3O4MdW9cmg49+H4ePnSNhzvwkayFqa+/iez98Od3LmLa4YbB6VR0DA74lH4AAGIkE775/iPoVVdTVVlC3rIKKihIuNbbTcKmV+uVVrF29jN0P3E1GhgfTTDDQ78PtdOL3B9n34RHe23tw3tfp8/vZvnUDFRWl7Hl7P76R6Q0WXQwtbhf+CoVYuCQAEeIOt9De6EuLC/EHgvgDQZ7/yauEI1FUReWB+7fhdtoBhTPnmmhpm7ytrWEkxq7g9vcP8o/f/Skup5PCwjzycr3Y9OSvPQWFT3/qMXRdJxaLM+QbZsg3woEDxwgEQ2RmeEgkElPOv8jO8rB9WzL4GBga5sjxpRN8aKqKy+UgMMvALB0MI0Fv7yAlxQWcOnMh3cuZF5qqkpnhQdVUBoeGcbucLFtWi8fjJBQM4LDrbN5Uz1tvf4Tb5aCyvJje3m7e29tCR0c3RuLazkaqdukOHzlNe0c3jz58L1/4/Cd48+19tEy3rki2FoRYsiQAEWKRmpPUBMtaMEXsCgpbN69h+/aNnD59gQ8+PEw4EkVTVTZvWoXbaUdRFI6fujjjfP9wJEJrWyetbZ1jt1lY/PD5V8nJySLHm02ON/kxkUgGEbvu3cqy2ipisTgjfj+BQIjTZy7Q0tpJQX4OWzbWo+saQz4/h4+ew0gsjeADoKSkkGefeZTv/eClRbWb0NM7QFVFSbqXMWsOuw2Px43H42Z4eIQRf5CqyjI2b1pDZqYnGXyoKu3tXbz487eJxeNomkrXlT4i0QjFhbnEolF237eNfR8dw+l0UJifQ01VMR2d3Wn7urq7+/jR86/w8IP3UF5aNP0ABFgUUcgiSBMTYqGRAESIRW7WOxgL6E3T7XLyyEP3UDHaeefgoVNA8orv3XdtIDvTQyJhcuxEAz19g3P2usldj2Gg/Yb7Pvr4BBcvNJOVnUlmpoeszAxUVSXD42LrplVomord4WDjxirq61cQDIQ4cvwMjU2t5HizqSgvJhSKEAqFCYXDhEIRYvHFUZheWVFKOBRhaGhkTo4XDodTMkm9t3+ADevrcdhtRGML53utoJCX58XlcuJxu3C5XbhdTg4ePoFhJHhk990sW1aFzW4be86+/Yc5ceo8iUSCcDBMb88AI34/vmE/Pl/y52IYCV4eTSeEZBvo3fdtw7JM7t65gRMnL5CR4cbjdrFh3QqOHj+f8q/9qmgszmtv7B37vKK8mCvdfTfZiVkYF0ZubjGsUYiFSQIQIe50ad4B0VSVz376CWw2nZdeeYf2jitj9923awselwMLi0NHzo4NPUsFn28Yn2/i6yXnfKxH01SCoTBnG1q4cKEVd4abDI+LSCQKQFFRPrvu3YqqXhsK19XVwwsvvomqqHzhc08SiUQJhyOEI1GikSjHT54jGotTkJ+LTdeIRGNEYzGi0VjKi9orykto7+ias4L9N/fsTcnfs67ObvZ/NH+dtuw2Gw6nHYfDgdNhx+lw0D8whG94hOKifFavWo7LacflcuJ0Ohka8vHqG3vRdJXnvvD02HFisTihUIgTp85hGGHaOq7QP+QjGAgRDIUJBkL4R9vednR2T3v3IhiK8ObbB7hr53qyMtxs2lhPV1cfzpJ8SoryqKkuo7ml89YHmidX/z45HXaefPwBBoeGef2N9xdVqt9kZA6IEDMnAYgQi9biftNTUFBVhYRp8sH+Q/T1D04oBr9rxwY8LgcAR483pDT4mIzb6WDH9nU4HXZGAiEOHjo95VX2hgtNNFxowul04HY5cbtdmKP1IaqmcKW7D6fTgcvlIic3G6fDwYlTyavTO3dsorqqbMLx9u8/zPFT56muLGPnjk1EYzHisTjxeJxB3zCHj5wGYNP6VRiJBHEjgRE3MAyDzq4e4oZBhseFqiWnZycSJolEgoRh3nDy5HQ6KMjP4fSZhjn73j3y0H00t7TR0Xx6zo45mRF/kOMnzqHrGk6nA13T0HUd3aYRCISIRKJ4szIpKMzFpuvYbDbsNh1/MEzDhSbsNhsPPXg3NpuOw2bH7tCx2+18/4cvE43Fefyx+6iqnPizSe5UjOB0JL9v4XCU4eEAPb39DAwk/84aRoIfv/Da6G5Y5IaA8sKl5jn7HsQNg/0fHmftmmVUlhdTVlpAMBTG43axamU1Pt8IQ77pFYLPl0g0xs9e3MNTTz7A5z7zJK+98T49vQOTPNJa7L/mhBBTkABECJFybreTxx7exZBvhPc/OEhL68SrshvXrSAvJzlk8FxDM909k52cpI5zNPhwOx0Eg2EOHZ46+BgvEokSiUQn1FEYRoL3P5i6+9Db7+xPXkF32LE7HThtdnr7k19/OBKhp6cPu92GzWbD7XYTHz2ZVVDYtm09dpsNZVzP229/96cMjwS4+64trFxRO+G1Dh06ycEjJ6koL+axh+8jYV47MV6xooZzDU0AfOKJ3dhsOqZpYllgmib7DxzD5xumfuUyqipKMAHM5Nlie8cVGi5eJivTw9Yt67HZVIqLC9h9/w4SRoK9+w8BcPfOzXg8LhRFQUVBUVWOHjtNb/8gK+qqqV+5DEVVUFUVTVXo6Ojm48Mnycjw8OzTD6NqGqqqoGs6mqbyjb/7IcXF+Tz0wN3k5GZP+Fr3vPshDQ1NVFSU8MD9O0d/FgZG3KCtvYuGC02YlondbsOIx/EFw0RjcWKx2Fi24qEjpzhx8jzRaJRoJEYkFiMaiQHQ0tZJS9vUuwvdPf1T3jfXTMvi1JlGsBQqK4rwuF3E4gZ2m87mjavY/+FxomlOB+ztH+D5F17jyccf4NOfepzX3nh/Qo3WorBA6ueEWIwkABHijpfaN9GK8mIefXgXlmVx+OiNV8TLywopLysEoLW9m8tpTBkBsOk6O7euHZtwfuDw6XkdMhiORAmPpnJdr6d3YIorxck0kL/5+x8BjF75T179D4WStReHj5zmfEMjmq4n79c0+geHAPCPBDl56hyapqFqGpqmEBk9sQYIhsI47DYUTUWF0dSy5Fm53abj9rhRR0/GVEWhfyB5XF3Xycv1YprW2J/j4058MzPcZGR4sADLtLAsE1VPpq2ZlkUiYWAaYCYSmKZFMJTcITPicS63dGCaCcyEhZFIYI52eFq5ohZN13jt9fdJJBLEjeRO0NUZF+cvNHHxUjPxeOKGuRSGkeCln7895c+mew5moqTSqbOXiEZjLK+rwG7TSVgWLqedjRtWcPDI2XQvj2AwzM9eeoud2zfS13fd3+tFdG4vKVhCzJxSV3+P/MsRYhEqcBaQY/MyEh1mJD7zYmF7thd3aRmKbiM6lJodhp3bN7B18zraO7vZ8/Z+4nEDp9NBJBIlbhgU5OewbctqVEWht9/HoSNnUrKuqaiKyo5ta8jLzSYciXHg45OEpggOlgpNVee0nbCiqPzO7/4hl5tbee3nP8aaxTC6mVhTX8fuB3byjb/7IXHDmNfXWixqa8pZvbIaSJ4sKyhcaGzlUuONzRfSye12snP7Jj786AhxC5y5+UT6egm0taR7aZMqcBZg1510R7rxx9Ob1ibEYiM7IEIscrO9UJiOCcMOh4ODh04wMDTC5z/7NGvWrERVVUzT5OLFJkIhP8M+H51dfRw/lf5ZDuvX1pGXm41hJDh89OySDz4cDjtf++pnef2tD2bYKnXh6O0fRFFV8vNz5mSK+1JwubmDeNxg3ZplYztVK+qqGPL56e/3pXdx4+R4s1leV0VJcT6vvLmPOItjEroQYubUWz9ECLGUzXcaszcrk9qaCgD27juE3e7gt37jq2PBB4CqqqxcuYzNmzZRVFzMydOX5ndR01C3rILyskIsLI6eaGDEH0z3kuZdSXEBuq7jm+OCf9MyU9b1eXDQh2maFOTnpuYFF4n2jm4OHz2HOfqDUEjWWum6dvMnplBnVw8/fuF1NE3nU888SlaWJ91LmhYJkYSYOQlAhFikFsObXmlJIZ/7zBPs2L4BVVGpqa7k2WefTBYdqxN//SiKCorCqlWrqLyuC1SqlZUUUL+8CoAzZ5vo6x9K63pSpbSkiGAwhG94btNJDnx8lMamljk95lQSpsmFC5cJReZ/7shi09c/xJGj12aBOB121q5alsYV3WhwaJgXXnyDWDTKgw/cjW0BBUjXm/UMJiGEBCBCLHYLdRBh/cplPPvMI/QP+PjZS3swLZP7d+24ZUqFZVncf+/OeV3bzeTmZLN+3QoAmlo6aW1P3wTpVCsrKeTKlblPW8rP8+JxO+f8uFN5+72PaGxsTdnrLSa9/YMcOHit+UN5WSHFxXlpXNGNgsEwL/38HT4+fGJx1PFImpgQMyYBiBCLlTVHvVfm4SLeujUreOShe2houMzLr7xNJBLFpusT0q6moqoqa9euxKanvkTN43GyZXM9mqrQ3TPA+Ya5m8+w0GmqSn5+Ll1Xeub82CtXLKe0tHjOjzsVTVXJz/Wm7PUWm4GhYfYfODH2+eYN9bhTGCBORyQW48qVXgCeePR+6pZVpXlFQoi5JAGIEIve7COI+bpw19zSwd4PDvLO+wfGOio5nY5bBh9XqaqK0+mYn8VNwW6zsX3LGhw2G75hPycWQBF8KiVMk3/4xx/TcKEp3Uu5bTVV5Tz3xU/idi2sk+qFxDccYP9Hx7FItk7edfdGHA5bupc15urOrqaoFBXl80tf+QxrVi1P86qEEHNFAhAh7lhzG314PC6eePR+XE4ngWCIU2cmnsBHItGxaeC3YpomkRR2nNJUla1bVuFxuwiFoxw5dg4jMb/tYheiaCw+rQGLC13/kA+AvDxvWtex0PlGgpw4mfx3atN1Hnpgx4IqSseChGXyne/9jLPnL/GlL36SzRvXpHtVN5A5IELMnAQgQixSC+lNLz8/h89/5kmKi/OnzPWPGwZnz164ZRBiJkzOnLmQ0tzv9WuXk+vNGmu3O5+DBheqRx66h21b1qV7GXNi2OfHMBLkShrWLXVe6aOzK1n3oyrw8AM70Ke5U5kSlkXCNPnhj17h6PEzfP6zT7JieU26VwWAIpPQhZi1BfRbRggxK7f9Jnh7z6+uLuezn3qccCjCj194nf5B35SP3bvv4NgcgqmoKpzau++21jQT1VWllJUWYFoWR06cxx8Ipey1F5LqyrJkJ7IlwMJiaGhYApBpOn2ukWg0BoCuq+y+f9st/53Ou+te3sLipy++yQs/fYOmpoXTYGDhXAYSYnFZGu82QoiZs8b+N2sZGR6efOx+2ju6eOHFNwkEb37y7s1yceHiRbCsG3dCEgmwTPjmt9h1/BBaCt7avd5MVtcnr6aeu9C8oIaypZI3KxOny0lPb/+8HL+ltZ3e3oF5OfZUBgaHUl5HtFgZRoLjpy+Ofe5w2NixfX0aV3TVjb8DDh87TcI0qSgv4ZEH70nDmm60kHajhVgsZBK6EIvUQnjTCwSC/PSlt+jp7r/legrycygtLaCrs5PzDY3U1tSydu1oVyzThKNH4Y3X4VIjVcBDgUHeypi/9qAOm40tG1ehKgpd3f20tHTN22stdEVF+QDzFoA0N7cRTvEU+bff+WhB/BtZLPr7fbS1d1NZUYwF5OVksqa+lrMNl9O7sCl+hOWlRTz04N2gwJ53PkztmkZJApYQsycBiBCL3G2/Cc7iAHft3ISqqHx44Cjd3beeG+F2Odi6aRUK0Np+hdNnm9j34VFsuo7T6cCMRPinXY0UJK7VfTziH+SC3UOrfX46GW3csAKX004wFObUmfRPXk+nosJ8hodH5q3wf9eunTS3tHL54rF5Of5kJPiYuXMXmikqysNhT3bDqqkuxe50cPzE+Vs8cx7c4vfSgUMnsNltPPn4A4RDEfYfOJqadU1G/qoJMWOSgiXEHepWAwEno6Bw373b2Lp5HaFbpFtdpakqD9y3DU1TCUVinDt/bbZG3DDwB4IEjQTf95YwPilLBZ7zXcExD72C65ZVUJCfQ8I0OXq8AcNIzPlrLCbHT56b16vIuqahqantrpSV5eGXvvIZiosLUvq6i5lhJLhwKVlfcbV9dllxHqvqa9O5rCl9sP8w7+89yCeeepBNC7A7lhBiahKACLFIpXr4roLC7gd2sn7tSt7f+zHHT03vquiWzatRFVAUlQMfnxw7sblem93JnszcCbcVJAyeHp7bydz5edmsXJ4canb6bBMj/uCcHn8x8geCXJnGTtZiEgpFyMz0kOPNSvdSFpX29h5G/EE0VSUYigCwrLqU2prytKznVjtZb+z5gL0fHKKnJx1/fyUJS4jZkgBEiEVOue03wek9f8P6elbXL+Pt9w5w+uzFWz8ByM3JpjDfC8CJ0xdvWQfwTkYubbaJhcN3hYdZHZmbIMHptLNpfT0K0NbRQ0fn3E/9Xmxyc7LZfd8OXEusYNswEgT8QbwSgMyIhcW588m6D7fbwfBogL56ZTWlJQtzN+n1t/bSdaUXXdcoLSlM+etLup8QMycBiBB3LGtG2yhnzl3kxZ+/Pe1J2bqmcteO5FyJQDBMe0f3LZ+TQOF73hJi193+eV8PGYnbS5NSFYXNG+txOGyM+IOcO7f4J37PhbLSYlavXp7SuSup4hsewZstAchM9Q8O090zgIJCPBof2wnZsG4F3uyMFK1i5hdWHnzgLn79V5+jvLRoHtYzGdkBEWK2JAARYtGa/6tuuq7x+MO7KMzPxTASdHTeOoi4auXyahTAxOLDAyen/bx+3cbLWROvYmZaCT433MPtfM0rV1aNDRs8euI8xjSnsi91xUX59PcPzVMdjIWlJxgJjRCMBrH0BKms2PX5RvBmZ6bs9ZaScxeaSZgW+flezl9oprd/CE1V2LZ5DU6nPTWLmGGe6ft7D9Ld088vf/WzFBbk3voJc0R2QISYOQlAhLjjTX4Vz26z8fRTD1FdXY7dMbMTjsL8HGqqSwE4fOTcjK+uH/Bkcc7unnDb2miQHSH/jI5zVXFhHsuqkznsJ85cJBiMzOo4S1FhYT6989R+19JNerc08bPWFzhuHaZ3SxOWnrrA7/jJc7y5J3VDLZeSUChCc0sHAKtWVnPixAWCoTAOh43d929L3bT0GQQhsXicb33nBfyBIF/7pc9J+p0QC5gEIEKIGzgcdp55+mEKC/J4+ZV3ZrTzoesaO7atBaCzu4++/qFZrEDheW8RAWVi56RnhnvIN+IzOpLTaWf9+uUANLd00d2d2oF4C5lN18nxZtLbN5jupcwL37CfwaHhdC9j0Wq83EE0GsPjdlFRUcTBI2dRFBVNUdh17+Z5fe3Z1raFwxH+/ls/JpEwWbd6xRyvaqLbr78T4s4lAYgQi9Rtb/vf5OlPPnY/3uwsXnzpLbq6e2d02Lu2r8eyLBRF4fSZxlkvz6/pPO+dmIrlAJ7zdc9oSvq6Ncux6zrDI37OX2i+9RPuIKqq8OHHx+mcQYC5mDjsNnbft4OC/NSl4ywlhpGg4WKyLe/yZZUkjASHjpwBwON2snHd/J7gz5bfH+Qv/vLb7PvoSEpeTxKwhJg5CUCEWOQU5Tavwk3y9I8+PsbPXn6Lnr6Z7RaUFOeTneUB4NCRs7ddV3DWmcHHrolpFNXxCA8GprerUlFeRFFBDgnT4sSpS5ip7l28wEVjcY6fOItvZHapbQudYSRYs3o5hQV56V7KotXe2cPwiB9d11hWW05P3yBNLV0AlJcVUlw0z9/bWf6TvTpUc/OmNXz5uWdkt0KIBUYCECEWqTk5lR53Qq5rGtu2rEPXNXp6B+gfmFnqlE3X2LppFQCDPj89c5TW83J2IQOaPuG2R/wDVMRuXsfhdjlYMzpA7cLFFvyB6Q1OvJNUV5ZRWpz6tqWpkjBNgsEwWaNBsZidhottAFRVlOBw2DjfcBmfLwDAxnUryMxw3+zpaRUMhFizqo5HHr5nzo8tIY0QsycBiBCL3GzfBMdPQldQeOThe9m6ZT15Od5ZHW/NqmVYloUJHDp8ZparulFUUfi+t3jClHQN+JKvG/tNdjTWr12OrmsM+kZoHr1iKybavn0Da1YvT/cy5tWIP0BWZqpaxy5Nff1DDPn8aJrKstGBhB8dPMnA4DC6rnHPzg3Ybba5fdE5Oru/cKmZN/fs48EH7mLdmpVzc9Dryc6qEDMmAYgQdzolOeG8tqaCN/d8MOO0K4D83GzKywqxgI8PnsK4zZkd12uxu3g3I2fCbYWJOE9NMSW9uqqU/DwvRiLByVMXpU3mJFRFJS/XS3//0ixAv2pkJEBWprTivV2XGsftgthtmJbFseMNJEwLXdfYff9W1NtNB73OXJ3X7913iBMnz/HZTz9OcdHCHKYoxJ1GAhAhFqs5eHe2gE3rV7Fm9XLeef8Al5vbZ3wMBYUd25MDBzu7ehkcGrntdU1mT2Ye7ddNSb83PEz9dVPSMzwuVq2sBqDhQvPYEDUxUY43E13X6RtY2gHIpcutXLh0Od3LWPR6+4fwDSd3QWprywCIxuN8+PEJFEXBpmvctWP9PLzy3EQhL7z4JidOniMQDN76wTMkFziEmDkJQIRY9GadhDX6bIX9+w/T0DC7yeD19TUogKKonD8/f12mDJKpWNc34f3CuCnpCgob1q1AU1X6+320tC3N7k5zoWC0MHt2bZIXj5aWDk6duZDuZSwJlxqTFyiu7oIAjIwEOXH6EpAMautX1szRq83tbko8bvCzl/cQCITwuN1oqZpjIoSYlPwLFOIOlZmRzIs/fuocx0+dn9UxHDYbdTXJq6GNzR1E4zOb0TFTvbqdn2dNTKHIshJ8drgXsFhWW0aON5O4keDkmUvzupbFLhaPc+lSM9FoLN1LmVc2Xae6qgyn03HrB4ub6ukbxDfsR9c0akb/3QO0d3TT2ZVMh6yrKcPrnauUt7nfWdA1jd/69S/z1BO7b/tYt92BUIg7mAQgQixSt7Ptv2bVcn7vd75KUUH+ba1h+7a1WFZyJQ0NqZmx8aEnm4brpqSviwbYZUZZsbwKgLPnmwiPtuEUk7vc3M4bd8CUcJfLwdNPPUSRtOKdE5eakrsg1eN2QQCOn7rAkC/ZznnThpXoujbp82fKmuMCbyOR4IP9h7j7rs1s3bxuTo4pKVhCzJwEIEIsdjO8CresppLnvvA0DRea6O3tn/XLZmd5xtqbHjxyNoVvwgo/8hYRUCb++vrEwBU8wQA9PQN0dM5seOKdKC8n+45IQwkEwpimSVaWdMKaCz29gwyPBND1ibsgAAePnCEYjuBxOdl196bbe6F53F04ePgkBw+d5FOffITKitJZH0f2P4SYvaX/7iOEGFNeWsQv/sKzXG5u42cvvpkMGmb5Lrpm9TIUoLO7j/4U1xGMaDoveIsm3KYbBivf38vps7Ofvn6n8HhcfOm5Z6iqKrv1gxc50zIJBEJkSiveOXNxtCNWdUUJjnHtdw0jwfGTyXobj9vJyrqqtKxvOl5+5W06Oq/w3BeeRtfmZrdGCDF9EoAIsUjNZsfh6aceprunn+9+/yUS5ux3LGqqy8j1ZpEwLRoaWmZ9nNtxypnBYdfEXPOcvj7uHpTdj1vJHZ31Mjg4nN6FpEhyFogMI5wr43dBqqsm7iD4fP6xHcgVyyvJuJ0hhRbzUQYCJIdUfvf7L/Gj539++23DJQNLiBmTAESIRW4mGxjf+f7P+NZ3XiAWj8+6ja+ua6xdtQyA7p7+tNZavJhVSMDlmnDbY/5+yuPSevdm8nO9GIbB8LA/3UtJib6+gSVfbJ9qjZc7AKisLL4hle/E6YvEjQSWZXH/vZvRF2iqXyAYoqWtC1VRqa2pmMURJAlLiNlamL8VhBBzRkHhiUfvJzsrk0AwRDh8eyfnmzeuwrJMUBROnU5vp6nsonwu7n5wwgVIHfjSUDc2mU48pdxcL0ODw3dM8ez+j47y3gcH072MJaWnZ4BwJIbDbqOk5MZmFnv3HUFRVBRg9eramb9ACs/tt2xZy6/+8uepmmU9yJ3y70iIuSQBiBCL1HTf8h57ZBe77t1KUeEUXYBmUOzpdjkpLEhOJD9x6gIJ05z2c+earqqsXl3LcFEhJyuqJ9xXlIjz1MjsC+yXOqfTzsCQL93LSClFrlbPKdOyaG3rAqCmquSG+yPROEePnwOgsryY4uLZdCFLzYn90aNnaG/v5vOfewqnw56S1xTiTicBiBCL3M1OrDasq+eB+3fw+psfcLGxZcJ9FtaM3983rF8JloVhmGnvNLWstgKPy0k4EuN500GHPnHOw66Qj5XRUJpWt7C9+sZe3n7no3QvI2WqK8v4rd/4Mm6XM91LWVLa23tImBbZWZnkTDL7o6u7n6aWZKrW1o2rcM1qFsv8ByGmZfKjn7xChsfN0089NINnSlArxGxJACLEElVeWsRnP/04x46fZd+Hh2/7eB63k9ycZCehQ0fP3vbxbmstHie1teUAnGtoImqafD9n8inpbvM2C0yXqDspbSQcjqCqKhme2yiIFjeIxuN0jQ4gvL4Y/aoLF9pIjKZDPrBr64LdiRocGublV95my+a1VM+wO9yd9G9JiLkiAYgQi9Utahxycry0tV/hpy+9eYsDTe+EYN3qOhQUevqGGBxKb/ektavq0FSFvv4hrnQPANCj23k1c2IuerZp8JnRKekiqaqyjK/+wqdxOe+c3QB/MAiA+3Y6MolJtbR1AlBSnI/TeWP6kmmZ7N13FEVR0DSFrZtWp3qJ03b0+Fn+7pvP09LaOa3HyyR0IWZPT/cChBBzS0HBwuL02QucPnth6gda0+9xmeFxkZ/vBeBSY+vtL/I2lBTnUZDvJWFanDnXNOG+/RleVkdDrIhdS73aGAlwLuznqCsr1UtNqas/dwCX04mua2iahq6pqKqGb3iEWDxOeVkxbreTkpICVFVFVRRG/AG6e/pxOR0sr6tOdjVSVXRVwbQsjh5P7nitX7sSj8c1WlysoKjQcKGJ/gEfFeXFLKudOPeha6CbPpon3HbXXZtxKsngZ/+HRzASCdavXYk3OwsLE9MELGhqbqW7p5/8/FyWVVdgYoFlYZoWfn9gLKVwzarlmJaJlbAwrAQkLFrbu4gbBvm5XhxOBwkzgWmaFBfk0d3dRyQSRVNVdF0jkTBvvw3rHWx4JMjA0Ah5OVlUlZdwYZLfD6FQhDPnL7OmvoaiohwK83Pone7soBQ3k2hsSq6/prqClpYO2d0QYp5IACLEIjXVG+Nnn32MSCTGz19/d85ea/vWdQBEYwa+4cCcHXemdF1jTX2yBfDlyx0EQxM7elko/MhbyB/0teG2rhXIf3q4l8t2F0OajXRQFRWbTcNms6EoCv5A8op8dWUZul3Hrtuw2XXsus6Zc5cIR6Ksql9GeWkxuk1H1zV0TeNiYwtnz12itLiAxx69D11LBhmarhEMhvnWd14A4LkvfALPdelGP33xTTq7eqiqKkXXdZ56YvfYfWfOXaS7px+P28Wue7eSMMzkSb1pEYsbYwFITXU5Xm82lmVhYYIJbe1XYMCHJ8NDSXHBhPPFoBGE6/oUFBbm41ZHWyePXkDOz8+lpLggGdQooKgKff0DdPf04/Vmsnp1HYqioCoqiqLQ09fPxcYWVEXlwd133fD9/tZ3XiDuN9i6ZR3Ll9eM3b5t2wYSlsnhI6epqCiZkO+fSCQYHPDxw5+8CsDnnn0CTVOJGwZGIoFhJPjwoyP4hv3U1VZRVJRPwjCIxQ3icYO+gUG6u/tw2G3k5nqJxw2MuEEsHiceN4gbxgz+xiwuLa2d5OVkUVlZTOPl9kmbUzS3dFJRVkxWpotNG+t5572DGIn0NbG4mYL8XH7ta5/n9Tf3su/DI7d8vAQpQsycBCBCLHLj0wDuvWsLW7as4/mfvDb9598iBSszw43blUytOHTk9OwWOUeW11XidNoJhiM0XW6f9DE+zcZPsgv5RV/32G1Oy+K5oW7+Or8ccxY56C6nA4fTgdNhx+Fw4LDbuNzSjmEkqF+5jMKCPBx2G3a7jt1u59z5Ri5caqa2poLHHtmFrl/7VdvfP8gPnn8FgCceux/dlrzPiBsYhkFTczvhSJQMj5usrIzkyW/cIByNE4slZ1kEQiHOn28kMXpinDBNIuPmsex5Zz+KopJIJO9LGAl8vhEAzITJpUvN7N13GMsySSRMzNETxv5BH//vr7835ffhpVfemfK+hoYmGhom7khZegK2XneMl95CMSZOnn73/QNTHrexsZXGKXbdTMvkL/7y26iKiqopox9VopHk9+mD/Yf5+PBJdE0lMzODhJFgaPT70N8/yBtv7UXTdDRNRVNVYuOChM4rPTgcNnRNHwsCr55n5uRmU1tdnrzdpmO32Th56jzd3X3k5Xr5zKefmLDOcCjC333reQA+86nHcDrtxKIG0XiMWCzOkaOn6B/wUVpSSGFBHrFYjFg0TiQWY8TvZ2QkOOX3ZyHo7h4kHInhctopKcmfskHFRwdPsHvXVhwOGyuWV3GuoXnSxwEz6s431/r6B9n/0REee+Q+GptaudLdl7a1CLFUSQAixBKxvK6aJ594gA/2H+LYibkrEt++dS0A0Wic4TSeCGVmuKmtTha6nj17GeMmLYBPujI5Eg2yNXxt0N6yeIQHI36OFJXhdDlxOh34BofxjfgpLi5gTX0dTqcduyMZaAwNDfPGnn3omsavfu0LN7zGP37nBUb8QQoLcikrKyQeixOLGYRDEaLxZDn84ICPjz4+lrxv9Ip4OHJt1+Yfv/dTEkaCWMy44Srq4aOnOXx08oBvZCTIx4dPTvn1t3d0T3q7goI3O4sLl5onrGOxMy0T0wBIML4TQSgcITQ696Z/wDfhOYFg+KbphB99fGzK+w4fOcXhI6cm3HY1kO/tH+T7P3gJ3aZjs9mw2fQJFwlaWjvwuN047DZsDluy7auSLMesKCth08bV2OzXdurOnrvEu+8fID/Xyxc+/wli0RiRaJRINEYkHOXnryV3OteuXoGmqYTDEcKRKJFIFJ9vJCU7LxbJlrz1K6qpqSqZMgAxjASnzlxi25bV1FaXcaV7YCwgnPzA6dtZeGvPfuqWVfPFz32Cv/ir72Dc7PsoGyBCzJgEIEIsUta4U9acnCye+8LTXGps4fU3PpjuAW4pM8ODa7Sw9OCRM7Nb6BypX1GdLILvGaC3fxBIpmTpuk4kEkXXNFauqMXtduJyufDrCpFXXsTpv5Yy9vhIPxu+9FlixcUA7N9/mOOnzuOw28nLzyESiRIOhvENDTMw6APASCR49fX3iMViRKIxopEY0WgsOU2e5FX2qfhG/PhONUx5fyiU2iDAwuInP32dcDR90+vTpa6uiorS4nkbSHj1X6NhJBi4SZOGq+lskzl45CQHj5xEU1Vs9mRwcjVNKRgK88G+Qzgd14JkddyE8VUraykozEPTru0u/fzVd2hp7WTTxtVsWLeKSDhCKBIhHIrQ3tlNw4UmdF2jpLiAcDhCKBQhHI7OKqWovb2H5XVVZGdl4s3OmDJVs6dvkGAogsft5O6d63n9zY8wrakvJqQrBjESCX70/Cv8zm99hft3beed9+6cttVCpIIEIEIscgowMhzgwIFj7PvoyMxPHm6S6bByeSWQ7Oc/4k/d7oeua3jcLjweNx6Pi1gsRlFhLhZQXlFG/aoVuN0u7HY7nV09/PTFN7Esi9337yAajREKhwmFIpy+exdb33x97EtUEgns//BNvlu9Gn8sOpaq09rWSWvb1J1vLjdPnu61GPWPBlZ3muzMTOrqqhfFRPSEaZIY3cW4KhyJcvrsxSmf8+OfvQGATddxuRy4nE58I8kdwN7eAS5cbMLpdOJ2OfBmZ+EfDcy92Zl86pOPjh3HMk2CoTDf/Haynmjb5rVomkYwFMYfDBEKhBiaZGclGo/T3d1PWWkB5aVFN60V++jASR59+C6wTDZtWMnRE+dveMxCaNfb0zfA33/zx3R09dxw30JYnxCLmQQgQixyLpeLRNhkz7sfzvi51k0uL2ZneSguysMCLjW23cYKJ1JQyMx0k5mZQWaGh8wMNxmZHvZ/eJS4YfDEY/dTt2xcNyXLouHiJQAGBnxkZ3vpHxgiGEym14wMJ0+yEqbJX37j+zdcTQ14vOwO+sY+zw+H2NHayMvZBXP2NS0WNdXllJcVT6uwdqkJhcM4nQ50TVvSXa/ihkHcb0y4YNDZ1UPnJCfRAENDI3z7uz/F5XbhdjnxuF1jdUkAhUUFFBbk4nG7UEZ3XH7+yju0tHWyfu1KVq6sJeAPEQgGiEeTu4Ilpfmca2iecmcjGo9z+nwTa+trKCnOIzPDM9aYYbyFkNl0tc1wjjcLn89/4wUeRYrQhZgNCUCEWKwsWF5byaOP3MP//d43Z1EoefM3zaudr8LhGP7AzCaKOxx2CvJzyc7KJCvLQ3ZmJpFYjPc/OIiqKvzil58dO5mJhCP4/UGcTgfxgMH58400t3QQDAYJBsO43U42rluOkUhw4vRFIqO7FpOZ7ITnjcx8VkbDlBrXribfH/Jxzumh0XFnzYWoKC+lsryEfdyBAchoupvL5Zz0ZPdOlTBNhkcCDI9MvmPx6uvvAckLBx6PE4/bPbazMhIIMjQ4TGamh/z8cjI8Htra23DYbNTWVvDIg/fgDwTxB4KM+AMM+/xj9WmdHT0srynH4bCxc/ta3n730BQn8uk/uc/K9PDPf+9rvPLaexy8Se2VEGL6JAARYpHKysrgU596lIsXGm+zS8uNqQQetxOHPfnr4dDRyWs/sjI95OfnkuPNIisrg6ysTC5dauFcQyNlpUU89cTuZDpHMMywP4C/JxnEJEyTF3/+NsFgmEAgeEMqR8u4VCgFhQ1r6wBobu66afAxFUNR+F5OEb/f1zbhF95zvh7+d0EVIfXOmcea481kyJfeIZLpEgqFAXC7JQCZDQuLQDBMIBgeu62lpYOWlo4Jj1tTX0tNdSl5OZl8fPA4GZkeMjM9FObnUVSQPxaA/MKXnkFVFXp7enDYbex+YDtHjp5hxB9MdhxbQEb8QU6eauCxR+/j7LlLBIIhScES4jZJACLEIqQoCr/ytc8D8Oae/XN+/I3rVwKQSFh4s7OoqarA683E681m375D+Eb8bNmyjrWrVxCLxRke9jPi9xOLJgOEzs5uvvO9FwkEgpOmu3R0Tt6l6XoVFUV4PC6isThN153ozES37uDVzHye8feP3eY1DT490sN3vSWzPu5i4/VmT9nSdqkb8Qf46MCxlBf+32naOnqSAUheNm+/c3BCa+Px9u0/QnZ2Brk5WTjsGh6XHY/HzYg/yK57tlK7aiXDgTCRK10MtrVz4dJl2juupPirueb1N/ayqr6OJx67nx//9PUJ90kKlhAzJwGIEIvQY4/sYv26er71f35GKBy+9RMmMb7+w+V0kpfnJTcnG4/HRW5OJpZlkZuXy7PPLMM0TUaG/Qz5RlC15I7B4SOnOXT4JMHgja8fjcWJxuI33D4Tuqaxsi5ZBH+pKTlz43bsy/CyOhpkeezaejeFA5x1+DnuyrytYy8Guq6RmeG+Y3dAotEYR4+nt5PbncAfCDLsD5Kd6aG0NJ+WtskvNjRevhYIP7J7Bw6HjQ1rl3Olu4+GC5fxRQ28OTkUZrip27aeWDxGe8cVVi6v5ZNPP0RPTz+9vQP09PZz5Uov3b39k77OXAmGw7zx1gd85tnHOHLsDK0tUzetEELcmgQgQixCh46cgrhKY1MnN21jdR0FhYKCHDRdp7tvEG9WJo8/8wi5arJ2IpFI0N3dSywaJm4kePf9jwlHovhHAjdMNw7McxpLdXUpDkdy6GB7+/R2TG7GQuGH3iL+sK8V17jg6zPDPTTbnfjSNCU9VVRF5cDBE3R1Tz6j4U5QWVFKOByhb7SNs5gfHZ29ZNfXUFZaNGUAMt6HB0/y0P3b0HWV+uXVNFxqoT8QQbXZCF/pItLfN5byNDwywpmzFykuzGfjhlV4vVk0XW7jb//hR2iqyuc/8yTdPX10dvXQdaWXQHBm9Ws3c+ToafJyvfju0CBeiLkkAYgQi4jDYUfXdQYHfez94CBl7vJbPqespIgtW9ZSVlJMcXE+Doedi40tfPO7P8MfCNDY2MpA82UGBnyMjPi5795NeNwuGi42p20CsMNmo64m+bVduNh6Q/AzWz7NxgvZRfzCuCnpLsvii74evpFXhrWE87pj8fgdvwNw7z1b6OzoYe/+Q+leypJ25Uovq+uryfFm4vE4CQZvnvYWCkVobu2iurKE5XUVtLR3kbhuEvrVNKfunn5ef3Pv2O1Ohx2XywmAy+0kMyuDlStrcTodAAwP+/mff/a3GEaC8rJifL6RWQclFhZv7EnOWdKUO6d2TIj5IAGIEIvIV7/yaepX1PKH//q/35B37HG5qKgspbKihMqKUk6cPM+RY6fJys5gWW0VV670cObcRbq6epJXwS1IJEzOnLtIsCuZTlBWWoDH7cK0LDo70xN8ANQtq0DXNYZHAnRdmdt1HHdlsjoaYHP4Wtef5bEwuwI+PsjImdPXWkiKCvOw2WzTrr9ZikLBMG63K93LWPIi0Th9/T4K83MoLyniwjTqjs6eu0xlRQkqFju2ruOjk5em+VrJAaEAgUCIv/n7H6KgkJuTTWlpEbm52WPpm19+7hlyvFkMDg7T1t5JW8cVTp1qmHFAUlJcwHOf+yRv/vgjhoJTzzsRQkxNAhAhFokd2zfy0O67+eu/+T6maeLNy8Zu6UQTCZ564gF23bMNSOZgt7V1jb2pnm9o4nxD0w3HU7TRf/7jLjSuX7sCgMGB4bTNSnC7nFRVJQvDz19smZfX+FlWEbXRCF7zWoHsU/5+LjrddOuOeXnNdFu/rh5vdtYNBbR3kmA4QlaGJ93LuCN0dPRSmJ9DaVnBtAIQC4uPDp7i3p3rycxwkZ3lwR+K3nRW0c2ONTDkY2DIN+H2b/ztD6goL6GyspTK8lLWrllJY2MrgWCIu7ZvJCPTQ3NzOy1tXRhTFM8DDA4O43DYuW/Xdl58/Z0Zr08IIQGIEItCXl4Ov/6rz3HxUjN1dVV88umHKc0v4nt/+Spnz1zkzJmLdHR009bRxdDQyKxeIzPDg6Ymo5GTZ6Z39XE+rFxehaoo9Pf76O/3zctrhFSVH3iL+M3Ba4WkOvDloW7+PL8SQ1l6qVhebxa+Wf7dWCrCoTDFBXnpXsYdobd3AMNI4HE5ycvJZmDo1nUTPt8IHZ29lJcVsmplDYeON8zpmnzDI/iGRzh99gKQbHSRSCTTO7Ozs9i2dR0P7b4bw0jQ3tHF2+98RFPzjUNYo7EYr7z2Lr/4ic+xatUymg41zuk6hbgTSAAixAKlKArVVWW0tXfx27/xC9hsOiuW1+ByOTl95gIvnHuT4eZkR6fW9i5a27tm+AoTryxu2VQPQDQaJxyJTvaEeZfhcVFampxQfv5i87y+VqPDzV63l/tDvrHbSo0YT/j7+XnW0puS7s3KpKV19q2Ml4KhoRFycyVlJhUM0+RKzwAVZYUUF+dPKwABaLjUQllZIRmZbiorSmjomr9uU+N3ed/Y8wFv7tlHUWEetbWV1NZUjM0o2rltI8vqqrjQ0ETDpcsEAiHOn2ukZV0nn3hiN68f3TMWyAghpkcCECEWEFVVWbN6OXft3MTmjWvIycnmP//Xr/P8T14lNzeHc+cv4fMlr2I7NCcV7oo5KJtWcNhsZHiSufHHTsztVceZWFab/Hp6egcZHpn/YXGvZeWzIhaixLg24PD+oI/zzgwa7UunVsBht+F0ORn2+dO9lLQ6e/4SZ8+nb3fvTtMzGoAUFeZy9vyNaaCTiURidHb1UVJTwYq6ShqPHCNVl0MsLLp7++nu7eejj4+N3R6NxcjKzODTzz6Gqqp0dFxh797DfHjgKFV15eTl5tDbN5CiVQqxNEgAIkSaKYoyluf8H/7t77B6VR3d3X3s+/AI5xsauXipefIZGLPIjZ5KRUURAMFQeNpXKuea2+mgbHT341LTjWkP88FQFL7vLeb3+q9NSVeALw51878KqogskSnpdrudrq4eBn13dgoWMNbOVYbHzb/+gSESCRO3y0F2lmfaFxVOn7lEaW0llmWyfes63nstvXUWx0+e4/jJc3jcblasqKF+ZS1xw8A3EOaVV99j+7YNHDh4nIGBobSuU4jFZGm8uwqxCGVnZfLsM4/yF//nP1JWVgzAT198k3/z7/8nv/cH/4Xv/eAlHn1kF7/9m1+ZnwVYFlgWCgo1VWVAcuBfuiyrLR+r/fANpy5Npsvm4I3M/Am35ZgGz44snXkZ/kCQF158k/47fP5FcXEBv/0bX8brzUr3Uu4IRsKkvz95Ul5UOP3am4Rpcq7hMgClJflju7PpFgyFOH7iLD/40c9pvJQsrC8tLeSLn3+Kv/z6f+bf/5vfZvvW9ahL5MKFEPNJ/pUIkWIrV9Twu7/9Vf7yL/4zzz7zKKfPXCA+OjX89JkLXG5OBgF379zMpg2r2bf/yLyux+vNxOFIDuG7cmV+pwlPxem0U16eDMIaL6c+CHo/w0uj3Tnhtq1hPxvCSyNlyWG3oclJEbFoDEVVcTmXZqezhai7Nxn0FhXmzuh5XV39JAwTLIutm1fPx9LmxPsffMwH+w4TiURxOh38we//Kg/ctyPdyxJiwZMULCFS7N67t1JTXc73fvAyez84SDAUvuExHo+br/7ip/n44HGOTTE8bq5SSJbVVmDFg/j94Tkb+DdTNdWlaKrCkM9P/2DqU8CSU9KL+cO+VpzjUts+O9xL6xKYkn73XVsoLMjjRz95Nd1LSatwOFlN4HRJAJIqvX2DWFhkZ2XgdjoIzaDBxZHjZ9m1qpLKimKKCnLp6VtAO3jjiu+ef+E17r1nK6fPXOBv//6H9PQm60G+8uVnAXjp53sYGZHmB0KMJ5fEhJhnVVVl/Nt//Vs88dj9AHz7ey/y+//iv/HaG+9PGnwA/MKXnsGm63zz2y/c8vjKLFvGWhZomorLaQfg9NmLszrO7bLrOlXlybkfjWlMARvSbPw0u3DCbW7L5Au+XpRFXi/gzc5kJCAnQNHRgXUup/MWjxRzJRqLMziU3EksLJpBC2QFAoEwzS3JLliPPLRzrH5nIbFItg9+/c29PPn4A/h8fiKjQZbfH+DBB3byF3/2H3nuC0+PTWcXQkgAIsS80TSNz33mSf6/P/5D8nK9XOlOTvSOx+O3fG7T5Ta+9e0XxjpezZfKihIsy0JRkrsP6VBdXZaceu4Ppv0K51FXJiecGRNuWxELcW/Al54FzZHMrAxGfBKAmJY5liojUqenJ7kjUDzDNCwsOHv+MoqioKoKG9atmIfVzY2Xf/42RiLBpz75yNhtL768h9/5Z/+Z19/cy+OP3sef/sm/kr97QoySFCwh5kGON4t/8y9/k7KyYn720pv87KU9JGYwWfztdz685WPmIgWrerT4vLMrPbUfuq5RXZ3+3Y9rFF7ILqQmFiH7uinpl5weunV7Gtc2O5qqkpnhYXhkadSz3K7nf/LqWCqWSI2e3gFW19eQl5eNTdfH5mtMRzQa41xDM6tWVrNh/QrONjQRj0//+fPl+t2YYCjM1//vP9J23TymYDDED59/hXffO8DGjavHdkfGdz8U4k4kOyBCzIPhkQCnzjTwb//of/GTn74x7eDj8599kl/6xc/M6LVmm5TgcTlwj6ZfXbg0v0P/plJdUYJd1wkEw3R3L4w++iFV44feogm32YDnhrrRF2EqVkaGG1VVGR6RFryQ/LcZm8YupJg7wVAEfyCMgkJhYc70njQutfTosXOAgmWZ3HfP5vlZ5CyNDyJOnjrP0NAwmnbjqVVv3wBv7dkHwJOPP8Dv/+4vo+tyDVjcuSQAEWIOlRQXsKp+GaZp8t3vv0Rr6/Sn+FaUl/DM048QCITmcYXXrK5fBkryhCyUhivCuqpSU53cgWm83LGg5jJcdLjZ5/ZOuK3ciPKof2EESTMxPBLgb/7uB1y50pfupSwIG9bXs23runQv447T05PcZZ1JO96rTMviwwPHASgrLcBpT/9O5FT1KBUVJfzfP//PlI+2Vp9Md08/mzau4Z/97i/P1/KEWPAkABFiDv3ar3yRr/7Cp2f8PEVR+Ce/+kV6evp48eU903vSbZ6v19dXA4x2nUp9cWd5eREOh41QOEpX18KbufFqVj7d13W/2h0YoiY2eeOAhSwai2PMIAVwKSvMz6O6oizdy7jjdI92hirMz5l2S2hr3GWJpuZO/IHkv73Vq2vnY4lzoqurFyNu8IXPPTXlY44dP8Offf2bbNuyjvvu3ZbC1QmxcEgAIsQc2b51PWtWL+d7P3hpxs995OF7WbG8hm/83Q8xZpAfnTTz4CE/NxtIFp/39qa+8FtVFGprywG43NyBuQBzoeOKwg9yihn/01CBL/m6caapXfFsbNq4mt0P7Ez3MhaMSDSK3ZH+K+h3Gt9wgGg0jq5rZGdnzuoYh48kW5KvWlmD07lQfoYTf3clEgl+/MJrbN+2gcqK0imfdez4GfZ/eISvfPlZNE2b70UKseBIACLEHFmzejldXT2zamebn5fDW2/v58LFy/Owshvt2LEBSM5FSBipvzJeVJSL2+kgGovT3tGT8tefrg6bkzevm5KemzD41CKakl5cVIA3a3YnfEtRLBrHbl/cc10Wq/4hHwD5edmzen5HVy+xmIGmqdx/79Y5XNks3OS6z4cHjtLfP8hTT+6+6SFe/PkePth/GIcExOIOJAGIEHOkrKyYjs7uWT33+z98mb//5vMzes5sayZURSU/NwuA02caZ3WM21Vdlbwy2NbWnbbhh9P1foaXy7aJcyO2hf2sjyyOtraZmR5G/ItjrakQjcVwOqQVajoMDCSHjObNMgAB+PDjEwAUF+XiSvtAycl/CycSJq+/uZfSksKbzmlqb7/Cd773M0JTzIMSYimTAESIOXLw0EmOHDs9o+eUlRXz6MP3ok4zJ3pyM0vBKi3NH5v90dc/lDxCCktAsjI95OVkY2HR2nEldS88SyYKP/AWE7num/QZXw9ZifS3A72VzAwPAX9qGhssBl1dPRw6cjLdy7gjDQz6gGSbcn2STlGTui49s72jh4RpYVkWD+xK8y7ITbz2xl7+w3/6s5u22s3L9bJ2zYrb/P0vxOIkf+uFmCN73tnP3g8Ozeg5X37ukzz15IMpfQOqGO3O0tDQPHr9LrX1F9VVybkfV7oHiERiKX3t2RrUbbx43ZT0DMvkC74eUv39mwld13C7XTIFfZze/kGOHj+b7mXckYLBCOFIDFVR8OZk3fSxN5t6/v7eIwAU5OfgdqVnqv2trtmYozu7y2orp0yx+uTTD/OHv/+rN90lEWKpkgBEiDlUVJTPr//ac9Pq775m9XK2bFrLD3748iwKz2efgnU1AGjvTH3thU3XKStJnsi3tC783Y/xDrsyOXXdlPT6WIh7gsNpWtH0vPnWB7NODVyKHA47tTUVknefJld3QZKNMGan80ovccMELNavrZubhc3SzXY4vN4s/st/+n3uv2/HDfetql/G44/ex/M/eW1GQ2qFWCokABFiDjnsdu69eyv/6g//CU7n1PnJiqLwlS99iouXmvn40Inbes2ZXD0ryPdis+koikJPz7juVym6AldRXoSmqYz4gwwOLewT9xsp/CS7kGF1Yseap0f6KDQW5k6OYSS42NiC3x9M91IWjMwMD089sRvvLDsxidvTP+ADkulHt2RZN6RgXfXuewcBqFtWQYbbNUerm76b7dBc5fONcPDQCZ56/IEJv6dXLK/hD3//Vznf0Mjrb+6dz2UKsWBJACLEHGpr7+JP/vSvqFtWxR/9u39K7hRvsls2r6WmpoLvfO/FWb/WbHZANq6rByAUimJa5uhxUkNBoaoyufvS3NqVoledW0FV4/nsG6ekf8m3MKekFxXmsW7NynQvY0GJRpPBokMK0dPiaiG615uBrt+k/ewtLor09A3S3TOAqqrsvn/7XC5x2qbzL/6V196juLiArVuuDb/8zLOP09rWxf/4X39z0x0UIZYyCUCEmGPnzjfyn/7r18nxZvEn/+UPsdlubPl59NgZ/tN/+ToXLzWndG0lJcmWsidPXxi9JXVvfoUFOXjcTmKGsaincjc4Pex3TUwfqYhHeWQBTkmvqSpn65a16V7GghKLJQMQu0Na8aZDOBIlGAqjoJCXM/s0LICTp5Itz3NyMsjMcM/F8mbh5r9Dmy63cb6hiWeefphltZUA/J+/+CZ/8qd/RTgcScUChViQJAARYh60tnbyB//qT/h/f/1d4vE4breL5XXVAGRlZWBZFucbUtsCNzPTzdU3y5Y07ECM1Z509GAkFnbr3Vt5NbuA3uumpD8YGKJ6gU1Jz8zMkA5Y14nFDCzTxGmXHZB0uboLkp/nva3j9PQNEosn6+cefODGOov5Nb20VV3XaW3rpLKilF/7lS8CEA5HiMcXfgc9IebTrStlhRCzEgqFOXW6AYD7d23nl37xM5w+c5G6ZZV869sv8P4HB2/vBWa4eVE9OpXXSFhjb9rJ48z/LkiGx0VBfg4W0Nq2uIrPJxNTFL6XU8zv9rdzNYnk6pT0/11QTXSBdLXJyPTglxkgE1hY9PQNYEjhb9r0DwxTWVF8W/NArnrnvUM88ejdZGe5yfC4CARTexFgqlRYTVN5aPfdPPPJR8jNyWb/h0f49m2k3Aqx1MgOiBAp8MZbH/BnX/8m1VWluFxOHrh/x9iOSKqUlibTr44dP3ftxhRlYFVVJoOf3t5BQqGlkXbQYXOyJzNvwm15CYNPDi+cKelZmRmMBKQA/Xo/fuF1Gi40pXsZd6yB0YnoWZkeHJOkqCZNL4jv6x8iHk/uqN61c8McrO72ZGZ4ADBNi0cf2cX58438wb/8//j7b/2YRx66h4L83DSvUIiFQQIQIVLAsixaWztwuVx8sP8woGC3J994a6rLKSrKn92Blasfbv5m7bDbKSxInix3TNZ+dx4v2Ou6RkXZaOvdtsVZfD6VdzNyaLluSvr/z95/h8eVp/ed6OfkylUoZBCJJJi72TnOdPfM9OQZzSiMRpJly/Z69/raXq3XOVzt3WfD3b2yde3Hu7JlK0uWJkkaTdSE7p7OudnNTJAEiJxT5XDi/eNUFQASIFIBVSDP53lAgFUn/KpQOOf3/b3v+30fz6c4VSdd0icmppme2b/1Nh53JsWiQTrjRipiDbdxI9tkdPb1t94HXGtfRdmjxI4V10xBELj/vhP803/03/Jf/tP/zoEDbTiOw7/6tX/Lb/7Wf2VyahbHcfjcZz7Cpz/1zN6Mz8OjzvFSsDw89oi/9otfYCmR5Ld/96ur8n9//kuf5aEH7uH6wDBvvf0Bb71zlvlSh/LbsRUXrIMHOxAE936+1ykKnR0tyLJEJptnbj6xp+febaxSl/R/ND+Mb8Wv48uJWX6j2Udaqu0l9vkX36jp+euVL/7Ux8lmct77U0MSyTThkJ9YJMzM7OK6223GJWp0bIZEMkMsGuJoXw+XruxddOuTn3iKhz9+gnhDlOGRcf7gj/6CxVKvk5XX+WJR58WX3+KZpx7jK1/7jtf7w+Oux4uAeHjsAYIgMDu3wJ9+9du3FB/++//wB/xf//GPSCRS/MLPf57/+B/+Fx64/yRA1VbzTt/jWrFOTK5eDd8LC8juLrfz+vAdUPuxFvOywnciq615Q45V8y7pmqoQCQc31a/gbsNxHM8Fq8Ykk2nAteNdi62WUV3pdx0FH37wxK595iVR5NDBLr7wuWcJBVzXLUGAt976gH/9P/0G/+Jf/xuee+G1dd2tXn7lHSKRUOX67uFxN+NFQDw89gDHcdbt+WEYBq+/cYbX3ziD3+/jwQdO0X/1BgB/97/9Jfr6ejh37gpnz1/h8pWBSh+DlQgI6xdDiiJ+n4LjOCvsd9fav/pEwkEi4SCW7TA5eeemAr0dCHOykOGe4nK9xQk9xxPZFG8Gd15oux26ujr4zKee4Xd+/+sUCsWajKFeMQyzkgLpURsSJQESrVJDyKGhcZ58/DSO43D4cBcDg6NVOS7Ag/ef4tSJPg739eLTVBLJFP0Xh8jNG/zwx68ynh3b1HHGxqcYvDHKR55+jPfOXKja+Dw89iOeAPHw2GW6uzq4/74T/OBHL29ovZjPF3j9jTOV/7/86jvk8wUefOAePv2pZzAMk//wm3/Iu++dxx/wIYoi2LeXDk2NMRzHQRBEFhbX6D6+i4v0XQfcyMDs3CK6YezeiWqOwJ9FW+mZGyHsLKdWfCE1y4AWYE7e+8luOBjANE1PfKyBoRuEgrXqG+EBkErlsGwHVZEJBnxk1zOn2GSU1rRtRkan6O5q4/FH7922AAkGAhzsOcDB3i5++PwrGIbJiRN9BIIBXn7lba5fH2Jichaf5KPR17TlKPJXv/YdLHt/25B7eFQDT4B4eOwyP/PFT9B3uJfv/dWLW973wsWrXLjoRi3a21u4//QJbgy5q21f+plP8+kHPs759y9zZbqfG8NjjI5P3iJyDvYeAFjHfWr31IcoCHS0NwPrFL7fYWQkiW/EWvk7S8uF9irw1xJT/GZTF9Yep0IFggEyWc8Bay10w0BVvdtfLbEdm3Q6QywaJhoJry9AtsBb716gu6sNUYCW5jizc+vXltzMT33uWfoO99Da4pp1LC4leff980zPzPOVr37nlgjzdtO8Lly6tq39PDzuNLwrsIfHLtLe1szjjz3A7/3hn2HvcNVramqWqalli9efvPQm4oKPeCjM4489wLPPPslzL7zOCy++QVNTnN6uDsbGp4hEXFvI8xfXTr9yqf7kuLmpAU1TKOoGc3MbF9XfCVz2BXnTH+WJ/HKkqdso8mxmkR+HGm+zZ/UJBwNkMvXVGLFeeP+DS5w/31/rYdz1uIXjYRpiYSanb0rR3MYlqVDQSaayRCNBHnnoFN//4aurnlcVhQMH2ujqbKOrs53m5jj/4f/+IxwcggEfw8NjvPTSWwyNjJNIpir73d7wY+uLOKdOHuHJJx7kd37v61ve18PjTsETIB4eu8gXPv9xksk0L++06eAajE9M81r6PSRbYPKb4zQ3x8mX0m0O9nbyM1/4BABXr17FcRxa21q5et1NS1hdM7I7UZDOkvXu5OQc9h4Uu9cL340206dnabaWI1GfSC9yVQ0yovpus2d1UX0quazXBX0tMt77Uhe4dSDtRNcpRN/OZePlV8/whc89TbwhzNG+XmzbZuDGKMFAgP/Xv/x7iKJIsagzMTnD1WtDKIqMbhh87c++v7UT7WDNRtM0Pv6xD/Hj515l5A6zJvfw2CyeAPHw2CUaYhGefuoRvvr1721Y+7FjHJiena/89933znPhQj8njh3i3nsOI0kSmqIC0NTYwP/wD/4m0zNzjBds5osWc7LAxHj1boSqLNNSSmUYn7zz069WUhQEvhJr51cXxio2gyLwS4kp/v0edkn/zvdeQBQ8o8O16Ghv4cTxw7zw4pu1HspdTTLp9sspu7WtHWnYWIXIsoRpWnS0t/DRjzyBqkroepHPfvopBEHm3//ff0A2l+PP/uIHTE3NMjO7sCUb82pz7vxlEskUTz/1GP/1T/+yZuPw8KglngDx8NgllhIp/s1v/DZXrw/V5PyFok447KZfZbIFnvvJ6+7jhSLPPf8abW3NtPX10d3YhNXXyR/94Z8B8OxHn0DXdRYXUywtJVhMpLZcyNzR0YQkCqTSWZKpu68OYVT18Vw4zqfSyznozaUu6X8Wa73NntXFdrxi17WIRMKcPHGEl15+2ysIriGZTB7TtJBliXA4QCq98lqxtlA/0N7CoUPdtLQ00tLUREtLnHfePc8PfvwyAAGfj/n5ecJhH0tLS3zjm89V9v3g3OWqv4btCBnLsnnt9TM89aGH+crXvo1leZ9Bj7sPT4B4eOwCgiCUbG93N8/cdWBZf0W9q9Od7A4MjFQey2RzvPrGewCEunvxt7YhF9wbv4CAT9M40NHKffeGEER3Bf2rX/8u8wtL9B3uIRj0k0ykSaTSpFOZNSdwBzrc845PzN7y3N3CC6E4xwtZeoxl8fZ4PsVlX4hLvuCuntvn0/i5n/4UL778FpNTd+/vYD0M3XVkU1QFy3MJqxkODslUhsZ4lGg0VBEgTU1xmroPEA34aX7oOK3REN/57nOMjE1y8uQRPvzkw8zNLzI7t0j/1QEGbrippZNTs/zOH7h1Fb/y1z6P4zjcd89R3nq3+pa3O41jvvzK23z+sx/lgftPeZa8HnclngDx8NgFvvylz9LV1cFv/Lvf2ZPzreXIIgoisiziOA5DIxNr7uc4Do5tk864N34Hh+//8CXATWuIRSM0NEQqBZldne0cP3YIWXYvHY5t88pr73L+4lWa4jG6ujrI5/M0xMI4OEzcxZNfCzcV65/MDaOuePzLiRn+bXM3mV3skh4KBYjHY3dV7c1WKFtCq4rs2RTXAEkUaW5pJBYJ4/P7AXjgvhOMjbvpmh//yBOEO9qxC0XyUxOMT0xRLInGF19+i+dfeGPDyMMH567ywH1HOXa0h7ffvVjTlKu1GB2b5Df+/e9WXA49PO42PAHi4VFl/H4fn/rEU/zkpdrmlzc1RUv9PwQSpVzrdVmjLsE0LeYXlphfWHawevHlt3jp5bcJhgLEoiGi0QgzpdqTpsY4jz1yH+lMmmQiQSAQ5Ff+2s+QSmdIpbMMj4xzpX+wJGzCpNPZyqTiTmVeVvhOtIUvJZeFWMix+PnkLH8Qb2c33MeASpfmbMYrtl4Lw3RrslTFa0a4W4RDQdrbmomEQ4QjQcLhEEtLSV59/T00n8rP/+xnAFhcXCSZSGCaZqWW4wc/fhk7GKaQzpAbH8PIpCvHNU1rvVOu4vKVQR68/xiO49Dd1crI2PSuvM6dyJp33ztftXF4eOw3PAHi4VFlPvWJp1BVle9vo+/H1ln/9tfaHAdgosodyB0cMpksmUx2VX+P/us3uHp9iI9/9FE0TWFoaAJBmiISChEOByuN3+KxKL/w5c8Dbj1KJpsllUzz/R+6OdyHDnZhWTbZTJZMNkdhjc7v+4k3AxFO5jOc1JfFwD3FLI/l0rwdiOzKOYOhAI5tk8t5NrxrkUlnee/9CxSKXvRjKwgIBIP+iotYX18PrU1NhEJ+AsEA4VCAd945T//1G3R3tvOxjz1JoVgkncqSTmfIlARxPlfka9/4HslkGkWR+OjTD+M4NpbppnMmUxl8O3SMs2yb2dklmptjHD92sOoCZLt9QG7m7/53v8S1a0O8+PJbVTmeh8d+wRMgHh5VRFUVPvvpj/Diy2+xlEhtvEPVuPVm2NbaBMD4+O1uvE5VUxMam6JomoJumnxw7sqa9SGLiSR//s0fEA4FiUZCBIIBRGnZremZpx4lFFqukTB0g+98/wUmp2bpO9xDe1szuVyBbD5PPptnKZG8qXi13hD4RqyVfzo3SmhFl/QvJmcYVP3M70KX9FAgQC5f8Aqs1yGTzfHmWx/Uehh1gyxLBPw+AsEAAb8P27IZHp1AliU+9fGnCAT9hIIBAgE/oijyu7//DfKFAn293bS0NpHJ5shmsszOLpBIude9awPDDNwYWTPK6eAwN+8aNBiGiWU7SKJIIKBVpSFhmTffOc8XPvc0zU0N+DR1dxYzdpjmGG+I8eQTD3oCxOOuwxMgHh5VpLenE1EU+e73XqjpOERBoL29GXCYnt18N+Cd0tXh9v6Ymppbd/JrmhZT03NMsXZk5o//5C8rE55gKEA4ECCZclMwwuEg3V0HCAR8+HwaAOfOX+GV196lpSnOT33+WXK5PLlcnnyhSDqTrUw0uzrbsCybQqFIPl+gUND3LC88Lcl8I9bKf7OiS7oG/FJimv/U1Fn1LulXrw8xPVPdyNedhCSKtLe3sLiYIJev3oS3XpAlCZ/fRzaTw8Ghq7ONeDyG36fh9/nwBXxc6R9keHic48cO84lnP7Rq/+npOYZHJ7BMG1ESWVpMMjY6STaXJ53JYpiuqPjh86+udXpgOc1tIxwcstkckVKU9GYB4uxggp9IpllYTNIYj3L63qO8897FbR/rVqrzN3vmg4v8zb/+s/j9PvJ34GfRw2M9PAHi4VFFrl0f4u/96v+0+30/Sqw3gY7Ho0C5/iO95jYrqUY6gSSKtJZ7f0xsf/Jr2TbpdJb0GlGND85e5oOzrpWmLEv4fb6K1Wy+UOTCxWsEAz78AR+hUJCAfzmN4xPPfphgKQ0M3AL6b377x0xOzXLPyaP09hygWNQpFnUKRZ2p6VnGxqdQZJnGpgYKBZ1ioUixqG/L3vaSL8hb/giP55cjY71GgY9llnguFN/y8W5HIpla1cnZYzWKqvAzX/wkP/jBSwwMjdZ6OOsiyxLgivZQKEhLcxyfpqL5NHyaSjab5/zFq8iyxM/+9Kfw+TQCPh+K6kbVfu8Pv0EuV+D0Pcfo7u6kUCiQzxXIFwqIpbqvqakZnnvhdbLZHPl8nmy2UCnMd3D47vd/suuvM10WIKEAM3PlBZPqTPAnJuZojEc5frS3ygKkOpx5/yJ/52/9PPffd8KLynncVXgCxMOjSjQ1NZDPFcjWIu9eYFU5SHd3OwC6voEQcpyqNUJvaowhyxKFor4n6WemaVXcuwDSmSzvvHdu3e2/+vXv4vP58PvdVWC/30eiNE7LthAEgWg0hKb50DQFRZEZG58iHo9WCmbLZDJZ/uCP/wKAT3/yaXyaStEwMIoGRV3n4qXrLCWSNDU2EItFMAwTQzd4vSHK0WvniZvLqSCfSC/QrwYYq2KX9PvuPc7iUoKx26bf3b2YpdV5Wan+LVASRRRVQZFlFMX9Mg2ThaUksixx4lgfmqqgaAqaqqKoCi+++CamZfHRZx6nq7MdTVVQNQVRlHjp5be4cOkanZ1tfOJjbqRC1w0KhSKTUzNw8SqWaTM/v+RG9woF8vkihXwBvZT+9MMfv7puRDKZypBMbWBSsctkMu41MxQKrH6iCi5ul/oHue/0ERzHoakxxvxCYsfHXMlOo6gLC0sMDY/z8IP3egLE467CEyAeHlXil3/pi7S3NvMvf+3f1noo9HR1AKxYTdx9Wlvd6Mf0zMKenXMr5AtF8oUiS4lbn7vSP8iV/sE191tYTPDVr38HTdPQNBWfpiKs6DCeTmcREFBUmVAggKoqDAy6fVeO9PXw8EOnVx3v2mstPPqjv6p0SZeAv+/kuPYLX6LgwFe/8T0AnvrQQ4SCIUzTxLRMTNPiytUbzM8v0twUp72tGdO0Ss9bZNI5ZucXkESRRx46zeDQKOlMHts2sS2bbLaAg5trb9vVrf2pV2RZQpIkJFF0v0si2WwewzRxbJvGeANdnW1IooQsy2RzOaam5/BpKvecPOruL8vIkoQoi7z4kpun//SHHqGpOb5KZLz66rsMDI1yzz1HefrDj64ax8joBN/53gtIosjTTz2CXjQoGjqGblDUDSRJxLQs5ucXKRZ1DF2nqBsUizozM67L3ODACCPDE+i6fouYcHBu67pX77VA5eL0UNC/xrM7+5wahkkqnScc8vHk4/fzne+/tKPjVVjDOXC7/O7vf92LWHrcdXgCxMOjCkQjYR59+D7+5Cvf2tPzrndrDof8gMPg4CbTS3Z4LxUQaG1104imp+d3drA6w7UjTqz7/Otvnln3ubfePsf7Zy+jKgqyLKMqMkXdIB1q4BOZZXtjdXEB37e/y7UHHq48JggSmqYQDPqQJRlJlhkdnWQet9Hjh558EFGUKtvfuDHK93/4Ej6fhj/g455TR7nn1NHK8//ld76Kbhh8/nMfo7urA9u2sUwLB4dXX3uPy/0D9B3u4cNPPozt2Di2jW3D7PwCzz3/GgICX/rZT2OXJrMObn7+j59/lWw2zyMP3kPHgTZwStLGgfPX+5ljaNV78slPfBi/FCCbyfFCadL8uU8/g6pqlc+hIAi89PJbLC4leeD+Uxzr60UQBURRQBBErl6/wbvvXaCpKc5Pfe5jSIJYel5E1/VKdOqXvvx5YrHoqvN/93svMDw6gYPDgw+e4sEHT1Weu35tiKnpORRF4YEHTmGaJpZlYVoWpmkhCiK2Y2OYBtlMFt0wME0TQzdJlOqURkYm+EH6JQzTxDAMdNOkUHAjXkXd4D/+5z9Z9/Ny4dK1dZ8zTHPTdRX7jbIACa+KgFRvgv/m22f55LOP0xALIUsSprU5K98NEaoTQC4vWHh43E14AsTDowp89COPY9sWr7z6Tk3Ov7KGQxJFHMdGEAQWFpKb2Hvnt9DGxgiaolA0DBYWvZW8Mg5Opa5kJc+HGzlWzNG9okt639AALyZyUOqS/spr63+Wzp6/wtnzVxAQkGV39b4c0Sh/f+PNM0xNzyFJIpIoVeqSPjh7mYHrw4iShCyJIArMlhyJksk0/f0DCJKIKIiIorCqFmdxKYEoiO7cUBAQAdtyz2eYFnrRAMFdHBYA1lh5t2wbyzFXTQILBR3LtCuebA5gW+6+mUyGmbl5N2pjOzjYLJQEYSGf5+Kla2Db2I6DbTuV9CqAV984gyxJWJaFbdlYtl3pa5NIpLk+MEL/tQFsyy5Fk9wxpTNZfuf3v77u+//m22fXfS6RTG+q7spjmXJ0TpYlfD61ItiqxfTMQimby6Gnu53BofGqHr8a/PQXPoFtO3zne8/XeigeHnuCJ0A8PHaIIAg8+9EneePN92tT/3ET0WgIQRAoFg0yG42nSlk47SXL35mZxbsitWenmAh8NdbGP54bYaUJ7y8kZvj/NfeQkaR1912Jg3PLyrhfc93BJqdmmZq+1QxgdGzylsfKzM0vVuxR1zrXCy+un+ZTFkWr9pEtaFq93QsvvIFgrn59L9wmfej6wAjXB9ZeIc5k87dt5jY8vP5E80+/9p11n/PYW2zHTREMBf2EQoHVAqRKl5Oz5/p54P7j9B3uqooAqXYL0cbGBk7fe9wTIB53DeLGm3h4eNyOUDDA+MQ0z73w+p6fu2xRuTIC0tHWDFApQN0UO7ybtpXrP6brs/6jHpmVVb4baV71WMSxSl3Ttz/rsmyb/ms31nQR8/CoV7KVOpDABltuj8GhcRwHWlviRMLVO8dObIJXcub9C7S1NnHgQFtVjufhUe94AsTDY4ekM1l+/Tf+S93k8R482AlArsppDOvREIugaSqmabGwmNiTc94pvB6M0q+ungzdW8zwSG77KTyJZJrnnn+t0q3aY22+8Pln+dATD9V6GB4l0pU6kFIhepVDDLl8sRIpfOzhe3d8vGp1Qi9z6fJ1CoUiDz94T1WP6+FRr3gCxMNjBzTEIjz04D2IYq3+lG5dfYtFQwCbKkCvRrpUe5sb/ZiZXax7t536Q+BrsVYywurPz0+nZmk0txDBWkEw6CcSDm684V2OpigESs0sPWpPWTCvsuKtUnShTLkPSEdHS9UFxE4xDJNz56/w0IM7F0ceHvsBT4B4eOyAZz/2IX717/8KqqpsvPFuUnYPwnUKApjdkgXv9m/GZfvdqdk7y/1qr0hLMn8ea131mM9x+KXENOI2BOL9p0/yxS98vFrDu2MxLQtpk7U2HrtPep0UrGqlOAEMD08hCAKOY9PT1brxDpuieuP75rd+zB/+8Z9X7XgeHvWMJ0A8PLaJKIo8+9EneO2N9yqdg2vD8g0wGgniOG4H9NRmawB2cIOPRoIE/T4sy2Z+LrHt49ztXPCFeNcfXvXYQaPARzKJLR8rEPCRzxWqNLI7F8uykWTvFlgvZEufWU1VkCWpqn02ytiOzeyc64K20n65XhgeGefG0Fith+HhsSd4V18Pj23y4AOniMdjPP/CGzUbw83SoSEeASCX26Qg2uHqYtn9am5+qXre+ncp34q0sCitNib8VHqeTmNrYiLg95HNewJkIyzLQpQ8I8h6wTQtjJINss+/e6lxZz647J5DU5CqkDpbbde/jz7zOF/4vBfB9Ljz8QSIh8c2+fizH+L6wDDDI7X3lC+vFTY2uE3XRkbXt1pde//trTa2lgTI1IyXfrVTCqLIn8baWFlFIwN/bWkaZQtCMRDwk8vW3g663nnz7Q94/Y33aj0MjxXk8+7Cib9Um+Os+LdazM4tkcsXkGWJttamjXfYYzo72/nExz9U62F4eOw6ngDx8NgmZ89e5lvfea7Ww1hFT3cHAIuLm2lAuDNCQT/hkB/bcZiZ3Uq9icd6DKt+fhJqWPVYq2Xw+dTmBZ4sS+TyngDZiMWlJItLu/934rF58oVlAbKbJeIT47MAPPjAiW0fY7fG1391kJbmRhrjsV06g4dHfeAJEA+PbfLDH7/Ce2cu1HQMNxdolh1kNt2JeQeLiy3NcQAWFhKVDtIeO+e5cCPj8uoUlA/nEhwrbs5W979+5du8+15tP5f7gb6D3dx/evsTUI/qUyi4qYP+XXYnuzE8AUC8IYwo7GwaVO22q1ev3QDg+PHDVT6yh0d94QkQD49t8PnPfpQDHdVyUdk5AgKyJOE4bgJPKr3FHhDbWM5rbnJX6mfnE1vf2WNdTAS+0tDGzSa8v5CYIWB7Qq9adHa1c/yYN8mrJyopWIGSAKmyDW+Z2bklBEHEcRza27aXhrVbNr6pVIaJyRnvs+lxx+MJEA+PLdLa0sTf+OWfoauzvdZDAZZX4MKl7r6CIKAbm+8hsZ17vCyKxEsF7/PzS1s/gMdtmZFVvh9ePTGK2uaGXdJjsQi//ItfpKmxYd1tPFwsz4a37ri5BgSofogBt3B8cTEFwCMPb98Na3fkEXzjz77Pm2+9v0tH9/CoDzwB4uGxRZ54/AEKhSIfnLtc66Gw8hYYCbsNCG17K7fF7d1CG+IRJFGkUNAr/v0e1eW1UIyrN3VJv6+Q4aH8+ul1wYCfeDyKZXkNITfCsmwkybsF1hP5gg6Az6ftXpFFifc+uAS4VuI7imbsQpTmrXfOcvnKQNWP6+FRT3hXXw+PLfL4Yw/w/tlLFIt6rYeyAoGmphgAmW0Jgq3dgJfTr7zox27hIPD1WAvZm3LUfzY5S4O1doTL7/MBkC94NrwbYVuWJ0DqjHzJPtq/iza8ZaanF3Act46utTW+jSPsnkISBIFPPPthDh3s2rVzeHjUGu/q6+GxBdrbmjnY28mbb9ZfeFxV3J4G5QLL3aSpJEDmvfqPXSUpKfxFtGXVYz7H4ZeW1u6S7vdrOLZNsVBP4rg+mZ6d59q14VoPw2MFhYKOg4MoCKiK4j64S3UgDg4DA6MA9HZvP5222n1AwBVFP/PTn+SJxx+o+rE9POoFT4B4eGyBom7wre88xwfnrtR6KMDqm1+81AMknc5sfn/HYatpWD6fSiQUwAHmFxJb2tdj65zzh3nvpi7ph40Cz6zRJd3n1yqTOI/bMzwywetvnan1MDxW4OCsTsPaZYbHpgA40teza0Xl26W/f9ArRPe4o/EEiIfHFlhcTPDVr38XYwtF3nuCsByV2LIDFoCw+ZtvucA5mUxvqdjdY/v8ZaSFRXF11+5Pp+fpMFZ3vL9+fZgfv/DaXg5t3+LzaZW/GY/6oVDqBeLT1F0/18zMAoIgIAjQ2tq4tZ23cM3cDv1XBzl0sBtVVXb1PB4etcITIB4em6S1tYkvfP5ZtD24MW4VWRQrFryZ7QiQLdBcqjWZm0vs6nk8limIIl9taFsV15CBX16aRl6RopJIphkdm9zz8e1Hjhzu4Re/9LlaD8PjJvI5V4BoPhWc3UlxKmM7DqmUe718+MGT2zrGbo3vytVBZFniSF/vrhzfw6PWeALEw2OTPPWhh/mZn/4Utl0/DkPlW1+5AaEgCBT0LeT/bz0Di6bGGABzXvrVnnJD9fNiMLbqsTZL57MruqSfPN5Hb2/nHo9sf2LbDoLo3QLrjfL1q1zTttu8e+YiAI3x6Jb22+2ErfHxaV548Q1yOc9QwuPOxLv6enhskscfe4D3zlzAMMxaD+UWygJkl+o1K8QiQTRVwTQtEonU7p7M4xZ+FG5i8qYu6c/kEhwpdUk/fc8xDvYcqMXQ9h12KWK4007YHtXF0N20TkXem9Sjyal5BEHAcWwaGyJ7cs7N4DgOv/27X2NoeKzWQ/Hw2BW8K6+HxyboPNBGV2d73TWHckqKo7XZzV8ubNf9aJPLeeWc+YWFBPZuqx2PWzAFgT9taONmCfyLiRkCto3f76tYmXrcHqfUL0eU6qv4+G6nWBIgsiKxe63+lrEdu5KG1dHRssHWt7Kbl8FwOMR9p0/s3gk8PGqIJ0A8PDbBE48/QDab4/yFq7UeypqIpX4Gg0OjW9xzazlY5f4fXvpV7Zheo0t6zDb52dQMPp+2fRF6l2FaFoZu1J370d1OOcKsyKUUrD1Y6Ljc7zb9a29r2mDLZfbic3P63mP863/x9/D7fbt+Lg+PvWZvkiw9PPY5Fy9dY2EhgWnWX/oVQDDg3qCSyeyunUOWJRpKKQpzXgPCmvJqKMbJYpYjer7y2AP5DHNXLnkRkE0yMDjCwOBIrYfhcROG7l5jZXXvpieTU24dVWtLI7IsYZrWFvbePYE0VrIJ7u5q5+q1oV07j4dHLfAiIB4em+BK/yA/eenNWg9jDdybX1uru3KXzxdvt/GOiMciiIJANl8g6xVG1hQHga/FWsnfZAUa+9a3sWZnazQqD4+dU7b2rkRA9oB0JocgiAjC1qIgu83k1CyWZdHVuf1GiR4e9YonQDw8NuDUySM8/eFHaj2M2yKKEgCFwu4Jg3gp+rG46BWf1wMJSeEvoq2rHlMMg0/cuIrgNSLckAMdrfzyL/4U/j1oeOexecoCRJZlN81pjz7KS0vude30PUf35oSbwDRNJqdm6erqqPVQPDyqjidAPDw24OPPfohPfuKpWg/jtji4jj75reb/byG/upx+Vb5Re9SeD/xh3r+pS3qfnufpNbqke6xGkWXi8QYkSar1UDxWUE7BEgQ37XOvOH/pOgBNjVuz493NPiXgRt+3lhLm4bE/8GpAPDxugyAI3HvqGD9+/tVaD2VNHJxVnXK374J1+4JKURCIRd2J7pJnv1tXfDPSwqFinpi9XJ/02fQ8V30BpmVvdX89yi5uwi53tPbYGrbjYJgWAqDsYR3IxKSbuug4DqGAn0wuf9vt9+pz83t/8I09OY+Hx17jRUA8PG7Dwd5OwuEg5y/013oo66JpbsdgQRAqvQ22xCaiIJFIEEkS0U2TdGZ3O617bI28KPLVWOuGXdI9VlNuKCqKngCpN/SSFa+m7k0vEHDdt/RS9KW9vXnPzrsZZFlGkrzpmsedhfeJ9vC4DafvPU4+X+D6wHCth7IuPk0FtleAvtn5aUODm5awtJTe8jk8dp8BLcDVg32rHuswdT6Tnl/1mKAISCERJS7ha5fRWiV8nQpaq4wSl5DDIqJPQLgLYuPlHjpeN/T6wyjXgSgye1YEAlzuvwFAR/vmC9F3e3SNjQ388e//W06drJ/aFA+PanAX3GY8PLbP6Ngkf/ntH2NZ24gs7AEOoGnuKmEiuX1xsJGnfTxWSr9aSm77HB67S//p++lNJ/DNz+MAlibyuJzlaiTGaMiPqIkIkoMgARIIMgiSgGMDtoBjCWDj/t8CxxFwDAfbcHDM0nfDwTbAMZ29nBfuCouLCb7/gxfJZW+fauOx9+ilXiDaHjphAUxOzXH/6aN0dbYhINy2vmOv4maLiwkMw6S7q72uI/EeHlvFEyAeHrfh/Q8u8f4Hl2o9jNsSjYQREBC3uZK7mXlkvFKA7kVA6g4RRFWAmMKln/s4B3/0XQRNxJLAkgWeUVL8RaMPU3GnU47hYOs2TgFs00EQBYSSIBFlAVETQCpNv2zAEnDskjixABtwBGzTWRYoBssCxXSgPvX6KvKFIjeGxmo9DI81MEopWMoepmABLCwkEQQBUYTGxijzm2m4ustpjo7jMD4x7VnxetxxeALEw2MdujrbaW5u5IOzlyrpGvVIPO6mR8nbWi3c+HUF/D40TcV2HJIpT4DUFBEkTUDURETNFQui4j7+wdg5zkoC9/Q08oCZBgfEoo3fMHhiep7ntDiOsdbve+3PgCC5gkSQBSiJE8Hn/l8QHCSbUtREWI6a2JSiKAK24WDbAr6QhuRznxfqqN4iGPRz/OhhrvQPkPOaN9YVuuG6PimKtKfXXgeHfMHAp8mcOnmYl189c5ut9+6zPDY2RXe3Z8XrcWfhCRAPj3X42Eee4NFHTvMP/uHFWg9lfRyHQMCHg04yldmVU8Qb3PSrZDKDWaepaHcigowrNFRXaEhaqTZDohKxKP/sWA627mAVHc4aPnrmknSv6AlzCp2RsMpVLbjp8zsWWJYDxTUmgOKyOClHTgSl9F0SwHajJw4CgYgPJeBO1yJyiOBBFacgrp3ataZA2h1CwQBPPvEgI2OTngCpMyzLTcGSxL23SL7Sf4MH7nPTsOqF0bFJnnziQQRBqOvFMA+PreAJEA+Pdbj33mOcv3C11sPYEFVVKKKzsJjY3gE2uKGV+38kEl70Y7cQVFdglMWGqIkIogNySWyUBYdIJc3Jyjs4uoNluClPH3ryQRYWEvRfvcGPA3F+pTiFuuJ3+7HMEpOKRlqswmXfBlt3QF/jsyOAIAuuGFFtHMvGcSwEyUbTZKSoA0Fqn9rlVIbrUWdYtvvLqYXz09DQOA/cdxSx1Idkox4cu90HBOCFF9/ghRff8MSHxx2FJ0A8PNagoSFKV2c7f/GXP6z1UDZEkWWKFqSS24iAbOKG1hArdUBPeAXoO0ZghcgQEFU3wlEpDq8IDgdHcIu9bd3GKboTcVtfv/g7HouRLkXB0qLMT0JxPp1eqDzvc2w+mV7km9FmnN2cdjuuSLIMB3SLYlbHLA06k82hzBpIOJXoiSALiD4BtpDatSxQlovkHfO2o7p1mJ4AqVvsUqRVlMQ9NzvI5PI4jtsaqSkeZXp2ce0N97B/TLG4zf5OHh51jCdAPDzW4PS9x7Btm4sXr9V6KLfFwcGy3RW6QmHrNrwV1rmZyrJEOOym7Sx5EZCtUSoOX1WzoQogOpWohis4SsXhuu1OpvNudMHeYjqSqioV9yCAK1qAQ3qeo8Xlvi3dRoH782k+8Eeq9CK3gbnz1K4tu3bdtvbFkyD1hmW517TtGmvslJHRKXp72mlualhfgOwhiiLzz/7xf8f3/upFzwnL447BEyAeHmuQzeb5yUtvks5kaz2UDXFsGwQolpxjqklDLIIAZPOF7XdZvwsQ5HJkY0Vx+Mp6jYr1rYNju6lTpuHgZHEjHLfP8tgQURBRFBm9uPIzIPBCKE6HUSRkL5/gw9kEY6qfeWlvHYY2xWZTu6rg2qXLOgOjQ+iG97muNyzbxtmBs99OmZtforenne7uDi5cHrzttnuRgmUYJseOHuLsuSueAPG4Y/AEiIfHGrx35gLvnblQ62FsiIMbpcAC09r6LHajnOJ4Kf0qsZTazvDuSARFqEQzpJLYWN1bY1lwlFfiraIrOmzD2bHYWAtVdS/l5QZuZQqCyI/CjfxccrbymAx8OrXA1xpaMffT6v/K1K41WOnatWZql0VJmAg4Fph2kVeuvgVNEGhQsE2qktrlsXPKKVhSjVzT5uaXAGhqjK67zV6PbGExQWNjwx6f1cNj9/AEiIfHTfh8Gp0H2hgaHq+kAtQrkiiU0qeEDYslb8s6KVjRWAi4e9OvVtdrCOs08wNHAMpiI+d+t42964dhmiavv3GG+cWlW54bVXx84AvzQGH5d9hs6TyRTfBq8M6Z0GzVtUvSRDS/gmGZ2NZtUrtsYTmlq4auXXcTluP+4ciiSC06Xi6VFlwcxyEcCpDO5Nbddq9Gt7iYoDEe26OzeXjsPp4A8fC4iePHDvOv/vn/k1/9H/8XZucWNt6hhsiyXFmJs3YiQNYhWqr/SKbqPxVtR4issLstFYavLA6vOFGt0cyvLDZqOBc1LZuxiel1n38tGKPbyNNoLS/nP5xPM6QGGFe0vRhibVkjtSsWDfLpp5/i+Z+8zkIqWbXUrv3WkLEesc0VReg1wLLtSiF6R3szV6+P3LKNsMcxkIWFJTo6Wvf0nB4eu4knQDw8bqLvcDepdKbuxQeU0q9K2Nu1aFxnN01V0DQVB/ZFLcxmEaQ16jVKzfzKEQ2km4rDdQc7505iHbP+Vr3DoQCdB9oYGBzFMG/NGTIFgR+GG/nFxAwrOyt8KjPPn8TaKQq1mejVluUi9GqmdlWiJyWhUo6U3BxB2Y1UvDsF2y4JkBrVgADMLyRpbopy9EjvmgJkr/nJS28SDAZqPQwPj6rhCRAPj5s4dKibGzfGaj2MTSGVBIi4w9W4tfYOR9zoRy6X31l6Vw3ZbjM/x6hOcfheEYtGuO/0CW4Mj8M6NQuzssabwRgfziYqj0Usi49klvhRuHFvBroPuV1ql/sZcgvjkdZy7cJL7doGpr0iAlKj3hdXr9+guekBQkH/7Tfco/FdvTa0J+fx8NgrPAHi4XETfYd6eP4nr9d6GJtCUWR2qxyynH6V2ifpV9Vo5rdfkRX3Um6WbHhlSURAQJTd74LoOmX1B/30mUXaivnKvieLWWYbGxkLx5BEEVEUEEQRURDclWhBQJIl5FK9kYgIgrtKbdsOoiSgKQqsKBh2bBtdNzEFkyUmV431cF83TtHBcdwUQkl2J5mOA47tYFoWhmkiCgKSJLlGCY6D7YBtW1iWVUqPEbAdG8tycBwbx3FTpWy3BbtbR2C7USzbLj3vuM+Xi5x3Onl0rJJwXavupMquXXdTatdyEXrtIiDT0679riyLyJK0LZOPahKNhHni8Qd47Y33yNymJsXDY7/gCRAPjxUEAn5S6QwDg7UPuW+GcqfgZHobTQihNAFbexIWCYdKx64zAbKLzfx2G1kSkWSpMrkWRRFREpElEVEUkUQRWVXwqTKSJCFJErIk4zgOlmUhSSJ+vw9BFBBLxgFC6fvk5BRPPn56wzHMHemi+aUXkVZEtT48N83Fe09gatWtB9EdnfM3fTSb4lFUQa3qebbLxOQkJ471AD0YuoHlOMiSBIKAUxJYjuNQKBQxDBNEAQkR0zYxDRvdMjB1E9O0XXFk21iWjV3+btmYBbtSVL0SL7Vrfcq9jSRJ2mDL3SOXL5DLFQgEfDQ13qYh4R4RiYb423/zS9wYGuPadS8a4rH/8QSIh8cKcrk8//Rf/J+1HsamUWT3T7iyoltFyilY6VpGQPa4md96CAhIkoisSCiShKTIyJKEqipoqoIsy6jl3wU2iqIQ8GuIooggCIh7YCfqrDHJBbc2yLHd90EUBfI+P8On7uXwubOVbWRDp/fMGS4+9LBrd1uKFhTyBWwcFEVBEgU3SoH7vGGYmKaBUOpBsnJV3samWNQxBBNCq8ezuJjC1t3xKoqMLMputEB032fTsjBNV2z5SoLILVFxHZGKBR0B8Pl9iJLgRnoENzpjGCYODqosI8lS2SAOAaHymtb7XSiqwqrOKCsKoH2+nQkmu/T+44CNg225giVXKKIX9UogRjdMdF3HsEwsx8bCxhIsbNHGkR1EGQTxzk/tsix3nJJUa5to9/x9h7vXFSB70QcEYGEhAUDcc8LyuEPwBIiHxwo0TaVY3D+NyWRFAoGdFyfedJ+XRJFwyM193qsIyF4181NkGUWRUBQZRZZRVQWfT0PTVBRFRpJETNNEliUCPt8uOfGUBJPtTuZt26ZQ0DEMs5ICZZluupFhWuiGgWmY2I6DZdk4jo1lu++Dbdu0tTQRa4hy/uJVHMteTk1ad3Lk8HktwJEVXdJj8/MYr73NWX+4ei9TsuDk6oeuD4yAVbuVbXA/34Lg1hiIgpt2JooigiiUnhORJAEBEVkui0gRVZXRNM2NZJUiWA4OlmkhyRJ+n7am4Fz5fxGhJG5kfL6tRpwcTNvBdmxyhRwGJoIs4OBQtAx0q4hhWFi6halbGLqNZdr7LrWrLKYFQaxVCQgAo+PTHD/aQ2fnre5TwjrW5btFLpcnny/Q1Bjb0/N6eOwWngDx8FjBP/8n/w/m5xf5rd/+Sq2HsinKEZAdTZLXuMGHQ34EBIqGQaFQ3P6x16GazfxkScKv+VAVuRR58OH3qzi2m04TCPrcFfwqCQnDMNENExCQBDAsC8u0MCyLYlGnWNBLqTjuSr5luT9bto1lWpi7EK1KZ0a3uIfAC6EG2m/qkv5Udokx1cdCPXZJryJWqciZXfhdrKQSOZOlUkqdWEqrE1FUN6rkChsVv19zn5PdbQRccSrL0orJruDW4iCiBiNrnNEBARzJcWudJAdHBEe0sXGwbAuzaJPLFlyhYtgYeYNi0cTUDfSChVG0a57aJZRd2WqpPoCh4QmOH+1BU9f+e3ATWPdujG4vkDund4/H3Y0nQDw8SgiCwKGDXVy4eLXWQ9k0wZAb+Sj75m+ZdW7w4YibN1ON9KvtNPOz8w4yMoogoypuhCIU96NpGqoqI8uyW/O8zfQm23bQdR3TspAl2RUVuoFhGBSKOsWigWlabiqMablpQYYbWahHfJqK4zgUdWPjjUvkBYnnQ3F+OjVXeUwGPp1e4OuxfdYlfRtEIyGe/vCjvPrGeyQSqV05h4NbVL/TAmZZEpFlGVmWkCUJWSnVB8kyAb+GT1ORFbmyjWPYSKK0wsa2FHESHBAdQiE/jgSITkmsuMJFcERsy8E0LARHwLFEzKJBoWCQyxbJZwoUsjrFrEEhr++71K6tsriYBNZuSFiLv473z15ibq62tSgeHtXCEyAeHiXa25oJBPwM7pMCdIBAwIcAO19VvymdoFyAntpK+tUmm/lJKqiqioyMKsnIjoIqSgS1IH6/r5T6srXbu4ODbbnpSeU8+lw2T0HXS7UKFoZhYZoGRh0Lie3y2CP3Y9smr77x/pb2G1L9nNXC3F9c7pLeYuo8lkvyeiBW5VHWF6IoEgz6d2xhvReYlo1p6bDFYGRZuCglcaKpMoqqIIsiiqIQjQSRFBlJlNyoo+DWU0mi6AoT1UEJKPglmbgTcB3VHBHBcaMw2G4Kl2FY5DNFUksZClmDQlankC2QT+uYhr2D1K71TTL2ArchoWsK0BiP3bYj+l7wJ1/5dk3P7+FRTTwB4uFRou9wDwCDQ/ujBwiAv1QcW27ctR3WSiGIRNzIynoC5HbN/FSfjOqX0fwqgZCGpioIloAqqgRUH2KpaHYza4imZZPPFTB0A0SBYlEnly9SLBTRDROj9GXt4PXfCSiKRCazvVS510Ixesw8DSu6pD+SSzGk+Jm8g7ukl0XuXqbQ7DVl4VLYZF2bLLl1Lqri1kP5/BoBvw9VU9B8Ckg2oiKhaBKIFo7ogN9BCghEIirR9kZXoJSECo5rXGDrNomlDIV0kULWIJcukM8UyaULGPqt0aHylWG9DKxYNELf4V76Dh/kSF8vXd0H+O3f+RPee//8Nt+p9RkeneBgTwfRaGjtDfbw46NpKqqi3FGNYT3uXjwB4uFRoru7g8nJGXK5/MYb1wmZbB4aIZnang3vevfOaDkCksre0sxPDcj4Air+oEow4icQ0pAV105UlRVEWwRLQLBAMAU3t6pcc7wiQ8iybAzTJJPJkc8V0Q3DraHQDXTdKNVZeGwGRVW2/X4ZgsAPSl3Sywk7AvDpzDx/egd3Sa+UGdR2GHWFadmYeZ1c/vaCRRJd5zNNU1AVlVDIhxpQEGTQAiqBkK/U5LOU2qWIRAM+GvBXIihloYIjUMjqZJI5inmTXKZIMWdU6lYCfj+HD3XT2tzEy6+9zT/9R3+Xxx59AIBkKs3AwDAvvvQ6/dcGduU9WVhIcLCng1jsZnOGvY+c/a2/8XN0dbXza//zv9vzc3t4VBtPgHh4lPiTr3yb73zvhVoPY0sU8gUQoFisTqG4oAqEoj6EqIMh6TSdDNMbaSUQ0hAkB1kTkRQJR7BLIsP9wgKhUBIbuDnTpmFRNAzyhSKpZJpCwaCoGxSLxV0pxL6bkWUZw9h8/cfNzMgabwWjPJlNVh6LWhZPZ5Z47k7vku4pkC1j2TZWsRxZyTK3sPZ2mqagagp+v4YWVPD5FUKxIJpPRlDcRqGCI0BMIBwPEJZFBEXClmUKvgLBGZMv//efJOwLo4gyOTnLG2ff4c0z79F/aZDp6bm1T1xFEgk3PbG7q23N5/cygpYvFPD7fXt2Pg+P3cQTIB4eK0htM5JQK7RSClYosEUbXgEkTSLaFqThcJRIPEDY1w4i+IMaulLAEWy6TzThCI4rNszSVxEcS8YybfJFg3wuTyqdJZcvUCjo6Lp5x9VY1DuyLGOaO4sYveuP0Fss0GEui9l7ilmGNT/X1R3aPNch6XSWl155i2zW6yq9WxSLBsWiQTq1+j0WNRE16KOpvYl4R4xgPIjil7CwyWYzKIqFKZgIqoFZzJDMpRAcgY57G0vRE4GWex7ENmwWZhOkE1nSiRzJhTTJhQyFrI5jVUcYJJKuABFwIz+1TPfM54vbsG728KhPPAHi4QH4/T5+7V/9A/7ov36zZl1mFUUmHAqxuJTY9D7+0s3odn1ABAki8RDx1iiNbTECUR/hhiCBkA/Lp6L7fVjYCEYeBwfHMrFMAUwBo+CQz7oF3al0lkKhSD5f3LGrj0d1+da3n9txs0MbgR+FG/nlxCTqirnbs+lFJhs0smJte3dUG90wmZ5ZZ+neo2qIiogc0Ii3xIh3NFKwdXTT4InHHkKWJGzHIZ3Jkk6mmZ9cZGRwDNkRuef0aYSsxXtvXiIU8hOKBWiIR9ACKpImuqldmkAsGKbBiVSEiei4NWZG0WR+NsHiTJLEYprEQoZCtuj2DNqCa1cuX0QQ3EaWkUiIpYpj2t6nYBUKhco138Njv+MJEA8PoK21mb7DPVg1nFj/r//zP+NLP/c5ksk0wyNjjIyMMzQ8xl/94AVuDI2u2STRXY0TKn0C/CGNeGuUWFOYlvYGGtpiyJoEooMt2Njl74JD0Sli2wJGXqaYN8nPpVhaytAUjxGPRxgZm2Z0bLoG74THVnFwsOydr/gmJJmXg418IrM8Mfc7Np9ML/CX0WZqYz66OwSDfg4f7OLa9eFNF2l7bIAkIgdlZJ9CKB6h73gv4ViYaDSMqsg4CIyNjXPl6g0un7tGejHF/OQCxXQeq7AcwfMHfGC6rsHzUwnmSdxyKr9fIxTzE4oECEX8NDXHUQIyouxmggqaQGM4StOhGGJJnDi2gJ43SKcyzE4vsTSXJLWYxSia2LqDrdvYa7h22baDIEBjPLZCgLjsbQpW0UvB8rhj8ASIhwfQ3t4MwNQe5BSvx6//xn/kpZffoLe3i96eLnp6OnnyiYdRFJlLl6/yH/+v/4OFhSWGR8YYGhplZHIcQXfQNQM5ovDlf/gZhJK4sEW7JDQsCoIBFli6TTaZZ25qifRShkwqjyGraE3NCKKInnZvrK0tcQAK+eo3IPSoPpqm8vSTD/PB+SvMLyzt+HgXfQEO6TkO68tmDL1GgdP5LOf96zgB7UMCfj8nTxxhaGTSEyDbQRSQ/QqhhhDNB5qItTQQjoeIhCOMDI9SKBZpbW8mmckydH2UpZkl5qbmySdzmFmdBSbXPXRF5t5mbp/Pu9HYualE6ZFBwHXyCgb8hGNBQtEA4YifWFMEWZVwJAchCpFoiFhn2K0/sQUcyyabKbA4m2R+PkEykUHPGdiGja07JM0MkUCQ3kMdDNwYLY1x78X4y6+8zSuvvrPn5/Xw2A08AeLhAbS3tZBMpmvqgJVIpPjRcy+v+VxLR5xf+/X/k/bORpSAjCHoiO0mkiWTMfIUpCKGZGELNqIjYeUhn9KZGpklOZ8ilchiFPVbVsmV0K2XgEApxJ/fhQ7oHtVHkSUamxqQ5Wq5VQk8H4rTvjRNYEX762eyi4ypPpakO+O2IWzk9eqxCtmv4IsFaO5oJNIYZWphnoO9XRzs7UYAioZOIpViYnSS8YFJ0gsprr9xDTNvwJajc2WL5K1jWjbJdJZkOgsrHNVlWSIU9NMQi9DUHEP1K/hDGopPBhECURV/vJkDQjMCAoVskXQ6TyGvMycl8MU1HNshdCyIrTsoogy2iJJUMAtGKXqyu58lw3MG9LiDuDPuJB4eO6StrZnpmdpFPyqIoAVV2ruaaOtqovVAnI7uFgRJwBZscmSxHDe6YWEjGTKK6cMu2AhIRINRouEI4bYQsiTxvann+fhnHiQej5FOZUils6QTKRJLKYZujGJKMpIqV4SJLIkoqgK4K4we9Y8su5dx06xecWxOlPhxeK0u6fP82R3SJV3YzDL7XYqkSUhBDckv032ok9bOZqLRMKFgEBAwLZPEe2kmx6dITieYn5onMZ/Aypo4VXC4E4Tqf75M0yKRzJBIZhgaWY6++DSFSDhEa3OceGPUbe6qCAREH/6oBg3gSA5FqUig3cdDHznBzPQiQlamkDfxx3xIhuAWvdtgm6VUrlI6l63bWKXv22/I6NLV2c7f/Bs/y2/99ldYqEK008OjlngCxMMD+MEPX9rz3FpBdjuGRxpDdPa2cuhoJ01tMRRVcVOocIVGQSji2GAWTJKLGabG5piZXGBpPsV9R09y/+HjTIwv8sb5DwCQFRlFlQkG/dgCKKJMV88BwpEgLS1x+g71IssS771/jiICXSeOkM5nMVJZspkcgixiGZa7MmiAZdg43ipx3bIsQKq7Ojqk+jmvhThdXHaGazN1HsmleDMQreq5aoFQagRi3+Wf7bIjVUN7nKa2OJGmGNFIGL9f47XX3qHr8AEUSWJhIcGNK8MsTC+yNJ3AyBXceoldoBKc2gNxWCgaFIpLzM4vT+g1RSYSDRGPRWltbSQY8CFJIg4OjWKY+IEwquVHC2kkSTC9NM/U/DyJRBpTt3Asp/RF5WdssC2nIkpsfcXPho1jbvxaZVnm3nuOEQkHPQHise/xBIiHB3Bjl7ufi4qA5JMQNYlwPEDnwTZ6DrYRiQYIhP1Ygis4TMHCsi0cw2F2eonZiQXmppdYmEusaf8o4K7kitLyiqFpmJiGST5bAGBxZomz715EEFynLUVTicUiFA2dps4O/M1NaAGVxqY4jY0x5mbn0Hwa7b0tnD59Ar2ok8vkSKdypNIZluaTZDNZDN3EMh1PnNSYcupVtQUIwCuhBrrNPLEV5gyP5ZIMKz6m9nmX9EKhyPDwOKZ59zi6lR2pGlpixNsbQRGZW5jnmacfR1UUbAfSmQzpZJqRgVFS00leufEaZr6IXdxD+9mSo1s1oinboWiYzM0nmJtPcHVgBICf+sxT4MDM1AKyItMW9KMpKjF/iEhTgKNN3Tg4zCcTTM/NM7u0xFIqhaMJiLKEIAqwhjCp/L/UMX5ZoKz4uZTaVSi413SfzytE99j/eALE467H7/fxuc98hJdeeZv5+Z2vKomaiOSTkHwikibhj/o40NnMwcMHaGyMIKhiKbrhIFqgGwZ6zmBpLsXI0CSz04tkNlmLopbSpaKxyIbbOg7ouomum2TTri9/MqMzsZBHlCXsfI6u7hY6D7SymEmQzxRILKYIhf20trfQe9CHIAiYtsnzL7zGPaeOIYsSmWyeTCpLOpEhsZQkk81hFkyv2eAekUpleefdcxQK1S+kNgSBH4Sa+IXkWl3SO9B3IVVmr0gk07z17rlaD2P3WOFI5QsHOHrPYSINEWLRMIoiAwLz84tMzU5z6Vw/+USe+al5CqnVjlS1QJZcy2ezhj03bsayHEQR5hcSDI1O0eqfIRINITdCR2cTsWgISZJojjbQHG0A3AhOLldkfGKaoZFJFpNJkFwhKMoigiYgKRKCJIC9ljgp/eyAY9g4PsjKOYKtfpQJuWqpXR4etcATIB53PQc6Wvn5n/ss7525uDUBIoBUERvul+gTEUSIN0XpPdxBS1sDgZAPRwDRAiwHCjZm3mJmcoEbg+PMzC1su7iwHH0QdhiEcBwwdAPJkXAMm8XZFFNjc0yNzCGKIrIioWoKsYYwiiZjFEzyuTwN8RidsVZ8fX5wwBFs3n3nHD6fSlNTYylykiWZyJBYSpHP5jH1ZXGS7VpAsEEsKsi6jFhUEHW50lHdY2Ny+QI3hsd37fjTisbbwShPrOiSHrMsnsks7usu6aoio/l8ZNLZPbVS3RXWcaSKRiLMzy0yMjpBa1sz6VxuTUeqBLO1fgWrEKVSepxdP9GpTCZHJBKgo72FodEpbNsmkcwyMzPNBxevABAOBWhtbaS9tZHurnYkSSIY8HHsSC/HjvRimCYTk7NMTM4wMTFPvlioHF9URERFQJAEREV0U3R9IqIiAq4YkTWZBRKILSLB3kDVUrs8PGqBJ0A87nra2lwL3tsVoQuSsDqy4ZOQVBFBcms5FJ9Ma0cjvYcO0BALIyO6XcMtATErkFhIkc7kGRoaZ3pmgaJuVGXsN/cB2Squflm+Qfn9bmf1lRa8tm2jF230okFmRUfj1ybOIEsikiKh+hRiDVFCkSBLiSXaD7Ti86nEG2L4/Jp7CgEGBoeYnJzhYE8X2VyBd/NvYjo6hmWi2wUMy8C2LQRdQi4qSLqCWJTc76Wf76ReFNUgFg3T2NjAYMkedDd41x/hYLFA201d0m9oAQZV/66ddzdpbWvmQ48/yDe/9SP0feYutNKRKtbcwHxyiVg0wqlTxyuOVMlUivGRScaHJlmaXuQH50a36Ui194iiO+m2q2issFOmZuaIRHqIRIKrHl8pXtOZHOlMjoHBMeAskUiQrgNtHOx17wuKLNPb3UFvdwcAhYLO6NgU1wdHWVhMYq9zWxAkAVEWsXwW3/vui8zOziEGqpfa5eFRCzwB4nHX097WzNJSkkLJdtZdeVohNHwSoiwglL7cn93VqPbWJrraWmmMRJGRECwBISPg4JBMZhkYHGV4dJJcrrDBKLaHXaUUhbJ+2aoFr2nZmJZNsWCQTiyLk+mRBS5I/ciKjC+oEWuIEI6GyWTSKD6FUCRIqDGAb1jFQS2PAoFSUz3LwrANTNvENA10O18SJzaiISEVFaRStKT8XdTvTnHS1tLEPaeO7qoAsRD4QbiRv740ibLi8U+kF5lqaCO3D7uky+Ui9DpK81mLlY5UbV2tdB3suMWRqnC5yOzMAnrqHIsziyzNLVXNkaoWyKXPUz2lcS4tuhHAsmmBIAgbxs1SqSyXUoNcujKIIAg0xqN0HmjhSF8Pfp+Gz6dy9EgPR4/0UCzq3BgaZ2hkkvmFxKrjOJZ7TbSKFu+8fHb1SUQQZRFRFrad2mXrTiWda6VA2e+BQY/6xhMgHnc1oirS3N3IaHKSYFcA0SdWxMZK0SHIAo5pI5gCbc2NHDvYSzwUWW5GZbjFm4lEhqvXR5iZWVizaLza5PKusBHFnU+8q23B64oTnUJBJ7GQXvXcjYujOA0GxYNpZFFGlmRkUXEnHg5IkowkuYJC0JxSAEXAcRxXlFgmpmNgmDq6nUO3ijgWiLqCpMtIRdn9uaggFWUEU+ROFSeSImNau5+qkpBkXg7F+XhmsfKY37H4eGaR70Sa2Hfvb7nQuY4mWes5UgWDAd577xzNLU0Eg34WFxLc6B9hcWqBxRWOVDO1fgFVQpTrTxzmSjVW4rajzQ7zCwnmFxKcPX8Nv1+jp6udI309xGIhNE3lxPFDnDh+CMuyGB2f4fKVQRYWl1MfVVXh9D3HuDYwTCpVcqezSxEOHeDW60AltUt2oyiCLCD5xdJ7vI4w8VK7PPYAT4B43DWIvpX1Gm6BuCDBYGoUO23ja1cRZQEkobISZOZMbN2hMRLlyOFuervbSxNjF8M0GRmd5vKVQRLJ9G3OvjuYhnvD2XYDxRWzL18p+mGY5q5PaE3Lxk47mCMiRbWIrWWxVBNHtpBFBUWWkUUVRZKRRLn03RUkiqQgSzLgA82NmbjixMa0LQzLjZwYVpGClcGwdLBBKqqliMly1EQuymDtb3EiS9KeOTld8AU5qOdXdUk/rOe5t5Dlgm9/dUkXS7/zvVgoWPP8iojsV2lobSDe3ogvrDE0OsaHn3yMcCiwypFq7MY4c8MzTFwc23tHqhogie5vx6qjCEihUMRxQJJENHV56rTd+qF8vkj/tWH6rw0jiSLt7c0c7Gmnt6cDSZI42NPBwZ4OTNPk2sAol64MoqkaX/rZz/B7f/hnywJkA2zD3jC1S1Dc76IiIFbRtcvD43Z4AsTjzkMspS2sTKHS3OLw8kpQOcKBIPDuxXPYRQdLt7CL7kUUBzRV5Z7jhzl+7GDJNcbFNM3S6tQNFpeStxnI7mOY7p1FqkIKjM9Xrv+ovpvSWohFGd/sTe5dko2lGliaiamZFNUClmpgayaOZJfEh4IqKUiCjCzLKIKCIAoIgogsCciyguC46QXl2hjbtjEdE8M0sBwT3cqjWwaGZSBYImIpYuIWwpdEiq6UxEl94wqQvaphcLukdyxN41/ZJT2zyJjiI7GfuqSLwt6tsFccqVSUkMrxU31EG2OrHKlSyTRjE1NcOtePnTeZn56nkKy9I1UtkEtF6NYeRPY2i+04iKIbhfX7fAh69TKULNtmfGKG8YkZ3nzrAp2drZw6eZh4PIIsy5w8fogTx3qZX0yRTqdxqlTHU07tYq2At5fa5bHL7KO7hYfHrVTqNVYUiItKqThcWZ1KVVmx0W2srFUJKR/oaGUhk8Asujf6xniURx++l6am2KqGWIOD41wfHGFuPlGz13sz5QiI37/zngz+UgSk7DVfEywRKa8h5dd4PZKFpZlYqklRM7DUPLZmYmk6iKBIKoqkuCKllNaliDKCICIKIoroPldGQAABLNuqpHUZlolp5yiaJqZtIFiSm85VEiRSUaqkdmHXR9Qkm83taQAnJ0o8F47zhRVd0hXgM+kFvhFrwdon0aTBG6O7UzdTdqSKhWjqbKKhJUY4HiYWiVAs6rzz7jka2xopFPQ1Hanmqz+ifYdYijLXUwQEwLYdBAECAR9WeZ2mypNp07YYHp1keHQSWZI4dKiTQ70HaGmO09wYY2xsnCcev4d4PMy581erZmhyC15ql8cu4wkQj31DuZlfOaJxS3F4ObohgWODVbSwijZG2v3uWLde2Hw+jV/9+7/Cn371O8zOzXPvqT462psrzxeLOpeu3ODq9eFtW+XuJrppsrNWDE4lC8unuRGQYnGXbmg7xZKQchJS7mZx4uDINpZmYmsmRVUnp+lu5EQ1ECRQJQ1ZlFFkBVlQSjUnMgICoiCiSSqapOI4AoLglJK63MmAK06W07rKPwuGVImYiMVy7cne2wj3Xx/as3OVGVT9XNSC3FPMVh5rM4s8kk/xln//d0nfCqscqVoaSOey2Dg8+vADCIBu6CRSKcZGJpkemyU9vsTz11/AzJtQZxPsesF1waovG15w+yhpmkxjPMZsIrXr5zMti2vXR7h2fYRYJMSjj97LgfZmLMvm+NFejh3t4frAKOcuXKtK3d5W8FK7PHaKJ0A86pJbLG81EUG6qTi85JlevjgZOQvHsF2xsckQdSgYIJ1Oc8+pgyjyEQAcx2Zyap6z56+uKgCsR0yzfAcQkAQBawcVtariRgeK+t6kYFUPAcGUkE0Jshqw0ibTwVYtbMXE8hkUVBNLK7hiRTERRdGNmogKsuxGThRRqRTAS6KIJGposloxHCjLE9O2MC29Ej3R7QJ5y8Aq2wiXCuLFgryrNsJu0zZnzx2DXg7F6TQLq7ukZ5MMyz6m90GX9IM9nfT2HuDFl9/e9D6SJqGENASfTFNbI71Hu4lGwoRDZUcqg8Ebo4wMjXHmjQ9IzCb2vSNVLZBKAsSqsy71mWwOTYsQi4WZZfcFyEoSqQzvvHuJL3/ps1z84CKHDh1AUxWO9vVw+GAno+MzfHD2CpnsNusBq4iX2uWxGTwB4lFbbtPM7+boBmKpOLxoY2ZN7KKNZWz/ohOLhnn2I48yNjaOIss4wPDwOB+cu0Ymm9tw/3rAWHGDlmUJa9tRGqHigLXfeiLcHqFk0SsjZ303Pedgaxa2amCpBgXNxFLzmJqBo1qIolQRJ0opYiJLasUi1BUnPrQV51rTRthya04M28S2LUS9ZCOsK6V6k53ZCD/14YcpFnTeePuD7b9N20AXBH4UauLLyZnKqEXg05kF/jTWjlHnXdIDfo1YJLLu86ImogZKjlTty45U4XCQK5evYdo2oYCfxcUEQ/3DLE4vuo5U+QK2brPA9B6+mjsLqVQDYtZZz5KlpSSN8QiqunLqtHdjTCRT/PbvfQ2Ad9+/SGdHC/fe00dzU7xStH59cIx337u4J85422I3U7vMUjqX4aV27Qc8AeKxZwhSqbOrtnYzv5XRDcBd4SjaWPnllY5qoKoK9917lOPHehEQEAQYHZvhrXfP73kYe6c4tlNp4iHJMmxLPLgXZrUkQOo2BavqCKX0KRmZm5rpCQ626qZ0maqBoRnYWg5TMXFUC0mU3JoTUUaWlNU2wrg2wrIk4ZQkiXu2W22E3R4nueUeJ6U0rtU2whKCub44kUWJfI0mG5OKxjuBKI/lliOFDZbJU5klfhKO12RMm0UUJSzHvabc7EgVaggyMjbOqZPHaWttusWRamRgjEIyT//LF+94R6paUOmEXmeT6KVS2pVeNKiVc54oihXzhPHJWcYnZ2lraeSJx+8jHApw5HAXhw4e4O13LjBwY6wmY9wJXmrX3YMnQDx2heVmfsti49Zmfm5DP8deLg43Mpb78y6tVvR2d/DYo/egqcv1DkeP9vHHX/k+Tj01BNgCVqlbsCJvwwlrxUsur+rdWRGQbeIIiEUFsajcKk5Ep+LMZaomulrE8q20ES7VmpSK3lfZCDusshEWKk3i17cRNm291ONELVkIl1O6ZOSCjCCKNbOSBXgnEKFHz9NmLqfu3VfMMKT5GfKrt9mzRpQcqYQGjVzA4YHPPERja+MqR6pMJsvE9AxXL13nxoUbd7UjVS0oW53X8nO9FrnSAlU1TD+2Q1trM//jr/4tfvO3/ivjE8sRtunZBf7yOz+ht6eDJx+/D1mSePLx+zjYe4DX3vxg3y2srYeX2nVn4QkQjx0jquKKWg1pw2Z+lm5jFi3stL1ucXjVxygKfOjx+zjY2wlAIpnm3TOXmJqeB3606+ffTQrFAohuCtZ2kWWpYllr7Jaryp2CLSAVVKSCuqorOLBsI6yWbIS1ApZqYmsGjmSXepyUxIm4wkZYEoCSjbAks9zdpHTK29gIf3P+z/HZPgpdZsmpS64UxO+FjbCJwA/DTfz1pclVN5RPpBf5Y1/Lrp//tpQcqYKxIE2dzcRLjlTRSATLNEklU8RbYpiWdasjVd6AOksBulsoL6aYdbYYki+4M19VVZBEEdux93RuKpQbzq6zWDY8Msn42AwPPniCI4e7aG9r4oufe4bX3jjL+OTsHo60Bmw3tUsRwdlkatctERRnT+YvdyqeAPHYEus187s5urFWMz9Lt6AGC1p+v8ZnP/VhggF3JXt4ZJLX3jxbV112t4+DKIjYWDsSIOX6D0M3sfdpJKgu2KSNsKGZFEo2wrZq4EhOyUJYLdWbKKtthEURBQVFVt3JR7nHyQobYSW4lo2wWKkxWbYTlpF0FazqpZAsSTKvBBv4WHap8ljQsfhEcok/rtpZNsZ1pPLT3N5ErLUBw7ZYWFzk6aceRxTEiiPV+Mgk6cU02cU0U6MzniNVnSEr9RmNNU0LQXBTKTVNxdhjy/JyF/bbXaFN2+Kd9y5y5eoQH3nqQRpiUT72kUe5en2Yt9+9uDcDrUO81K76wxMgHmuzxWZ+lmG5zfwy5qpmfrXG59P46Z/6aKnI3OG1N84yNDxRef4Ln3sWWZH55rf2bxRE9akUinkUeTt/zu4vqbxv0fCiH7vG7WyEJRvLZ2KXepzktNwqG2FZVFFLTRgVcbWNsISEJImokura/wqlpC7BtfFcbSOco1i2ETYlV4wUyvUmy3bC27ERPucPcUjP02ssT8r6igUemBaYP7yzt24tJE1CDfsQNIlIY5gjp/qIRsKEggEEQcS0DCYmZxkfn+SdV8+QWcx4jlT7AFkSkSQRG+rS+nylbXmmUNh2J/TtUKnT20SUOp3O8oMfvsEzTz/MgY5mjh3pRVNVXnn9/d0e5r5jV1K7HAdJlUAUyE/lyU/WsL9WneIJEI+qNPOrR1RV4RMfexRFlrEsi+98/2XSmdXuVi0tjeRy+/vCYJfSRPxB/wZbrk8lAuIJkBogIFgScrZsI7wSB0exsFQTy2dSVA1yahFLM7DVm22Ey4XwbhNGnGUbYZ+sQsWji2UbYdtwxUnJRthcZSNcEiabthEW+HG4kb+xNIXfWb4mfOYa/EUX5HZQDiKqIkrQR7w9TlNbnGhTlEg0TDgcYmx8iqnJGQJ+H0uLCYaujrA4tbDKkSrBreknHW0tSJLI2ITnVlVPyKXFEMexMevMhhfcKIgsi4TCAeaTe2vF6/e7Tn75Td6zTNvihZfe5tTJwzx0/wl6ezoo6vpdHQnZMptM7ZJ8EnJIRvZLSEE3HR0LbN3BzJjk2d/zjN3AEyB3GZtu5icL7qrAJpr51SuffPZxGmJR8oUCP/zxm7eID4BgIMDc/GINRlcdHKjcpEPBwLYPopYjIMX6W3G8uxEQDBnZkJGzNz/n2gifuL+X4dkxEsUEllooiZOSjbAoo0hqJZ1LrvQ4YUWPE618ptJR3dVA0zYwNmMjXBIqYlEiK0q8EI7z+dRyP2+fDY9NwEu9m3vFZUeqWGsDje1xoo0Rxqen6Wht5fDhHmwHMpkMqWSa8RsTjA1Pkl3IMPLuwJYcqXp7O9E0xRMgdYZSSr8yzfpc2MrlC0RCAWKRMOyx1fK160P8+m/8Nrn81np9XLo8iCLLnL7nCMeO9LKwkNyXDll1gwiSWlqsVUVkn3tNtQ0HPWdgz+g4hoNtOzimQ3Fpv/XW2hs8AXIHs1fN/OqR40d7iTdEsW2b5154m3TmltkbAIGQn+w+6fmxHrlcAZ9fJrwtAVJKwSo5YHkF6PsJ10b4ge77MGdFipMrIxOre5zkfQZZNYepLtsIy5KCWk7nkpTVNsKiayO8Vo8T0zLdtC57bRvhD4oKnTcU7l9a/iw1ZuH4AozeHKQrOVL5wwEcBXr6umnvbCMWDSMrEgIimWyO2YUFbgyMMj00zcL0QlUcqSRRwNpHCyp3C+V0UNOsz8WQublFIqEABb2Ur7OHHyHTtFhKbK857tnzVwGH0/cc5cEHjjM6Po3uXe83hSgLpfmUjKS5osMxHVdkGDb6koljgZW3sPIWZun7flqwrQWeALkTqGEzv3pEliUefvAkAFeuDpFIptfdNhQIkF0jMrKfSKUy+PyxSvOu7aBWij69lZr9hFzul2DfnBpw+x4nZWcuUzPRVR3Ll1tlIyxLroVw+We5JEiwV9oI+xE0Z4WN8HKPk1eaDDo+MIgnDcTSRPL4PFxp8+F0Rmlv66BhhSOVT9N49bV3CEWDqx2ppufJJ3bHkUqUJGyrPie5dzPlxRDXAav+bkyFkqVtOZK4lzxw/yk6O1r57l/9ZFv7n7twnd7uDiKREE88dpqXXz1T5RHeAQhudMMVHO68SsB1wnIMBytnYyYtbNPBzJkVwWEX6jNiV894AmSfUS/N/OqZI4e7EUUR07Q4e+7qutsJgsAf/NGfM7+wtO429Y4DpJIZWlpj6Pr2xYOsKICNrnsTsv1EeRK0pXQVRyg1OFTWsBF2sFR9hY1wEVvNYq2yEZaRxZJbV6kYXhLd2pCKOFF9vPaowmPzMqZfIdvSDCI8mTSRnn6UYDCCaVqk0hnGR6dYml5k/sYM0xfH98yRShRFDL3+Jrh3O2olBav+6j8AiqYbNYiEg3vei7C7q52e7gPb3t9xHN59/zLPfuRRurvakSWpfjum7xGCJFQWcEWfiKRKbiG54WAbDmbCxLbAKlhYueUIh9dZfed4AqSO2WozP6toYRu738yv3unuagNgZGzqto2sHMdh4MbIXg1r1yiUhMe2mmOVPiKqIoOtb8pdxaN+KEe9rFsiINvEEm5jI2xjacZqG+FSJEXUFAL+IJovgOYLoKoaGVFgMCTSnhWxFEAQCIoy4sw0woEAC2MzDA+M0dPRRlRQEVqaSCykyTgZDN3E3GVzi8XFBMUdiHaP3UGucwFSdubSFNdVYS9dsPx+346bCk5MzrrpkqJIQ0OEufn9uwC3HSRVXG4noEkIIjimKzacvIOeMrANB6tgYZYEh1Ww6jEYt+/xBEidsKqZX6lAfMNmfgVXcOy34vDdJhwOAjA2fvsCQZ+m8dSHHub9s5dYWEzswch2h0LRnUT5fNvvzivLMuh63fnue9we07Q4e/YyqdT6aYZVwxKRchqK6UdGpampmZ6+LprbmxA1kayRJlPMkNbdr4ye5pwzT8f1AvGghmTBkDmCQQvi/DC5Qg5FFGk/0EbQH1jua2JYLKWSvHfmPO0tLTi2QzqRIbGUIpPNYRZMzCpESM5d6K/Cm+JRbcqGGPVowQturyQQ9jz6AeD3+ShUofdIOpMjGglxoKP5jhYggihU+pWVoxvYrtiwDQcz6UY37II7n7JKKVVe/469wRMge42wsjh8i838ig6WUZtmfvsJq5TXrRdvv5rv9/t49mNPMjQ8vn8FiOOsep2aIlPc4o1bFt16Iai/zsMet0c3TPqvD+3a8W9xpGqOks3laGlpoqWpsdSt3QZBJCwFULQDqI6I4ojISDiOzZh8FvXcFAPtUV4ZFlHfukJ59iaKIuMDM6iaQqwhTDQWJhwNIUoiWDY9vQeIxWLggCPYmIZFJpvlwvkriIJI0B8gWRIn+WweU9+8ONE0FcusjpjxqB6VGhDTXLfjdy0xbiqO3+sIyMzM/MYbbkA51VZVd+CNXYeIquimU5VS1AVJWI5uFBz0tIFtOrcUi3vRjdrgCZDdROSm/hr7s5nffiOZzBIOhYjGwkzPLqy7XdXTV2qE4ziVxTjNp25JgDgOyHK5kNm5bcqaR/2haSqtLY1Mz8zv3NFGEpH9MqGGEKZk097dRs+h7lWOVJZtIYkisiOh2BKyI6I57neE5SVhvahz6foAV/qvMzE5w5d/4ZdRpmbQEldxVqyg2LaNXrTRiwaZVI7xkZnKc7Ik8lfTL6L5VGINUaKxEKFICF9AxbRsDh/qpKenk1IVPHpRJ5vLMTQ0xtzcIvFojHQqQ3IpTSFXxDRWi42Pf/QJJiZnOXv+ys7eN4+qoigyCAJGnadg4TiIexwFeeuds2TSmR0fR5bcgc/c5v5Y94gga5JbD6u5wgNcK1zHcDDTNo7pYBXtVWLjbqiD3S94AmSXEGSB1qeb3AUcxylZ2jo4joNjUxEY9d7Mbz9SnmT0Heri6rXhdberCJB9vAJ68+qbpqmQ3pqrl1gqZLbu8mLE/Ug4FOTJxx/khz9+ZWsCRBSQ/Qq+aIDWrhbiJUeqSDiC36dx9uwlFEVEkSWsoklI9KE4EqojoZrSKrEBgACObTMyMs6Vq9cZHBytrBQLgnjr9pvAtGxMy6ZYMEglVttoy5LIzPAc7wcvEmuIuE0Jo0EC4QC249DSEueBB05Xti/k82TzeebmFrl+dYhYNIyoSQiKgOZTMHQL2xPfdYFc5za8hmFWFnwU5RYbh13l/Q923kDQp6mVNOVkYg9SN6uEqIiImlgSHSUrXMPBNm0cw0HPlaxwc2WxYWLmvYyResYTILuF46ZaIQg4loVtCWDbOBYItgMSCJaAKItuBTmiJ0KqxMVLA/R2t9MYj9IQC7O0zkVWktyP/50w8bYtG2R3Qjo3n9jSvrInQPYtYmkJ1trAolb2K/gifpo6mmhobcAXDjBwfZBHHr6PaDSCYRgspdJMjE3hFEzaA40c7uokKGmugFh5abpJS8zOzHOl/zpXrw2SzW2tQdp2ccWJTqGgk1hY/fctSyKyKjM2OEWkIUosGiIUCRAIBdAUmWDYx4efepRUMsXxew9x9N7D5LI50qks/VeuIwoSIgKJpTR60cA0PHGyl6ilSb1p1mdqjIMrQnzCctPEveLee44zNjpBYgc1X48+fC+yLLOUSJNI7TyasisIuGlUmlhJWRcoRTfMFVa4hl0pFDfz1pYakXrUHk+A7BKO5TDzyjyiIrquC6XcRFERQXSt30RZQPbJCCH3/4ilhoCGq+gtw8bRbSzT9lT8FlhcSjK/kKCpMcYzTz3Et7/3Ms4aucT5QoEPzl7es0nTbjK/kCTW4UMSt9oLxHHz7eGut2Pcj5QFiLMijVDSJNSIHy2k4Shw6t7jxJvihIJ+BEHEsgwWE2lw4Myb57ALFhgOR7t6uP9YH6FwaMPzZtIZ+q8OcqX/+qZsrG3H2bN0ftOyMfM6hbzOwtzqpm2y4oqT733rBZ566mGmJmaxBAgF/YSjQRSfwqMP3U8kFsaxbXKFAtlMjlwuz8C1ETKZLD5FJZXIoOsWpmGueW3x2B6qKiOKArZDXRtiWI4DeyxAfJrGL//iT/GVr3+XxDYNFCLhIL097QB8cK5+TBhu2+jPtDHKjf5KVrheo787A0+A7CJW1sLCYlVihFAqlFLFShix3PRGKAkTQXbDjZJPcutEJAHHckrixME2LFeg6J771Xq89sYH/PRPfZRIOMQzH36Il15975ZtlpaSfP3Pv1+D0VUPp5SElc8XiOHD59t6UaEsSSDUr+2lx/qIikxRcYj3tXKwMUK0KeqmI4VDWKbF8y++hupTWFpMMHx1mIWpBRanExj5Aj5Z4/jRw5y49wgtrU0bnkvXDQYHhrjcf53x8WlsZ/OrIhcu9pPP117om4aNaegUsjqaoDI2MM3g0CiCICApIooi8VLiLRqbY0Qi4VLkxEe8sYFY4xIHD3VxuK8X27LJ5bJkcjny2QIT4zPMzSwiigL5bAHDMN0FJE+cbAlNc69fumHibOHztdf4VAXM5XSxvcDv9wHutX5b+/s0Pv/ZpwFIZ7KMT8xssMcucXOjv7IVbsmZysrZmCnXicrKW5Vmf5bX6O+OwxMge41Tqv8o2nBTFFWQhYr6FzWpEjkRZcFtNFiKmkgBpSJUYDlqYht2pf/H3V7AnkpneePtczzx2Gm6u9q491QfFy4NrNpGVRXCoSCJRGrfF19bJfHQ2trIhcuDW9q3XIRubaWZncees8qRqi1OrCWKbhosClme+Phj4EAmkyWVSjF+Y5LZiVly0ylevfYqVtH9fMiSRN/hHk4cP0JPTyfCBhEzx7YZGZ2kv/8agzdGtr0qHQ4HsesswvbNb/2oklrlOA6mbmHqFvmszsJsorKdKIpIsoSsiGh+ldnpecKREOFIAH/AT2trM6Lo5qY//tiD2KZFJl8gl82SyeZZnEswPjaFZViYpuk6dXnptmviU10r8WKxvvuzuCmPAj7f3tWARCNuZDK9jbQpRZH5qc8+gyxJGKbJD378RrWHty4bNvpLrmj0l1+OcHiN/u58PAFSRzim465CZy1YGTcRS81zyqKkLFLUFVETSUDSJJSA7HZBF5f7hThmOZ3LFSbOBvnidwoDg2PIksSjD9/DA/cdp6mpgVdePVMRG73dB/hv/tbP8//9N/95Rzm19UCu4Dan0rQt9gJxKHWx9mpA6oqSI1W4MYwpOjS0xDh6om+VI1Umm2N8bIIP3rlESL1Bcj5JIZnDKqwWCQICXQfaOXH8CEeO9KJu4jMyP7fAlf4B+q8OkMluzdRgLQ71djMxOc21+sn62LSYsm13YcfQIZ8tkphfvlaIooisuNdlRZF503yfaCxMKBwgEPRzoKOVzo5WFpOLfOwjTyGKkMllyWUL5DI5UskMIyMTGLqJpVtbshG+EylP6PWSANlLi9utYJoWiBAKbpyuWC0aGqIALCaSG2y5mmgkxDNPPYTPp+I4Nt/7q1coFHbWzPB2VHqaaa7z55qN/sxydMNr9Hc34wmQ/YANVsHGKtjc7HMjrqwvKYkTSRURxJLNrwSiXO414v4fx13tLguS5dSuO+/G139tGFmWeeD+43QdaOVnv/gx/upHr5HNFSpF6OZ+jn6ULtrlFcPt2EJKsggId/XEp6aUHanCPlp72m5xpBoYGGJhcQnDNBgeGGVxeom56XnyiRxm3gDbIbXGYeOxKCdOHuH4sT4ikfCGw8hks1ztH+DKlQHmFhar/zrrCJ+m8vhj93P+fD+LibXevc1RthGmCHmKpBaXo4+iKKKoEpIiIisy77z1Pk3NcYIlcRJviKH1qei2wYGONlpbm8llc2TyeXLpHKlklsmJGQq5vNt41rjzxUk5hbS4U0vpXcYwTNAgGPTt2Tlt22Z4ZHxLbneHD3XyxKOnEUWRXL7AT156l3Rm5wsKZVY1+iv131jV6C/lRjIsr9Gfxxp4AmSfU2lUeFNUVpCEVYLk5iJ4sVRbIvvv/CL4i5cHSKUyPPP0Q/j9Pn72i8/y9nsXV9jw7v+V/0IpL9hxHBRZvqVZ1u2ovA9eDciecLMjVSgWZHBolL5DvRzoaF3lSJWYXWJqaIpCpsCN1wfgpgnowZ5OHnn4NH/xlz/Esm0Cfh/Hjh7i+PEjtLW1bDgW0zAYGBziypUBRsemtlTXsZ9RVIW21mYuKwMbb7xNbNumWLChAFAktZjlOiNAyalLkZE1GVESyWcK5LN5AuEgwYCP5sY4mqZy40aUpUSSUyf6yOUL5HJ5Mqk8mVSGudkFUqkMlmG76V13gDgpN8YrFIy6XhHP5wug7W0R+rkL/ZzbZPG5pip86In76TzQCsD8QoKfvPzujiMf5TmFXG70J4s4pQVMp+igZw03kyPnRjXK3/fz/MFj9/AEyB2KYy13+/SK4GF0fJq//PaLfPZTH8Ln03j8kXvJZPMUCoU7QoBYtoMgCDiOQzDg25K9YtmG13PBqj5lR6pgNEgBgxOnjtDa1rLKkSqZTCNYDhfev8yVd66QmEtgZg2cTUwoRVFEkkQOH+rhxIkj9PZ0VVzN1sWxGRud4srVAa4PDu28geE+RCpbT9dIdJdthCm4kcvUYobhaxPAso2wL+DDwSEQ8jMemiYQChAKBWltbUZRVNLpDG+/+wEPP3QvpmGRy+XJpvOkk2kWF1IkkslS5GT/2Aj7SumBRb08Ua7P+0sikaIrBunM3tnYyrK8qd4oJ08c5qH7jyOUeu/cGB7n9TfPbd0QYVON/iws3XbrNkoOVV6jP4/N4gmQu427uAg+k83xF996gQfvP8HRI92Egn5u3BjiQ4/fx5tvn6dQ54WPa7P8JudyBfx+jVBwCwLEcZDksgCpX9vL/YCoisgBlVhLA60Hml1HqpjrSCUKIi++/DqCxJqOVNu5aR/oaOP++07R2trK5z7XvuH2C/OLXOm/Tv/VQdKZ7Ibb38nUc++blTbCAMmFNFMjs0BJnPhkQsEAgiLi4DA7vUA4HCIaC9PR0YYsS+A4/OSlN+k73IPfr5HLFkinsqTTWZKLaRJLSUzDxjLrS5xoWqkGRDdA3Nsmf1vBtl0bXmEbDTa3yz/6H/42Z89d4bkXXlvz+eamBh556BRNjTHAfQ9ffu0MU9Pzmzr+mo3+SvfyVY3+8suRDc8K12MneALEo8LdUARv2Tbvvn+Jy/03+PCT99Pa0khXZxudnW2Mjk3z7pmL5HLbszmsLQJz80t0d7URDAa2tGclAuK5YG0aQRKRgwoNrQ00tjUSa4li4XBjcISPPvvULY5U81PzLE4uMHdhsuJItR1isQgnj/dx4vgRItHIhtvnsjn6rw7Sf/U6M7ML2z7vTpmZmSORSNTs/DdTdn7bb1E/07Ixs66NcJn5iTOujbAsoKgyoUgIf8BHNp8jlcigaQrxxhhdXQcq0bHz5y5hORbtHa3kM0Wy6SypZIZEIkUqkamJjbAqy5V00GLRRPLXrwApW+I2N8b35HyiKBKLRUinb11Y6mhv5vFHTxMK+gEwDIMrV4c5f/GaK5TWYr1Gf6XeG6sa/ZWdqQoWtmeF61FFPAHisTFVLoJ3HFwhopeEibkcOdkrsrk845PzPPrIA1y7PoimKvR0tdHT1cbo+DRn3r+y71aJ8yXh1NrSyNWB0U3vJ1dcsLyby5qUHKmiTVEsGXwRH6dOHyMWjaKscKSam5unkC3y4vdeIZvIrulItR38fo1jfYc4ceIIbe2tG25vmiaDAyNcuXqd0dGJurCYHh6dwDTqJ9Urnc5x5v2LFAr7Mep5K47jYBoOpqGTzy4bCCxMJio9TjRVIRwNEYmFSaZTNDU3ICDQ0tpI4GAnICAIMD4+xfXBYY4cOUgxXySTypJOZlhaSpNJZ3bNRlgrFaAburHcA6ROF9fLwkyU9iYCEomEkESRxaVlB6ye7nYeffge/D43bc0BBgZGOXv+Kvmbaj0ESVjlTLVmoz+bStp2OcLhWeF67CaeAPHYEesWwcvCqlqTcp2JKAuriuCVgFxJ79rrInhDNwgGg/zox28QCvl57JF7CQb9dHe20XWghbn5BJeuDDI+MVu3DcVWjipVEkyRyOatIZ1VndC9FKyyI5Ua0mjraSPe0kA4HiIaieLXVGZm57lydRC9aDAyMMbi9OItjlTVyAqXJZGDvd2cOH6E3oNdlZqF2zE+NsGV/gGuDw7XXR+Fhx+6l4mJacZHr9Z6KIC7AHF9cKTWw9gTVvY4yWYKTE+4KTkzowtc+eAGkiyh+WTCsTANDRHyhTwIoCoy8YYogUM+SvlG5HI5XnnlTfqOHHY/66ksyWSG5FKKbDq3IxvhcvpVoVg/QnU9Kos1e5SCFS9Z8GYyWU4eP8SxI92Ew+513gHGx6d5571LZHNus09JFRF9ktfoz6Ou8QSIx67gmA6W6YZuV1FHRfB6aUVWVhXGJ2cZ//YLtDTHuefkYToPtNLSHKelOY5l2wzeGOPCxYHKBb4eyWbdsW31niiJrg3v3dIfZiU3O1JF4hHGJyaJRsIcO3YYQzdIrHCkmhmdJZfMMnVm9BZHqmrQ0d7CyeNHOHL0MD7fxv06FheWuNJ/nStXB9dMz6gXJFHalIjaK8LhEE3xKEMjE7UeSk1Z7nFikEnlmRqdrTw3em0KWZHQfArRWJRoQ8hdQEIgGPATi0Xw+/1uSFuAYtHgnXfP4g9oRIMh0qksqWSapcU0hWxhQxvhcgF6obh7PSqqRbl2SNwjAdJ5oJXx8XGe/egjCLjntB2boeFJ3j93BQMTySfhj/qQNK/Rn8f+wBMgHntLHRXBG6VGZJq6nGs8O7fIT15eJBoJcv/p43R3tSGJIkf7ejja18PU9DwDN8YYn5ip7F8v5PLujdtxHHyasvmVxNI9tF6jPNWi7EgVbYqQM4v09HXT091ZcqQSsCyLZCqNYzoMXL7B6KVRkvPJTTtSbZdYNMKJ430cP95HLBbdcPt8Ls/Va4Nc6b+Ooig0NsTqWnzUI20tjdx/38m7XoDcjnKPE71okE7mGF8RMJobfRVZkdH8KrGGCJGYW3dSLBZobWuku6sTTVNxLy4OhXyRawM3WFxcoq25hUw6SyqRYWkpRTFfxDKs0vbLPY3q+XJkmRaC4PbB2C0i4SDHjx3k8KFOFFkmVWqWu5hOcn1kjInZWRzZQWqWEE3RdacqOOjp5UZ/K9Op6jWdzePuxRMgHnXDXhfBp9MZ3nz7A3L5W4vOk6ksL792BkkUOdjbwel7jxEK+mlva6K9rQkHh0Qiw5X+GwyPTrrjrgEr7ym2s2zFGwr4NylAHETBPc6dJEDKjlSRxijt3a3LjlShEKIo8vY772M7NkuLCUaujjA/Nc/STAI9tz1Hqq3i01SOHj3MiWN9dBxo23B7yzQZvDFCf/8AI6PjlZXk++49TmdnK2cvXNntId9RKJu0NPVYm7KNcKGgk1xaLX6nBmc5o17AF/DREA8TiUUIhwNkMllCwSCH+3pQVBX3qiOQz+eYnp0jk0oj+ETibQ2Yiky2aOJkZAxRwKqz6Kxe+uyktmB3vhnCoSBHj3TT0dZEQ0MUR3BwJAdDMpleXOLq0BCpRAZbd1yHqrz73SqWisXzbrM/r9Gfx37AEyAe9c8uFcHruslfvfwyjmkjysKaRfCWbTNwY5yBG+OEQ0EOHzrAwd4DhENBGmJhnnz8Pp54/D4SiTSXLg8wPjlbk74K5XW4QkFH0xSCoQDzS5vt8OzuvV8FyFqOVIpP49KFKzz19OOoqrbKkWphepG5iTmsvL4jR6qtIksiPT2dnDx+hIOHejaVkjQxPsWV/utcHxha0yZaEO7O1LmdIitSzRYN7nRW2ggnFlLAcpRJlkSuXx4mGAwQbYgQjYYIRYIUjSKqqiCIAkdPHOak348pCIi5HLn5Rd568wyRUBhZFJmfX2Jhfgkjr2MYBnYNrltld6mVNs6iWOqTsUXTh2gkxJG+bg4f6kL1y9iSgy3ZFESDZDbD+OAMh3sOomct5ocSruDI25h5t3bDzHuN/jz2J54A8djX7KgIXhbp7G0hmU2jG7pbBK/b2KaNrbu1JnbJJQQb0pksZ89f4+z5azTEwpw4fpie7jYUWaYhFubDTz6A49hksgXGx6cZuDHOUmKzImC7rL75Tk7NcrD3AMGAf9NHEEShFAGp8tB2gxWOVKJfxpbgvgdP0tAQqzhSZbM5lpYSWEWLl37wBkamQL5KjlTbob21hePH+zh27JCbM78BiaWkW9fRf53kBiusgrA/MisM06yrlEVZkj3ThRqw0kZ4YTZReVyWRJ544j5s0+bF594g3NhAqLGBmCIScCwQ4aFHTtPa3IQjONiWTSabJZlOc/7sZTLJLNFwmPmFRRILSfSijmGYu3ZNKy/WhMPBymOf+dRH+cUvf5Hf/K0/4O13Plh3X1mSaGtt5MCBFtq7mgjE/DiSgyOBIVgUMjoD/WOM3JiimNWxdJtf+OgXeHfqHOnBrJu+7OFxB+AJEI87ktsWwZeiJL6Qxj/+l3+HP/raNzl3qd9N5yoVvUuqgByQXJvFNYrg08Ucb757jjfeOku8IULf4W7aWhuJRcOEQwFOHD/EieOHsG2b2bklrl4fZnJqbtcnYeVC9FgsvLkdnOVmWk69TWVLjlRyQKGjt514a3yVI1Umk+ONt98jXyySGhhjcWaR+akFcolsxZGqVkQiIU4e6+PEiaPEGjZR15HPc/XaDfr7B5iant1w+zICQv393tbg7Xc+qKuGd/lCgcWFRK2H4VHC59PAdjCKJtMTC8zPZ5H8CxQX5ikuzqMoMt8Y/RaxxihNTY00xKNEYhGCIT+SLHPy9DFOnzqBIIBpWqQzaVLpLDdujDA0OEZDNEIy4TZg1IsG5k6vw6Vri7qifjASDhMKBfhX//y/54WfvMbv/v5XKna44XCQg4c6OHSkE3/EB7KDLYHoCAi2SDGnc61/lKGBcXLJQiWyYeUtfKpGd6id79543hMfHncUngDxuLtwwC7Y2AUbM20RNoIoizKpq+ltF8EXDIPzI9c5O3AVv6LS1d7Goe4uopEgoijS1tpIW2sjjmOTyxeZm1/ixo0JZuYWqi5IMiUB0hjfeNJbpiJAahwCWeVI1dJAtCnCwsISBb3Iww+evsmRKsHc+CyZpQxvXpjZFUeqraJpKkf7ejlx/CgHOjfuTG5ZFkM3RrhydYDh4bFt2ZdOz86TyeW2M9w95Z5TR5mZmWdq/HqthwLAlas3aj0EjxUEA25jv0o93gp3KccBXTfRdZNMOsf48FTlOVEQUBSFgUs3uPhBP41NDcTiUaKxMOFwkHA4xIHuDj757FM4gGkYpLIZ0qkMc7MLnD9/GZ/iQy8USSbTGEVzU7VBdqlPycpO6M8+++FKDd7Dj5ymoSXMu2ffRwsq+EKaG3l3RCRHAsth7MYMI0NTjA/OUEgX123019PdAcDQyPiW31cPj3rGEyAedy2O41As6hX3lWoUwZuSzXBiiuHUNNjQGInS3dFGQyhMNBQkIProDXTQ292Bg+v4MjI6ycTELDNzi1sWJDevfmeyucprk0UBc4MogMByDo+zh3N4SZNQQ34a2hrImQVaDjRz9MjhWxypTN1gamiaHwzOkl3K7Loj1VaRJZHurk5OnOjj0KEeZHnjS+rkxDRXrg5w7drgmnUdW2FyavPRkloSi0Yr0bl6QBLFumjQ6OESKAmQ/BqGILfDdhyKuk5R18mksowMjlWek0QBWVVQVJnF6QWamuPE4iUzikiQA53tXBu4wS/8/BeQZBld10ml02RSWRJLSS6cv4JeNHEsh2wmi1E0MEs1H8trNe4PDY0R5lOzXBy6wGJ6kaJtIDoC8bYokiMh2QL5tM7A9TGuXRxmbjKx6UZ/vT2dGIbJ5OTMlt4bD496xxMgHnc1KwXIuuygCH4ms8Ds7CKCJOAPabS0xjnQ3kJDOIwiSCiaxJET3Rw91gO2g2nYzC8kGBufZnp6nsQmXVbKK3GForHshBUOkkiuv78oCIiyWPm/s0sKpOxIFYqHOdDdTrR5pSOVwKXL18lksywtLtXEkWo7tLY0cfLEEY4dPYx/E/U2iUSS/v4BrvQPkEhWry4oEg6hKBILi8mNN/ao8JGnHyObzfHWu+dqPRQPIOBzBUg2t6IHyA4DspbtYBV0igWdTGqUoYHRynOyKCJrMoqq8Gdf+S6tHU3EGmJEYiFCoRCNjQ1MTs1w+r6TdHZ2UMgXSGXSZFIZkokM6UwSI+IgBQx++m99FJ9f4/zgRSRHRHQkQoKfhnADnc0HMPI2QTnI/+d/+00GBoa2/DouXLzKf/6dryw3P/TwuEPwBIjHXU1qh/0TtlIEr2sm6ckcg+fGEWUBf8hHW1sjDc0RGhujBKJ+RAuaojGaexsQLQFLt5mbWWJxMcns3BLz80sbrpobhoUsi7S1NK4rQHq7O/nbf/PLnDl3ia2tOd6etRypAiE/ly9f555Tx4g3NpDN5Egm04wPTbE4s8Ds2DxWvsiNYn10yV6PcDjE8aOHOXniCPHGhg23LxSKXL82yOX+67sWqTh29CCxWITnXnh9V45/pyLL8ioHI4/aUo6A5MqNXsuZTbuUFWray05d6WSW4RvLkRNZkpBVGUVTWJxP0HvwAOHGIEpIwVZthBabhuYogiWgoBBTo8iWSEMoRkdTB93t3XS1dOJTlhuJmqbJd775+/z6v/1P/PGf/PmW0l0nJmeY8KIfHncgngDxuKv5J//8/9iV426mCD6nFkmMpCtRFH9Qo7mlga6eNhqbomh+Bccv0BhroMlu4Jjdi2AJ2IZDJpljZmqBuakllJxKcUXqwuJSipbmGC3Ncfqvj3Azjzx0H1/+0ucRRZG+wwe5OObaZG65BGSFI5Uv6iddzHPfg6doaWpEUZcdqZLJNEbe5K0Xz2AXTAo1dKTaKpqq0Nd3kJPH++jsbAdBvO32lmUxPDTGlf7rDA2PbquuYysIgrBP7MvqC1kRMQxPgNQDkiji87tR6HLRdi0QBQiFAjQ0RWlpbyDUGET1yyAJ4BhYGRNRkPAJMqItEdL9hBQ/mazAU088WSqCX7sxYTk189f+9T/k488+xT/7F/8b0zNzG45JkkR+5ouf5NXX3mNmdr6qr9fDo9Z4AsTDYy9ZUQQPqyfhaTnDgrbEtXdGkFQRySfR2BKlqSVGT28H8cYIoiIiqDbhYIjQgQB9dhdaPkgukSdtpkgupMnmsjhE11w8FAWBj3/sw4iSO5FujEehJEDs29WLlByppIBMR3cbje1NqxypLNPihZdeI5fPMTKYqytHqq0iiSLdXR2cOH6Uw32bq+uYnprhSv8AV68Pks/v3SRKhH3hw1tvNs+yJGN4Nrx1gc+nAQKmZVNc1Tx19z4wsiQSDgdpikdp6mhADsj4wz4E1a2LE23RLRi3RTAFEnNJFmfSLEwlmJ1YoDXczGc+9Aym3+Y//MEf8uK9b/MHv/vviEQ2dh98/LEH+cZX/zNPf+znNty2o6OVn/+5z3Lx0jVPgHjccXgCxOOu5lf++s8QDAb4rf/yp7Ueyk1F8C6Z4Syj0hRnlX5ETcIfUmluj3Ogu5VYY4hIOETEp2HKJgG/D39UwxZsTGwCER8f+vT9OIZDIadz/8lTxCIxmprileMPjSynHqwsaJf9ClrET/MKR6pCUWdkZILHn3kEwzBJJFPLjlSTs2QWMpy5OFsXjlTboaU5zonjRzl+7DCBYGDD7VPJFFf6r3O5f4DErvd7WQdRqEkjtq3S33+ddDpb62FUUGQZq476ktzNBPylAvTcWsmgO/tsy6JAKBggHA0TCvgIRf00tEQRNREUB6fkTFUWHE7ewTJsErMZJsfmmJ9YZGkmhW2tHocUExAQKvWDwWDgtuLDNE1kWebM++f5J//8f6WpMb7utivp7ekEYGR0cpvvgIdH/eIJEI+7GlVV6O7qqPUwbotjOViW4xbBJw1SE1kG33OFg6ZpHGo8SCTmx4kbtB5oJBoPofhkHMFBDas4go3d5DCVnWIiN8GV6Sv4tQBBXwDDsrEVCyvg0HlvNwXbIBgNcM89JwiHAqscqRYXk6Tnk3z/a8+RT2XrCuDYRgAAv81JREFUzpFqO4SDAY4f7+PE8T4amxo33F4vFrl2fYjLV64zMTm9ByPcaDwGkli7tJXNIoqi21OnTvirH7+yKbtVj92nXP+RXVOAbA5ZEgkF/ITCAcKhIG2tjWg+FUEVQXVABlt2VkU3MAX0nM78XIKpkXkWZhKk5jfX6E9VXeFRdlL7jV//n27Zpiw6isUiP3nxDX7woxd56eU3yOcLTExs7trR23OA6Zn5LbuDeXjsBzwB4nFXs7SUoiEWqfUwto2t2xhpi6VkmvEr41xkAIBf+qXPIKkCpuBw5MQhkrkUmUKWgpHHtC1MU2cpV8QWHZxwCDNu0BZrQHAkLN1kIT3DxHiR5EyKufFFckuZunWk2iqqqtB3qJeTx4/Q1b1xXYdt2QyPjHGlf4AbN0YqVpz1wPvnLtd6CJvi2NHDTExOM3jtQq2HAqwodvaoOYGAW6y90SRbFgT8QT/BoJ9IOEBjvIFQ0IeiKIiigCM6ODI4suN+SSA4INgSZsFgcTxFcilDaj5DYjZNNlHALlg42/hz1jQNBHBsG01TaWlpAlzRMTI6wX/5nT/h4QdP8+prb/Pyq29tW0D0dB9gZBf6fxw+1MNnP/MsCwuLfOVr36r68T08NoMnQDzuapaWkkSjYURRrKtOzTtlYTZBW2uc3o4DPHT4wcrjlm2RzqdJZJMksklGpydI5hWwfUj5DI5ugSkgWAaKAMGWMO2tQRxbwDFs9IJJPlMklciRyxQp5goUi2bd91QQBZHurnZOnOij7/BBZEXZcJ/p6Vn6+we4eu0Gubw3Yb1T8GkqDz14D5cuXyeRTNd6OHc9fn/ZAauAIkloPpVgNEIgEiXSHicomGiqgiiKlf6EDqvFhiHbOEA6kSW/WCSfLpJazJBaypY6i9tYOatqncR9mnv9MC2LaCn1Kp8v8PxPXuUP/+gbnL9whb/81g92fJ4r/YPMzFS39kOSJH7j3/y/uefUMQBm5xZ4/oVXq3oOD4/N4AkQj7uaxaUkoigSjYZZWtp/vRRubkQI0NgQo6WlBTBJ3tRzQhIlYsEYsWAMgKMdx/n2a2+h5jVe++GrhGI+wrEQscYQour2LvEFfe6ZJBs1ZBMM+2nsiOAIjmsnaQs4JlhFm2LeIJfOk07mKBR0CgWdYtFYc5x7QVNjnJMn+jh2rI9QKLjh9ulUhitXB+i/co2FffB5eOSh08iyyJtvn631UPYNPk2lq7Odq9e23pPBY2fIkoimafh8Cpqm0RAJV7qgnzp5qLKdLasgy6iFLFIh515rZAdTtkkVchRMHbtgk1pKk0kVyCbzGAUTu2Bj5a2K4HCs3bnulMuu0pkss3MLfObzf/3/z957x8dxnff6z8xs3wWw6L2RIMHeu0SKEtWrZTnujlOuU29+N4md3NwkdhLbcepNnJvEjh13W5atYqt3iaJIUewdJACi945dbC8z8/tjFyAhAkRbYBfkeT6iSOzOnPPuYnfmfM/baGvvIhyeW2PRD/LML19N6HgAv/25T7NmdTX/91+/xa889iBf/qsvcPzEGdxCjAsWGCFABDc1DY0tfOVr/4HX60+2KXPkSnz9smVLuO/efbz22mv4/T40TUOWJw4zkmUpfrZEOBChzxuir2P8wluSJWwZFhzp1ljie5YdxQAGmxGr1QSyjm7Q0I06JocBR56ZXCkDVAlJk9A10KOghVXCARW3y0MoHCUUinUwDoejhBMoUhx2GyuqY3kdObnTyesIc/lyM5dqL9PR2ZM0sTQbTGYDBkVcxmfCqPcrGvlgW1HBXDAoMiaTEZPJiMVswmgyYrWYyUh3YDAaMCjXD3UcJaqq+CI+VCNofjfuoV78wSABT5CQP4IeBT2io0U0tIBGNKCiBVTUoLZgFeGi8QIGg4Oxa2VDY0vC58jOziTNYaclgSFYy5ZV8vu/+1leeXU///XtH3Pw0DF+/tNv8KW/+CM+/6dfTtg8AsF0EHcuwU2N1+vnQk19ss1IKEeOneLipXoeefA2QKetrYOKijJ6ewdwOGzYr6rwpMjK2L8lSQauDVHQNR3fcADfcIDe1qFxz0lGCavdiDXdjC3NSkaWHbPdiGKQsNjNGE2GMXGi20DJlLAWZsbESVygoAFRCV3TCfjDBIJB1KhGRFUJBAIEQxEi4SiRcITwJInDJqOBpUvKWbFiOeVlRUiTCK4rr0mjtbWDS3WXaWxsIyISkm8aTHEBEo6mTi5PKiNLMiaTAaPRgMlkwGKxYLNaUGQJxaBgs1mwxKtBTRefL0AgGMZsMpKWbsUT9NPY0UmUCLoBFJMZWTYR6h8m2DeEHtXRQlrMsxFQUQMqeiR5GwUWayxvZYr0sTlx2+5tPHDfXn7zt/9PQsaTZZm//9s/p6ennz//4t8DUHOxjr//x//kr774x7z0ylu8vV80NBUsHEKACG56Hn3kbuovN1Nz8XKyTZkxk+3Wj3i89PYNUpCfzX/853fxeIP4An7KS0v58z/7n9jtNlRVG3e2okjMtDKpHtHxu8L4XWEG8TBa1FdSYuJENklY00xYHGasdhPWNCsGo4TRrJCebkc2EW9moaJLOpZ0A1Y1DTQJSQVJA1SJUQ+PrutEIyqSLBONRrHZHeTl5VBQkD+tfh19vQNcqr1MXX0jPpGIvGAMDrsYGfEm2wwAjMbY5yQSvnk9ILIkYzQpGA0GDEYDZqMRm82C1WLGbDZiNBoxGBR0XcdgUKYe8CpUVSMcjjAy4iMc3zQIBkKEwhFCoRCqrKOYJGSzxJKqImwZJjw+HxE1gq6C7gdMCpomE+yM4u8IoAbUlOp3k53pBCA9zTFvc6yoXsLlhpaEjadpGo999HPXPP6Tn/6Cn/z0FwmbRyCYLkKACG569t2xC5PJuCgFyCgTdeANBGPxyNXVlbz0aizJsOZSHZ/+7P9HZWUp69euZN36tSjx0Ag5gdt5uhorH6wFdTwjQTzEq8BIIBslJJOEHBcoilHG7DBisiiYrSaMZiMOhwWz1YjBLCMrMrIkI8fFiMNkIysjm2xnDhazZUpbwqEQPT29tLV34PH60FSN7OwMbDYLkWiUaCRKNKoSjUbnvXN5wkmhRdn1qK1tQE2R6mHuEQ/nL9TdMF4vCQmDQcFgkDEYDZgMhlgYlNWMxRzbqZdlKSYuTKZZl0PWdB1V1VAjUULhCD5fbFMjFIoSDocJhcLXfn9kUIwSkllCsUkYMhWMevz6EIU0cwaWiBVvT5hQn4YW1FGDOgazhmLSiQyrqP7U+NxcjcGgIAGhSGJzPkZRFJnq5UvmJQdEIEgVhAAR3PQMDbnJdGYk24xZcb18hc6uHirLC2Pdzj9wTlNzG03NbTz74ht8+Dc/CQbLwvRp0EEL6xDWuXpZ4SeMZAA5LkyuFiiSAla7leXVFVQtryQzKx1VV4kQIqqHkHQFRZeRdSXWVAwZLarjHnYxODCIx+tB13UsZiMWs3NaRqqqjqbpqKqKx+sjGlWRJJloNEIwFCYSiRKNqETV2B8tqhFVNTR9YQXMhZr6CcVnqrFt6wa6unro7ki+yHe5PSlX/cqgyCgGBUWWURQFxaCMVYQym0woioyug8mgYHfYUAwKsiSN5XDNFk3TCQRDRCIRDAaFUDBCIBgiEAiOfc7D4ei0xZpkkFDMEpIJFJOMZJRiZW6j8TywEdBVCS2oIUUlMkJpyD6ZgboRwsGrrgjm1NbWBiXmFQqH5kfELqksw2Ixc/FSw7yMLxCkAkKACG56hl1usrIWpwC5Hl3do+UbdcxGI6FJkm5VVUUCZHlmoRaJRo+CGtVR40sPo8HAytXL2bx5LUury9EVHVVW0SQVVVLRJA1VV+N/okS1CC1dnTS2NMWSyVUdRZdRJAWDbsAgG7AaTVjNFoxGE0ZDbNEHsR3iKwt5CUWRUBQwGhUslpnFt0NsYReJRAmGQuiajsGoEI1qcU9LhHBYJRQOoao6uqYR1TQ0VUPTNFRVje02R1U0Tb9up3N3ioQ1TYXRYJhWiNxC4HSmYzYZ6e0bnNX5BllGkmUURUaWpTHREHtMigkIWcJsNmMwGDAZY69dURQikRCKYsBiNaPI8pwFxNWoce+DTqwfRSQSJRKK4g8GCQZDREYfi0RjOVVz9UhJ8Q2D0T/m2HdIHxUbQcAHWoS4Z0NDDero4djnOSszAyWiEAzFquVNTGrKEFmRQZIIhuanCajdbqO1rZPmlvapDxYIFimpcUcQCJLI8LCbolXLkm1GwgkGwyBJoOvkF2TT1j5x911dIy5Akr+TLiGxdEkZmzetY93alVisV4VYaYzLkdfR0SSNzt4uzlyo4UJ9Lb5QIOY1kXVQQJJVUCKxnJR4jr0e0GNVdKI6eoRYgmtER0FGMRgwKApGg4LBGIuRVxQFg6LgSLNiNMaqTsUWn/JYhTHlAxV+ZFnCbDZiNk/db2S66LqOrulEVZVQKCYm7TYrEAu303QVTYOA34+qaSiKgZg3R4v/UYmqUXRNR9NAR4uPCRo66Dq6TsyLo8V8a7quo+sao21exjxuevxfeuyPPvrzBxeMOiAxJqJib9NEoX6xxasU+ydIjBOEErGPsiRJSJJ81b/joYNSrIiCLMWqtkH8Z1lCluIhSoqCrCgU5Odgtphw2CwoBgWr1RI/Li4IJIlwOIIsg8VsjnVxl0cNmyvm6z4bVVV0TUeW5bHfWSSqEgqH8fkCqNG41y2iElGjsZ+jKtHo/HvfJAVks4xsiv0tGSSkeIU7XQXNC3pUiiWLB3W0kI4a0CaqawFAekasLLbbvThE9EQEA/MjQM6cvciZOTYZzc7O5MihFwD49f/xxxx679ikx37pL/+Iz3zqMU6dPs/HPvm7c5pXIJguQoAIbnou1NTPulNt0plig9Dl9uJMt7N6ZdWEAiS24FSRSa4HJC8nm81b1rFp41qy4gme18M94uH06fOcPHmerp7ea56/Ogl+XFiXAZAlJFlCVkCyAXLseB0gqsUWfBEdPcCYUJnqfZbiXpPRnW5Fkcf+NhoULGYTBqMxLmwMKIpEOBxFliXsViuyIo8tqCcLqZIkCUmRMMXLnV6N3X5lYZuRbvvgqUmnp7sLWZLZuX1dsk0BIBIOU1SUO+nzlmkJx5i60vVYuN6o5yEYCKFpOiaTgWg0JiAikSjhSIRwOBITglF1TGComhYXFimUfyRdCYeUzfFQSFkay90gBJoPtOgV74YWFx3TJTM9lsDtGkmtcLjp4HZ7ybZk4/Mlvny7LMtkpDsYdo1MffB1GBwcpq2tk7KyYjasXzWpAFlRXcUnPvYIqqry5a9+fU5zCgQzQQgQwU3PiZPnOXHyfLLNmBcu1Taxc9tajMbJxYWq6hhgYXJArsJht7Fh/Wo2b1pHWVnxlMeHw2HOX7jEyZPnudzQct0d36uT4McxQRL86M+SrMfEiSJhMAPWmDBBjo11tddEi+roUT0W307MMxBVdaJq4pJSFVmOxfkbYiE9cjzUR5aleMiYTPXySgwGA03NbRiUWA5BNKoixZOOR/MKpPhYUVVFU9WxykdIsYWlBGPhX0gSZpMx5lW4atdfj3sxFjrn5Np5Y54aXYNwJIKu6xhHBZkOuh7rBxEMhVHVKIpiQFYU9LiHKNOZjq5rtLV3o2uxhF9V1VC1mHdBjYfCaaqOpmuomoYezweKvUdaLHQuRcODZoOkgGy6yrthlJB0roRT+eK5G6HRcrixv/U5pECMdhB3uybxgOj6lY5/KcaoQA3MQwhWZUUJX/vKF/g/f/lPNDXPLQTr5OnzlJUVs37dqkmP+dJf/iEGg4Gf/fw5ai7WzWk+gWAmCAEiuOlRFJmK8hJ6+wYWZ0NCCdBji8UPLoo6O3uBtWSk2zEaDUQmqLOrx1fRsjT/HhCDwcDqlcvYvHkdK6qXXRO6dK1tGg2XWzh5+jznLlwiFJrjAn+SJHjguknwo8JENoBkigsTJb5GiuhjYVx6lPjfc184qZoWs/E6sfrL9Zgwae+41gu0kEiM996M0yiSzCMf+ihd3b0cP3qeMXdS3LGkx2O5dP36RRUSxR17d+IPBGhu7Z73uVKVqz0bsjn22R4VG4RBC8RzsoI6WkBDDcW9Gwn69RgMCnZHLHxwwjymFC+skJERE0+BeQjBWrWyimAwRGtb55zHOn36PI8+ci/rJhEgDz90N1u3bMDlGuFfvv7tOc8nEMwEIUAENz1ms5mvfeUL/Nt//IDD759KtjkzYqoFmz8QIhSKYDYbyc/LoqOz79oR1NgY8xmBVVlRxpbN69iwbtX4vI5J6Onu5cTp85w+fQGXe26hCNPlg0nwY8hXhaOYpCuhXUYJJB1JiXtNLMTyTsbCuWIeEy2qQ1yYaFF90pj42RmdGjvEelxATGSPJMHJ0+eIRFVULZZTkkwCgQBezyLcaJgtMiimeClck4Rkksd7N/yACmoItHiiuBacm3djKjLSHEiAPxjrD7KYkOJhd5IEweB8CJBl1F1uHisqMBdOnop59rMynZSVFdN2laix26z86Rd+D4Cv//t3GHa55zyfQDAThAAR3PT4/QGGhlyUlhQm25R5IRyOYjYbWbVi6QQCBKLxDONEe0BycrLYsmktmzetIysrc8rjPR4vp05f4OSps3R2JXdHfxxaLM79mnAumDCUSzaOJsHHwpsUI0iWeBK8EussP1ESvD6LokS9/YMYU6S61PWoWlJOX/8QXW3JtgTeP3om2SbMK5JRGmv0J5skJEPMu4F6pTqVrkqoAW0sUVwLJ1gYT0FGRiz/Y2QRJqCbLVfygwKTVu+aHbIss2LFUp57/o2EjHe5oZmREQ/p6WlsWLdqnAD5n7//G+Tn5XCptoEnfvZsQuYTCGZC6t+5BIIFoKOzh5LigmSbMScmCsECqK1vZuvmVeTnZU14nh4XIEoCckDsdisb1q5i8+b1lJeXTHl8JBLhwoU6Tpw6y+XLzahaCiXiTgM9rKOGdVTf+MdnnwQf95rEw7mmSoJvbEqBFf00yMnJXnQ73YuCqxv9mSQksxyLyBz1bgQAFbQwY4niajAmgJOJ0xkLYXJNUUZaTxEP39VYzOZYbpQ08fV2LuTmZoGuJ6z/h67rnD13kd23bmf9+tU8/2JM2CxdUs6vfvojAHz5q/+Ctsiuu4IbAyFABAKgo6OHDetXJtuMGTOdG2B7Rw9bN69CkmINtKJX5xToOpFo7GejcXaXA4NBYeWKZWzZtI4VK5ZhMEztSWloaObkqXOcu1A7L2EMyWbSJHgZZEPikuBtZiuSJOGdh2o8NyKKLPPYo/dw7PhZWtq6km3OjJmo0d+oZ2Nco7+rEsXV4MJ6N6ZDdmY6AK7hScIrUzgHZKwv0DyY2Ns7wG/81p8ldMxTp8/HBMhVeSBf/Is/xGQy8vwLr3Pi5LmEzicQTBchQAQCoLWtkzVrlscaaaXgrttc8PoCSJKMrmvk5mbS3TMw7vlwfGfaZJxZz4qK8hK2bFrH+vWrscX7UVyP3t5+Tp46x8nTF3DdrPHGWmKT4NesXoLZYOHI+2cSngR/I2I0GpBlebwIT1Vm0ehPC+qxz1cKY7dZMJtNqJqOy7X4SvBazLGS1yMj3oTnYI32Fkokp05fAGDliipMRiO3793FLbu24vX5+Yd/+s+EziUQzAQhQAQC4J13j/LOu0eTbca8MTQ0Qmamg8KC3GsEyGhlLKNpagGSk5XJpk3r2LxpDTk52VMe7/X6OHPmAidOnaO94+atOjQdZpMEb4pYMRlNSJKcnCT4RYbRFNu9Hm3kmEpMq9GfKqEF47kbo8nii0BLXU1WVgYQ6+UTvd5iO0V11KgHZGTEN8WRM0NRZL7571/h8Z89x4F3J28aOFPOnK0hGo1iMpnYtGktf/a//ycA3/yvH9LXP5iweQSCmSIEiEBwFfOxA5UKXKpvYtf2deTmOK95LjwqQAwTCxCb1cL69avZvHEtlZVlU84VjUS4cLGeU6fOU1ffkFoN1hYj10mCl5eYsGTaCHVrEyfBKxIGI2D5QDjXBHkmi20hOxvMcZEdCSc2eXg2XO3ZmKzR32gp3Nk0+ktVsuMCZGhwci9o6gZgQW5ubONFVpSE5oCsWlFFRkYaLa1zL797NX5/gPr6JlatWs7XvvpnlBQX0tzSzvd/+POEziMQzBQhQASCOP/wtT/l5KkLPPn0y8k2ZVZc76bd2xvb6crLzcJgUIhGr6w2I5HYbvDVzQoNBoXq5UvZsmkdq1YtxzCNSktNTa2cPHWOs+cuEQgu0s7yiww9qmOIGokMj1cPEyXBxyoiMT4J3sSckuCnS2NjCy538sNtRjvIhyIL6wEZ1+hvolK489DoL1XJjOd/DA4vzjDM7KyY/YkO1d2yZR19/YO0JliAQKwh4apVyyktKQLgq1/7twl7QgkEC4kQIAJBnJER76KvhDUZHq8fSZIBjdLifJpbryTgRsKxG5HJZKSstJjNm9exYf0qHHb7lOP29w/G8jpOnWNokS4oFjPRqDqhx26hkuCn6zUJBkNEo8lf8PT1DfLq6+8SCs6vABl7b83jG/0RJfb+Ba9q9Dfq4Uhgo79UxWoxY7da0NEZnjL/IzXfjNEQLHeCSwhv2bSGYyfmJyH89OkLfOZTjwHw1tuHePfgkXmZRyCYCUKACARxOjp7WL9uEVbC0nWmE7TQ3z9MTk4GG9atGCdAbDYbRYVFlK+qJs0xtejw+nycOXuRU6fOJaRbr2D2HDg4w1jxBCfBT7cT/MpVy+nq6qWlqWYuL3fORFU18Z6Y6zX6U680+tNCjAkNNXBjejemYtR74HJ5x3lhJyUFC4IYDQbQYhtWibKuID8XpzODEyfPJ2jE8QRDsUqDoVCIr/39/5uXOQSCmSIEiEAQp6Ojh3vu2o3BYEiJ3dqZIk0hQs6cr+PO27eRnm7HZrVyy64t7N2zk9xVqxmMqNivs50djUa5eLGek6fPU1vXML3Fg2BRMV+d4PWohG6IgkEFGa5RPgtIaWkhWc4Mzp6vnfUY4xr9GWPvh64S825c1ejv6q7iaujmTv4fJSvLCcCQa5Lyu6OkcBKILMugSYRCicsj6unt53O/++fzUpJclmX+4Pd/A4DvfO8J2toXX/lpwY2JECACQZyOzh4URaGwMJf29huvYlP/wDAFBQWUlZXxwAP3Y4pXBOq7zjZec3MbJ0+f5+zZGtLSHGxYt5qMNAfvHTm5QFYLrsfGDaspKsjhpVcPzN8kkyXBS/E8k+t1gldiP2tmFd0exVJoQFe1pCXB52ZnkZeXNX0BMlWjv9FSuGHGPBtqSEdP8VK4yWK0/8f1EtDHSNG3UNM0FEhoY01ZlvH7Awkb72p+9TMfYeWKKto7uvivb/94XuYQCGaDECACQZym5jb+4A//hv6BoWSbMkOuf6deWlnO7Xt3sfvWbWRkpE852sDAECdPnefU6XMMDA4DsQZuv/25RykpKQRgxOPlfE3d3E0XzAmb1UJmpjM5k+vX6QRvYEyQKCaFNC2b4UgA1cWVcK7RJHgFJHl+k+BHMZuN1y3BKymgWGQkIyjmKRr9jXo3UrDRXypiMRux263oMP18sRQLwTKbTGM9Ev3+YEIS0fNys/m7r36Br/3DN2lsapvzeFfz4P138id//LtomsZffukfb8imr4LFixAgAkGcSCS6yOuiX4lbyMnOYs/uHdx+205KS4umPCsSidLV18Wrr73DpdrGa4654/ZbKCkp5JVX3mbbtg089uEHaGxuxe8X1a6Sia7ryHLqxauMhnMR0FElsATSMAzb8LdEkRR9wZPgRzEZTUQj8dCZqRr9hViUjf5SlazMWPndEY+PyFQhnJKUkh6QtDQbAKFgCE1PjOrcsnktZrOZzq7ehIy397ad/NUX/5iM9DTS0hwA/Mc3vs/h908kZHyBIFEIASIQXMWe3dtYu6aa//zm4nNVW6wmtm3fzt7bdrJmdXUsVvk6RKNRTpw8x8FLzWSUFmFXA/T2DlxzXEFBLnfu283Zcxd5c/8hausb+YPf+zUeffg+Hv/ZL+fr5Qimga5r8epmqc2w282IxxcL51IXPgkeYucY7DIjgRDmPAOSMd7oL+7huFEa/aUqow0Ih4amyP9IYZzONICx8NVEqKQtm9dy/kJdwrwTmzaupaS4EL8/QM3FOn7y01/w9DMvJWRsgSCRCAEiEFyF2WRi145N/Pd3f0Y4gTG+84WiKGzYuIaNK1ey7pblWOzmKc8ZHByivb2Nl15+m+OnakirWML2/BzsCpiM4y8JsiTz8V95GLd7hCeffgGAjs5uXnjpTR790H2cOVdDzcX6eXltgqnRtdT0gHyQQwePoU8RpzRfSfCSQuwYWaJjqJuAPwxhCc1/dSnceEjVDdDoL1UZFSCDw65pHa8ntM1fYigpygcgEEhMArrDYWPliqV853tPJmQ8gH/5+rf5l69/O2HjCQTzhRAgAsFV1NY3YjAoVC0t5+KlhmSbMykrV1TxoUfu5aEH7iI9lElbUweyefIFXm9vP++8+z7vvPs+K6rKKC3Np7KyhOOnatB1nWgkAoqM0TT+kqDpGl//9+9eM96hw8c5dPh4wl+XYGbUN7TQM4HXKtW4+649NDW30dY0izKjc0yC18M6uiahqxINfV3jqlPdjKVwk4HFYiLdYUMHhhexByQ72wnA4KArIeOtXFEFwIlT81N+VyBIZYQAEQiuoqOjB5/PT/XyJSknQPLzcnj4obt55OF7qF6+dOzxUIeGJF27C+7z+Tl0+ATvHDjMpdrLY4+HQyFKS/OxWozI8fCdcFQFFMzxTtGCxcHQsHtRNIA0m82YzaapD5wJ00yC1yM6ugaEJcrKiuj1DhAOitylhSQ3OxMAt9uT0OpRC43NGvMwd/f0A8zZR3P8xDl+7w++hDvRvWkEgkWAECACwVXouk59QwvV1UuSbQoANpuVu+7cw6OP3MvOHZsnzuu4SntEoyqnTp/nnQOHOX7yHJHItTf7wSF3LNlW1ykoyGYECAXD4DBhtU4dwiVIHfLzsikoyOXsudn3tbgRuToJfhSH3cJD99/BCy+9RUuraKC5kOTlxgRIX78ruYbMkdF9Ho/Xz1yblYxeg4en6okiENygCAEiEHyAZ37xKpqWvLqasiyzc8cmPvTIvdx9523YbNYpz2lr7eDtkwd49/BR3J6pd9OGXR6cGQ4qyos41+2OCRDAarXM2X7BwlFUlM+2LeuFAJkGlvhnOxAQ3o+FREIiJycuQGZa4jyFyvAaDMrYv31ePxbFPqfxdmzfwMd+5QH+7C/+SZTHFdyUCAEiEHyAyw0tSZl3+bIlPPrIvTz44F0U5OdOeXxnVw/PPf86x1+9QH/nAD3+biL69MIbzpyrY+/uzeTnZkG3m2A4JkAsFjMVFaX8we/9OgA//skznDlXc8355WXF/PbnPoPZbOKdA4d54aU3Z/BKBYlCU7Upq50JYlgtMe9eQIRfLSiZmekYDQqhSAS3yzutcySklEtBT0+LCY5gMEwkGsWizK0G1m17tuN2e4T4ENy0CAEiEEzAIw/dSVt7F6fPXJzXeXJzs3nogbv40MP3sHLlsimP93p9vPLafp597lWOnziLrutUOCoxM7Pcja7uflRVJS3NhjM9jVAoJkBsFjMtLe1cqKljzepq7rl7D+fOXxpX8z4vJ5vf+PWPYzabOHHirBAfSURVNZRFUAUrqqlJ9SoCWC0xD0gwQRWMBNMjL9cJwEC/K+VExUwYFSBGoxFpjuFXmZkZrF+7gv/+7s8TYZpAsCgRAkQgmIBtW9dTWlI4LwLEarVw177dPPLwvdyyawuKolz3+Gg0yqH3jvHs86/x1tuHJt0xm8lNMRpVCYdVrFaF1auWcrq5B4iFGRgNBl559W1WrVxGXl4umzet5fjJswBkpDv43Oc+hcNu5+LF+rHSvILkoGoqkiyjyDJqkhf41+PQwSP4k7zTq6EzPOQmPEFelGD+yMvNAqB/NuFXKRSCVVwcK8E7mkSvw6zt233LViKRKO8fPZ0g6wSCxYcQIALBBNTWNbFt67qEjSdJEtu3beTRR+7l7rv34rDbpjznQk0dzz3/Ki+89CaDg8PXOXJ2N8Hjp2rYc8tGsrMy0Bq7CIUjWAwyVquZnt5+jp84w/Ztm7j7rj2cPnMeo9HE537zU2RlOmlqauVHP3k6pRe9NwMjI14am1onrIKWSpSVl9Lb259UGxoaWmloaE2qDTcbFouJ9DQ7OtA/4Jr+iSn4ec7LiQmpWAneudm3ZvUyjh0/K/KRBDc1QoAIBBNQV9/Eg/ffTmZmBsNzKHNaVVXJhx6+h4cfvIvCwvwpj+/u7uX5F9/g2edfo6GheWaTScxIi7S398QrsWhkpDsIBkNYHFasVjMjHh+vv36ATRvXkpWVya6dW1m7ZgWFhfl0d/fyvR/8nEhUNFFINp1dvXR29SbbjClZUlGWUrvZgoUhN5587nIt7vK7AHZ7rBhIR+fcv29/94//JQp+CG56hAARCCagrr4JgOrlSzgyQzd5dnYmDz1wJ488fC9rVldPebzX5+f119/h2edf4+ix0wsWK69qGiMjfiyOTKqWlBIY6AOHdSxZ1zXi4eChY9xx+y088vA9AAwNDfPt7z4uEnlTBEWOeaz8/tC4PB3Btdx7524kWeaV1w8k25SbhivhV67kGpIAFEVG1zVc7itlc2eT02KzWfH7A/j9gUSaJxAsOoQAEQgmwO328POnXqK7p29ax5vNJu7ct5sPPXwPt96yDYPh+l8tVVV57/AJnnv+Vd546+CcXPH6Vf+fKcdOXGDPw8VYrGaGgrEdSstVvUAOvXeUvbftRJZlfH4/3/rO44yMTK+SjWD+KSrK50MP38UPf/wMIx7f1CfcxFjtVvw+f7LNuGmQJYnceOfwGZffTTFMRiN6XOC73T5skmNW4xiNBv79X7/ET3/2Am/tP5xIEwWCRYcQIALBJPzi2deu+7wkSWzdsoEPPXIP9969l7S0qW9Kly5d5tnnX+OFl96gv38wUabG7JnFOV3d/YTCYRSLHVmJjTDqAVFkmY98+MGxMq8mo5FoRIRdpRKj3jJ5ikIGglgX6+vnUgkSSaYzHYNBIRSefvndK6RWDkhWZhoQa0AYjkSwmWKPz9QDsmXzWhwOOxcvXU60iQLBokMIEIFgEsxmE7tv2cLZ87X091/ZwVtSWcYjD9/LIw/fTXFRwZTj9PYN8MILr/Ps869RV984nybPGB2dnp4BCtKd5GRmAGCLxyZ/9CMPsWrVcrxeH+FwmKysTO656zZ+LipfpQyqqgJgUEQvkKmwWa0i6XcByR0tvzswy/K7KZQzVF5eDEBkjhswt+3ZTl19E909yS3IIBCkAkKACARxzGYTDocdr9dHKBRG03R+9dMf5ulfvMLBQyd44P59fOiRe1m/btWUY/n9AV5/8wDPPvcq7x85Na95Hbquz2nDsL2zj4LlVVjtFlBVrBYzDz1wJ1u2rCcYCvOd7z1BTk4Wn/7kh9myZT0HDh6hJ8kVjQQxVDX2uVLkhfeASEjIsoQkS2P/Doej6OgYDQaUsc7REpcbm8ZEvCLLGE1X9a3RdTRNHyuPK0syuq4ntGeEIsuYzSb8PhF3v1Dk5+UAcwu/0lNEhJSVxDaa3O5YmONsLrdjvT++J3p/CAQgBIhAwOZN6/j1z36UO/ftRlEUVFXlzbcO8uPHn8HrC/JH/+u3+PuvfRGj8fpfF03TeP/ISZ59/jVef+PAgicZzrY51tCwe1wZ12XLllK1bBnRqMqPfvQk7R1dtHd0ccfeWygqyue+e+/g+z8UN9FkMbqAj0ajYx6Q/PwcrDYLBoMBg8FAMBikpbUTRZbZumUtBoMBo8GAQVFQFIV3Dh0jGAyxfct6iorzMcgKsiKjGGTOnq2l5tJlKsqKuWvfLUiyhCzJSJLE8LCbnz39EgC//T8+Pl5IAD978kX6B4a4dddm1qyJF2DQwR91oGuxxWReXjYf+fB9484L+IN85wdPAvDpTz1CRnos5EXTNDRN58WX36K9o4fNG9ewYf1KNE1DVTU0VaOxpY33j5zGYbdx175bUTU19pymoaoqr795CE3TOXHyPE5nBps3riYaVYlGonR09eAe8eJw2ElPsxONqISjUaKRMKFQRFR6myVpDhtpDiuartPbN3MBIklz6zKeaGw2C7qu0djcPu7xmeij8rJiRjxe3j8ien8IBCAEiOAm55Mf/xB/9cXPo2nqWENARVG468493H3XbdPqr1BX38hzz7/GCy++kTTPwFxv1sNuD1kmifyCfKqqqtB1jZ8/+Rx1l5vGjnn19f38xq99nDWrq6moKKWlpf06Iwo+iISEyWzEbDJiMpuxmI1EwlF6+wcxm4xsWLcKs9mE2WzCZDJgMBp58aW3UTWNe+/aTWlJESazATnu7Xj7nfe5eLGBdw4cYe9tO8bN1dXVS0trJwArqquIRqNEIzHBElU15PjnOhwO4/P50VQtvnDXGfF4gFgVtDNnLxLVdNA0NHSCgSvNBN9592hspajpaLqGput4PLFY//MXL9PW3h173ZLEXfd9GLMpFjg/7Brh5VfeufK+SNK4Cl6H3z+F2WhEkmOiR5YlXK6YTd09fciyhCLLyIqCosgMD42WydYJ+APIBhlFVjAYDchmU/wZneycLPJys8ZEmsGg8Nrr7+Ie8bJsSRm33rp13HvY2trJ8y+9hcVs4lOfeIRwJEwkrBKJRAhHorz2+ruEIxFWrliKw24jFAoTDkUIhkMMDLrwen0YFAWkWOPPm4mCgpj3o3/Atehfu8GgjCWgD8VLss9ms+fM2Yv83h98acxrKRDc7AgBIrhp2bxpHX/1xc8jyxKyPP6rMJp4PRn9/YO88NIbPPvcq1yqbZhPM6fBHOWHrtPY2E7Vro2sXLkSJIn9bx/i1JkL4w6ruVhPa1sn5WXFPHjfPv7jmz+Y27yLGIOiYLFasFhMWMxmOjpjneTXrl5OZmYGFosZi8WM1WLmyLGztLZ1smH9Sm69Zcu4cVpaO3nhpbeQJIlVq6oIh2OL2FAkQjgUQY53OG9p62JgYJhwfPEbDUfoHRhER6f+cjPt7d1E1CjRqIoaVYnGPSOqpvGDHz8z6es4fe7SpM+5XCMcP3Vh0udr65smfW5gYIiBeOiNJMncZzCONa0MBkM0NrdNem5D4+TNAru6++jqnrgyndcX4NU3D074XF5ONv5AgMefeH4s1OvqReTF2gaa27owGhSMRgMmo5FQOAyApumcu1CHyWCMCUOTEZNBGQurLC0ppKykCLPFNHbd2P/OES5crGfZsgruvOMWNE0lFIwQDIbo7O5l/4EjSEjs2rGJYChIIBAiGAoRDATp6x8a+/0tVgrjAmTOuQ4pEIKVlZkOxD7HwWB4VmNkZ2fi9wdEDpJAcBVCgAhuWn79sx9F09RrxMdkBAJB3nzrIL987lUOv39iLPwldZh9Ikh6RjorV69CkmRaW1upq5+4Sssrr77N7/zWZ6isLGPN6mou1NTNes5UJc1hJycnE5vNis1mwWaxMuxyc+5CHWkOOx//2INYzOZx53zjv36CqmmUlhaS6UwnEAwTCgbpG/ARCsW8Bs2tHXg8PkLhEKFghHA4TCD+XDAU5vs/mlwo1NZNXLzAbDJy/717OXrsLF3TLBl9M5KT42TNquUcPHh87LGrc0xC4Qih8MQNR8ORCMdPnJt07NffPDT2b4NBwWI2jSUrd3b18Nrr72I2m2Ni1WLG642VAjYaDSxdWorFYsZ81efpu99/kmhA5b57bqOwIJdAIBjrGxEIcqm2kY7OHhx2G5mZGWPPBQKhhObMzAWH3Uq6wxYLv+qdZf5HChXByooX53CPeCZ4dnrv+a995sNkZmbwl3/1Lwm0TCBY3AgBIrgpGe3boUyjfKmu6/zll/6Rl195C28K9hFIxMKjq7OHH/7wCZZXFAKxGO6JuNzQzOf/9Mtznm+hsVrM2O1WBgZdAKxbU01OThYOuw273YrDbmP/gaM0NLVSFQ/H0TWNYDCMPxgYywUIBIOcOnUBXyBI0B8kEAwSCsYKFgC8/OrkTe5crhFcrpFJn58tJSWFXLhYn/BxbyTsNivBQGjePQvRqIo3eiX3a2TEx8jIxP1ZwpEIP3r8WSCWeD8qUALxMLe6+iaGBl3YbBasNgsZ6Q4s8RLZZaVF7Ltj19hYmqbR0trJS6/sR0Li1ls24/cH8HkDeP0+vN4AbrdnQUTKaPjVwKDrhsihycqKCZCWlq5ZnZ+fl8OWzWv5zveeTKRZAsGiRwgQwU2Jw2GflviAWIz60NAQmZkZKSlA5kx8TdLR1ceyikIkID2eBLwYkCUZh8NKWpoDTdPo7unHZrVwz127caTZcNgdGOIVmb757ceJRlWKivLJSE/D6/PT09OP1+dnaNgFwMW6RuoamgkGwtd0F49GVU6erlnolzgpo/H1UzW+vNmxWq34Uzj8RdM1/IHgOBubmttpap44z6r+cjMdnd3Y7DZsVgsOu41wKBZaZjIZKCstxuGwYorn3QB853tPEggGuXXXZjLSHXg8fjweLx6Pj56+gYRd24rGwq8G5jROCkRfAVBWGquANTh0rYdsOoLu3nv24PX5effQ8SmPFQhuJsRdS3BT4vX6UFV1WiJEVVU+8th9vP/+KX74k18sgHWzZI5hC6FwmGhUxWhQcDisibEpQVgsZjLSHTgz0unrH2LY5WZZVTm37tyC3W5Fisfed3R088vn3yAciRAMh+lvHsLj9eHz+PH6/WhqbMHw6uvvTjpXKDS7OO9koGoamqZiTHEBEggEkioAbDbLglelm0+iqsqIx8eI51rvSigc4fGfPQeA0WDA7rDjsFsJBGPvfygYQslyUlpaRJrDhtFk5M233+NSbSMrli9h86a1eDxe3CMeRtweevsHJ827+SB2u4X0NDs6cwi/GkdyVYgiy5ji1Q+HJhAgU2GzWbn9th28/Oo7ROK5RwKBIEZq37UEgnkiFArz5lsH2XfHrdfdPY5Go7z51iHOnjvHpk1rUlKAJPIWff7CZTZtWIFELJbbu4B9EywWM5nOdDKd6dRfbiGqqty+ZztVyyrG5Vy8e/AYwy43IyNeausbx3ZyRzw+PN5YFaZoVOWV64RD3UhEIlGUFBcgr71xIFYxK0k0NbfflN3iI9EoLpcbl+vK4vn4qQtwVXEBq8U8VpnJPeKhvaOLtDQHJcX5pK+soqW1k67uPmxWCx/7yAO43B7cIx7c7tifpub2MU9hYX48/GrAPZbsPztSIwkk0xnzBEuShO8qAT2d6ogQyyerq28elyckEAhipPZdSyCYR77/wye5687brnuMLCt8/4c/R9dV7tp3K8VF+XR29S6QhQvD1WEE3T2DY/+urCjmfE1iK3xJSDjSbFjNFvoGBpElmUcevpOszAxstitel67uflzuEbp7B/B4fLjiC56REQ+hcGxh09s3SG/f4GRT3TS8+96JsYpTqcpd+/bQ3NJGR/P5pMxf39CSlHkXA4HgldLK3T394ypXSUhj4YsAtZebcKank5eTxbKqciQkvvWdnwFw3z23IUsao1siBQW5DAwMLeoyvEVFeQBEIhOXzp1q86e3b4C/+8dvJtgqgeDGQAgQwU3LyVPn+Osv/zN//aUvoGnqOE9INBpFlhX++sv/zKnT5zEajYRCYTZvWpOyAmS2jQivHkFHxx8MY7OYKC3Nn5MAUeIlZDOdGWzZuJrs7EycznSMJiPuEQ8/+skv0XQN17Cbrs5ehlwuhodHcLlHxhYtk1V/Elyhtjb13yO73TZOYC40FeXFDAwM35g5XPOIjj6WSO4PBK9pomcxm8Y2MEbcHjKdseIVmzevZ9s2hV8+9zodnT2sWLaE3LwsBgaHGRwYZsjlnoYw0ZMdgcWSihIA+j8g8KdzpV25ogqTycjZ65S6FghuZoQAEdzUPPHz56irb+LXP/sx7rrz6k7oh/j+D3/OqdOxHdtIJMLLr75Dz1zr2s8Duq4nNGKhq6ePqooSZKRph2E509MoKMojN9tJVlYmOdmZXG5o5d1Dx5AkyMx20j84RF19E8OuEYZcrrFz9797NHHG34RUVpQQCoWnHad/s2FQFB56YN9YnoMgcQSvypfq7e0j01nBwKCLV998H6czA3e86pvVbqWiopj1a1cgyTK6pnH02BmOn7qAw24lJzc7JhC98ZyW1IjAwmw2AlB/efLeNJPxyY8/RDgcEQJEIJgEIUAENz2nTp/n1OnzmM0mHA47Xq9vwkTknz35YhKsmz6z9oDo+riSM6NdpwHKSwupqb3ScE6WZLKyMsjLzSYvL5tLtQ309g2yrKqcHTs24XZ7GBwcoqamnvZ4c76hYTdPPv3y7GwTTMmWzWsZGnIJATIJNpsFAP8C5jPdjBQUZAPQ3TtANKqOCws8faaG02dqMBoMZGc7yc7OZHDIBUBJcSF33XkrAH5/gL7+IdqHvdScu7jgr+FqrFYzZrMRXb9ORa9JSnUtq6pg+bJK/uGfvz2PFgoEixshQASCOKFQeMoKSJUVpWRnOzlxMjmx7PPJqIDxeq6EqVRWFFF3uYWoqnH73h2sWLYEg9GArmkMuzy0tHUCcO5CHWfP180x8VQwG6IRFaMiLuWTYbfHwoJ8Ivxq3nDYLTgz0tDR6emdPC8rEo3S0ztAT++VBX1tfROdXb3k5GSSn5tNXl4OzgwHECtM8YXf+zRdXb10dPbQ2tpBe0fPWJf6+aSkOB8Al9szwXXt+ps999+3l67uPk6fSZ2S3QJBqiHuWgLBDLhj7w42b17LyVMXYqFPKUHi7MjPy6aoIA+dK7fY6mWV1NQ20t3Tj2vITd/AEP39Q+NuyqOJ4YKFJ6pGUQypXeFJ07Wk9XUYFSAi/2P+KCmKLdb7+l2EQjO/Fni8PjxeH80tHQBYcmLVtGRJ4uSp85QUF3DLzk3cte8WQqEwf/PVf0fTNaqWlDEw5JqXBp+rVy4FYgJ/MibqA5KTk8mObRv4/o+eSaF7hECQeggBIhDMgAMHj3H3XbtZs3o55y/UJduc8cwwAsugKJSWFlG0cgW1PbFwifvv3YvFYqGjowNdi914y8sLqaltXBTJzjcj0YiKKR6rnqq8f+QkXm+SBIAEQ0OucfkKgsQhIVEc9xZ0dCaqQEfsYubzB8ZK2EpI5OZmkpWViaZrSEh85lOPYjabcLtj3timpjbOnruUkN91RroDXde4cGmCQhzXKcPr8wX4yU+f44DIbRMIrosQIALBDGhobKWzs4e9e7anngCZBiajkZ07NrF0SSkV5SWYTEYGotDw4gEiEvzyudfxeHysW7uM4sJcAGRp4XuCCKbPwOAQVqsl2WZcl5xsJ7o2cSnT+aahoZWGhpknEQumR3ZOBlaLiXA0Sl9fAstBf8B7oKPT1z9EX//Q2M//+M/fpqy8iPLSYiorSnn4wX1cqLkMhNm6ZR1qVKWhsZURj3dGU9usFvR4b5PrhZRNRCAQ5KVX9s/oHIHgZkQIEIFghhw4eIzHHr0Xq9VCIIndnUeZKAxgFIfDxorlS0lPd/D2O++jqiq37tpMV1cvb7z1Ho1NrbgxYSm4Eu8c+9tLcWEumq4jSxLr1y7nvSNnF+T1CGbG8UWQj1S9fBlGYytnTibbEkGiKY2HX3V19aMmXGReP4TJFwhwqbZxrLqZyWgcCw1ds3IZ1dVLAOjvH6L+cjOH3j/B8PDU4VqlJbHXpOsSkUj0OtaNt++xR+9FliWeeuaVKecQCG52hAARCGbIu4eOY7NZURQ52aaMYzQowG61snPHRlZUL6GkpBBN02hu7mD/O0dQNY2v/cM3x904bYVF18Tnj1bCUlUV2WAgzWHDaDCM9QQQpA4SEopBXtQN3+aTRx++G5fbzf4DIiQm0RgNylj1q8SFX8Fs6/BenZf2/R8/g91mY0llKVVLy1m9ahnvHzsDwMZ1q1AMCrX1jROGBpaXFQFM2uh0Iusy0tN4+MF9vPzqO7OyXSC42RACRCCYIcPDbp74+QvJNmMMSZIoKy2kxJzDkbOn0dDZuWMjDY2tvHfkNPV1TfgCV8KnJveYXLmteka8aLqO0WDA6w3gcFgpLyugoaljnl+NYKZs37qOlSur+P6Pnkm2KSmJI81KX//MwmgE06OwMBdFlhnx+nG5ZxbmtBD4/H7O19RxvmZ8uGxVVTkbN6xClmU6Oro5X3OZU2cu4PHE+pDY7bGQxpqL02/E+vBDd6JpGi++LMKvBILpIASIQDALrFYL99y1m/feP0l/fwLjnqeJJEksX1bJrh0buWX1dnQ/NHW3cOTsaQKBIF/9u29cNzRrKqKaxsiIF2dGGoNDLhwOKyurK2lu6ZqHMAvBXAhFIphMqZ2EnkwcNjt+UQFrXiiNJ593JtT7cRXzVETqqV+8wsuvvMPy5ZWsWlnFvtt30trWgcfjo7KyhDSHDV3X6Z3i2j5qXqYznbvvvIXnXnhTlHsWCKaJECACwSxQVZVHHr4Lo9GwoPG+o3kneXnZfPmv/pDBIRcn36vh4snLXGq5sss3E/ERKxV57fEud0yAaBpIkoyua1RWltDQ2JaIlyJIEJFwFKNBXMonwmw2YTAa8PjFojDROOxWMp2x3h+d3f2JHXwBOqH7AgFOn73I6bMXMRmNY7ket+/ZTjQSxGKxsHnjmgmran2w6evmTWsIhSK89Mo782+4QHCDIO5aAsEsCIcjHDlymj23buPpX7w6r/XeTSYjO7Zv5I69O8nISOOPvvBVensH+LO/+CdaWjsosBSQpjgSPm8sIb0Qp9NBS1sX5aUFrFhWLgRIihEOh5FkOaVzdFpa2+mbJJ5+PnHYrAD4k1UC+AampDgPiPX+CAYXd4njq3NHRkbc2KxmdCQeeehO7r93L9/9wVO0tXdde2L8uv/m24c5evxcShQlEQgWC0KACASz5MDBo9xx+05WrljKxYlqxc8Rq9XCJz72ELfu2ozdbuPc+Vp+/tRLSJKErus0t7QndsIP1LYfbe6Vnu7g+MmLVJQVous6RQW5dPUkeMdTMGtGF08mszFlBUhzcxuBYGjB53W5Pfzkp8/h8aZefsJiRkIaaz7Y0dkzP5MkqYmf3WZF1zVeeuUAfv/rbNqwiq7uPgDuvvNWvF4/rTU9Y07jyooSWlo78cyw1K9AcLMjBIhAMEtq65ro6R3g9r07EypACgvz6O7uIxgMUVZaxGtvHGT/O0emkUg7h7iFCe71Xl+QcDSKyWDAZjPTP+AmJzudVSsqhQBJITo6e/j+D5/C70vd3dfdu3fQ3NJKU/2pBZ1X1TSGXe4FnfNmICcnA4vFRDgSpa9veN7mWehO4qPNBwH6+4eJqir7r2oo6HRmcNvu7UR36Fy+3M7huuP8+Rd/m29/52e8IxoPCgQzQggQgWAO/Ognv0hY0uGmjWt4+MF9VC+v5I//5G/p7unnr7/yb1OeN5dk8/gAk+JyecjLycSZkcaZ87XccdtWLBYTzgxHSla9uRmJRlW80dRuEmlQFBRZWfB5q5dVkpOTxXvviwYkiaSkZD57f3DdTuPzydIlpQBEIipR9dqy1k8+/RKvv3GQu7fvZc+tO9j7yBZGRkZ47/2FFdYCwY1AajUyEAgWGSdPXaC2rmlOYyyrquArf/1H/O8v/BayLPHP//odenoHEmThDJjgnu9yxURGpjONYDBMV1fM87F65dKFtExwHawWC/fdexs5OVnJNiXlKCkuoDheqUmQGCwWE4X5OQC0z1f4VZIoyI99h06euTjpMS73CAcOHuWHj/8CWZb4xXOvo2kaH/nwvTgctoUyVSBY9AgBIhDMkfKyIv7sT38Hs9k0q/Nv27MNo9HIV772H3zpb77OyVMXZhd6MKddw4nnG80DcWakAdDY3AnEBInNZpnDfIJEUrWknPQ0e7LNSDkcaXY8Xl+yzbihKCspQJYkhlwe3CPz997qV/1/IbBbLeRkO9F1aGufWljt2r6R4WE3b+9/n7LSIh64/w7+3798iQfvvwODqEonEEyJECACwRzx+QOsW1PNbXu2T+t4RZF57NF72Xf7LgB+/Piz/J+//Ccu1NTPan4d5li2cvKb/GiYld1uxWQw4PH6iEZjIReb16+cy6SCBBGJxpPQTbMTwDcyaQ47Xo8QIIlClmTKSwsAaGmZoCpUgkhGAFb1ikoAVFWbVlWv1tZOnnz6ZaLRKM0t7fyvP/4yhw6f5JMff4j/+49/zorqJfNtskCwqBECRCCYIwMDwxw9doYH7t2LNIUXoqgwjy//1R/x2KP3jHkQQqFwQpIt5+OmHY5E8Plj+QVOZ8wLciIenuB0OjAbRQO8ZBONqmiahsmYuruu4VCYUGjhS7UKAZJYCvKzMZtNhEJhenpvrO7yK5bHBEhTc8eUx0rAsZPnOXri7NhjIyNevveDp/jC//47hoddOJ0Z82WqQHBDIASIQJAAXnx5PwUFuWzZvHbSY+7cdwv/8LU/xWa18MW//ldeeOntBbRw9gwOxcKwcnKcAAwMuNCJVahZv746eYYJxgiHIhhTWAy+/ta7XG5sXtA5FVnmyPGztHfNU5fum5DKiiIAWtt70PR5SD6/mgWsgGU2GjEosS2cmkuN1z127epq7rz9FmRZmtB53NXdx9989d85cvQ0AB/7lQcoLi5IuM0CwWJHCBCBIAE0NrVxqbaRO/bunPB5RZHZfcsW3jlwlP/9F/9IY1PimvnN2XsyxfkDAy4AcrKdY4+dPlsXfywDszl1F743C0ePn6GzO3UX2rt2bqGspHhB51Q1jdNnahgYGFrQeW9UMtLtZDrT0HSdtvbuhZl0gTTIknj1K5DwXKdppclo5IH79mKzW9G0yY0bvSZbrRa2bl7Ll//qD6leLkKyBIKrEQJEIEgQ3/ivn/D1f//+uMcURSEvNxtV1fjK1/6T7/7gKcLhyCQjzA1prkFYk4SPDQ65AEhPs4+Jja7ufoZdHmRJoqqydMLzBAvHuQt19KRwb5asTCfp6Y4FndOZnsaSytK5fy8EAFSUxQRkd88AwdD8XMPGWOBfWfWyMgDaO66ffH7b7m04HHbePXh8WuMGAkG++Ddfp6Wlg7/8P793XQ+5QHCzIQSIQJAg+voHCYXC46ph/e5vfZK//PPfR1EUoinapRq4rhckFI7gjsfR52Q5xx6va2gFYmEZFot5Xs0TXJ+CglyKCnKTbUZKUV5RzD137Zl7nxwBJqORoqLY56uldf6Sz5OBQZHH8vHOnp+8EEhWZgZ7dm/j3UPHcLljYanT+WwFAkH+7h//ixOnLvD5P/xNquO5JgLBzY4QIAJBAlm9ahnf/sbfkpuTxb337GH3rVv52c9fRJ2gqVXimNsCazoRXAODsW7HOTmZVx4bcKHGwxC2bl49JxsEc2PLxjVsFrur40hz2PF6RbPMRFBWko8iS7hHPAy7PAs38QLkgZQUF2AwKHi9AYaGRyY9bllVBV6fn3cOHGWmLppoNMr/+48f8t3vP0lDY+scLRYIbgyEABEIEkhDYyvRaJRPfOwhPvPJR3nx5bc5fGRxdMm9XqhKfzwPJPeqPBCA4ycuAJCRZhN9QZJIKBTGIsrwjsPhsOO9Tjy/YHpISJSVFwLQ3LpAjQcXsBP6pg2xcuKeKaqlHT1+ln/9t+8RjlwJP5uJd03Xdd58+zCqqlFRXoKiiOWX4OZGfAMEggQSCoV5/c1D7Ni+gY7OHh5/4vlkm5QQXEMjqJqOxWIa1+13YMhNJN4XZPuWNcky76YnGAphMqduGJyOvpBFjQBISxMCJBHk52dhs5gJRSJ0d6duntFskCWJtDQrAOcuXJ7wGEWW2bRxNRLSOPExW9Icdr7y13/Ezu2b5jyWQLCYEQJEIEgwr71xEF3XudzQjKbNc6lKZrYLN9sRoprG8LAbGF8NC+Bo3Atit1lw2K1ztEUwG0KhSEpXIzt+8izNLe0LOqfX46ev/8bqVZEMKspi3o/29h7UBbiejaEn4tp2fYqK8tB1HUmS6OsfnvCYXTs38ZFH7yUvN2vssbkUNvB4fdRcuszDD+6b9RgCwY2AECACQYJxuUZ4/Y1DKIqyoPPOd9DCaDne3Hg/kFFcrhFGvLFmhcvi1WQEC8vIiAe3ewFj82eI1WTGsMDfh1deP8DZ87ULOueNhjPdTk62Ex2d1rYFCr8CFqoM1s5t6wDoG3BNKHYcDhv77riFo8fP0juBmJ2tPHrxpbcpLy9m6RJxvRTcvAgBIhAkmM986kO0tnfxrf9+YkHmW6jIlv54Inp2ZgbyB2K0z5yNLfSKC3JJT7MvkEWCUWrrm3jm2deSbcakrF27krKyogWbT5HlBRc8NyJLl8YWyF1d/QSCoSRbk1jMJhNWayxv6uixcxMec9/dt6FGo7z+5qFxj89VHl1uaAGguCh/jiMJBIsXIUAEggSza8cmcnOykCSJXTs2kZmZkWyTro+uT6vajHvERygcwWBQcDrTxz034vExFK+Os32rqMYkSC6lZUX8zuc+gV2EBM4ah8NGQX42AA1NHUmwYH63Vka7ug8Nj0xY/aqoMI/Nm9bw+puHCASCCZ07FApzqfb6HdcFghsdIUAEggSjaRoGg4LFYubXf+0jfOTRexdk3vlqRHg1A/GmhB+shgVwLl5D32wykPkBgSKYX/Lzsvn93/n0uD4tNzMZaQ5UTcfvS+zC8WaiqrIECejtHbxud/B5ZR4rF6xauRSAhoa2CZ/v7u7n8See59jxib0jwJzs++uv/BvvHppeQ0OB4EZECBCBIMG0d3RTWlJIIBDkueff4Pa9OyiczyZx+sK1WhvNA8n5QB4IgNcXwBtf8O3YJrwgC0k4HEWWZUxmUYoXID3dgdfjFU0IZ4nNaqa4OHbNuty0sMUDIAGbKVOQlZmOwx4rG97ccm1jxczMdHR0ztfUzctnSFFkjEZDwscVCBYTQoAIBAmmpbWTZcsqMJmMvPbGIYZdI3z0I/cn26xJ0Wewi9c/EMsDyXSmYbFcu9g9evw8kiShyNJY9RzB/BMKxeLzzUKAAJCe5sDtEU0IZ8uSyhIkJAYGXLjcN977uCOefB4IhAl9oLRuSVE+X/jDz7Fi+ZIpx5mtONm+dQM//O4/jWvsKhDcbAgBIhAkmLf2H+ZHP/kl0ahKJBLh6WdeYdfOzZSXF8/zzPMfghUMhsc6IRfkZV/zfCAYorN7AIhVxDKIZlsLQigUBsBsSc1eIN09fQwNuxZsvvQMB56RG2/hvBBYzEZKSwoAaEiC92Mc8+DAUmR5rJLf+x9IPjcoCr/y2H309PSPJYonGkmS+NDDd1Fz8TIDAxOX/hUIbgaED1AgSDD9/UP09w8BYDQaOHDwGJqu0dExP2UsFzrMpLtngExnGoUFObS0dV/z/LnzdTidm7FZzCypLKW+oXVB7bsZUTWNSDiCNUW7oZ8/d4lQdO5N3KbL08+8imIQVbBmQ0VFMYosMezyMDDkTo4R8xiBVVlZHO/9IdPZ2TfuuTtu30lOThb//o0fXbfniSRJs77q7ti+gfLyYr70N1+f5QgCwY2B2J4UCOaJz376w3z+D38TXdc58O4xVFVFlufxKzcND8akzOBu2tMb83BkZaVjNl3b/C6qalyqbQZgeVUpthTdlb/R+NnTL3OxtiHZZkzIHXfsonrZ1CEtiSISjRK8wcrGLgRGg4GK0ljoZNK9H/PEyuWVALR39I7bvCkuzOe23dt5a//hsWvcVMx086e4KJ/f+s2Pc/TYGerqm2Z0rkBwoyEEiEAwT5w+e5H161byyY8/DMDDD+7jS3/xP5Ns1dzxB0K4RzxISOTnXxuGBTEvSVSN3Zx37Fi/kObdtLhcbkLhhfMyzASDwYhhgTwSOdmZPPLQnaQ5RD+amVJeXojBoDDi9dPbN5RUW2aSmzZdbFYLTqcDgOMnL4x7rn9giDffOsSBd49NOc5st3q8Xj9Hjp3hG996fJYjCAQ3DkKACATzxLnztfz48Wd5+MF9fOJjD9HS2snKFVVs2rgmofMkKgRrJjfV7p5YV+Ci/JxJjzl85AwANotJJFsuAOvXrWBzgj9bi5HMzHTKSouIRFJTjKUqBkWhsjzWG6OxMVW8H4kVIevXLkeSJHr7xpcWtphNhCMR9r979LqhV7MlMzODgvxc3CMevvXfTwjvnECAECACwbzy8qvv8MMf/4KHH9xHVpaTCzX1fPLjD6HMQ3L23MKmZ3aj746HKGTnZGAyXhuGBbHmhO4RHwDbt6ye99KaNzt5udlUzHuhg9TH6UwnGAgRjCfmC6ZHaWkBZpMRnz9IV/f0QpDmj/m5VixfFuvs3t5xJfejpLiAP/uT36FkNl3Jp3HZLC8r4m+//Hk+95sfm/n4AsENjBAgAsE88/Kr7/Dlv/133j14jB8//izFRfncd8/eZJt1hVmEOvh8QUY8vlgYVl7WpMcdO34BSYpJj/KygjkYKZiKYDCI1WpJthlJx5mejmvk2s7WgskxGBSqlpQA0NjUcUP2T6koLYonn0vUX44VxjAYFH7lsfsZGBymq7t/BqNNTyDt2rGJv/7SH+J2e/iPb/xoFlYLBDcuQoAIBAvApdpGNE1DkiRUVWPzxtVIc0kav4qEhUrP0Jzu3lgYVkHB5GFYoUhkrJHZsmVlGA2i8N58EfCHsFpSU4BEIhEi0eiCzOXMSMfl9izIXDcKlRXFce9HgI7O3mSbM0Yi80Bu2bUBgK7uAaKqCsCdt99CdpaTp595BU2feejV9YTab/76R/lff/BrnD5dw19/5d8YdglRLBBcjRAgAsEC0tXdy1v7D7Nq1TK+9Bd/kNAO6XMKcZrFfb6nJxamkZvjvG6CcX19Kx5vALPRyKYNK2ZroWAKAoEgFqsZWUq9y/rb+9+jfoGq/hw/eY6aC3ULMteNgNlkZGlFLHSvrr4NbR6Sv2dKgvZmxsjJykBRYoO+9/5pAMpKi9izeytvvf0ePX2JCzkb9UKePHWe//v17/L//vOHY316BALBFVLvTiUQ3MCEQmG+/8On+Zuv/j9Kigv4v//45+zYtiG5Rs1yweHx+vF6A8jS9cOwNF2nprYRiIkVUZ1ofujtG+DIkVPISurl2qxft5qiwrwFmaulrZOunpmE09zcVC0pxWBQcI94b9j3bc3qKgBGPH78gVD8316OHT/HgYPHZzHitd+x1auW8bdf/jy/+1ufBODM2UscO3521jYLBDc6QoAIBEng4qUGmprbCAZDNDa3AbB8WeUsY/gTtGM5i23H7rgX5HrVsAAGBlyEQrGqRLfu2iAS0ueBgSEXx09dIBpVk23KNRQU5JKZ6Zz3edLT7GxYt3LC/jSCa7FazJSVxfp+1Na3JNeYD6LrCbm0OexWSktiCeYHDp4AwGwy4XKN8OwLb8wq9GrMRHTKy4r4sz/9Hb70F38AwGtvHJy70QLBTYAQIAJBkvjO95/EaDRw9523Issyf/j//Tr//q9/xUc/cj8ZGWkLastsk05Hq2Hl5GZhmiK/49D7Z5AkCUWWWL1q4ZrS3SwYFIWKihIcdmuyTUkahQV57L51a7LNWDQsrypHkSUGBl30D7iSbc4VErg/ceuuTUiSRE/fIMMuD7tv2cr/9/u/Omn1vmmZF9+ssVotfOWv/5j83Gz+5d++x1986f9Sc/FyokwXCG5ohAARCJJEf/8Qz/zyNR6473aKi/P5y7/6Fw4eOs4D993Of/7b3/A7n/skxmncJOdasWYuZ494fIx4fCiyRFHx9UNsAsEQl+P9BSrLi7DZUjNherGiKDIP3X8HhQsU6pSKODPS8fsDKduQMZVIc9goKYnloNXGq0LdaJiMRvLzYj2ILl5soqKsiHvv3sOFmsuEZ9EnRpZk1q9dwSMP7sNoMBAIBPnbv/8GX/izv+PosTMJtl4guLERAkQgSCIvvPQ23T393L3vVoaGXPzwJ7/gd//gS/z8qRex2SxjzdQ2bliFIUUrSLV1xKrmlJVMXUe/tr6FUDiKruusi8dlCxJDKBxBVVVs1pvXA+J0puF2i2pD06F6WTkSEj29g7hcN2bVsC1bVqPrOroOw8MePvGxh2nv6OL1N2cWJpWe5uD2Pdv5k89/jk987CEkWcLusKCjU1ffhKomvnmhQHCjk5orGoHgJkFVVb76d/+J66oSjX5/gBdeenvs59KSQv7sT34Hj8fHocMneOfAUVpaO64ZK1FlfWdKV2cfK6srSU+z48xw4HJ7r3v84aNn2HPLJnKynVQtLaUhZbouL34CgSBWqznZZiSNDGc6w4OuZJuR8jidaRTkZ6Ojp7j3Y/b+WUWWWbakFF3XOHmmlo985D4MBoUnfv7itLqdGwwKalRDR+djv/IApSWFnL9Qx6HDJzB4rKhS8quFCQSLGSFABIIkMzzsBmBZVQU9vQN4POMX8O0d3fzxn36NvXu2sfuWrdx3z22cPlPD3//Tt4AE5GnOsexmOBqlp3eA4sJcSkvypxQgPl+Q+sutrKyuZOXyCjo6ewkGRZnKROD3B7HaUs8Dcvb8RYaHXPM+T093P339g/M+z2Jn5fIKINYR3Ov1J9eYCZn7Zkp1dQW6Huu9VFvbTDgU4T1Jwj0yubdHQqK0tJAN61eyYd1KfvzT52huaeeXz72O1+sjGC+nW2qPdVS/Afs1CgQLhhAgAkEKYDab+NMv/BanTtfwzW89fs3znZ09PP7E8zzx8xfZsH7lWJhNdpaTz//Ob3HxSDOnL5xjcA6Lr7lUpmrv6KG4MJfiwjwu1TYTnSIkoam5i+rllcjo7N65kTf2H5313IIr9A0MEg6lXv5DOBKZ8jORCN59bzYlVW8ucnMyyc7KQNV0Lje0JduceWNpZayze2tbD7qu09B0/de6+5at3LprMxkZabhHvBw/cZ5hV2xzaGBweN7tFQhuNoQAEQhSgFAozBM/e4Hf/twnOPz+Kc6euzThcZqmcep0zdjPFosZj9fP7Xu3s33HGtpdHZw6XcPhI6cWynQABgbd+AJB7FYLBQU5dHT2Xfd4HZ2D753mtls3YjYbqSgrpKWte4GsvXHZ/86RZJswIVs2raOpqY3aC/Nnn8VixmIy4R7xzrkww42KhMTKFZUAtLZ1EQiGkmzRddD1WXtnS4ryyHSmEYlE2b59MyazhdffPDT2/GjFuLWrl3Pw8EkGBoZQNZULFy9zoaaOlpbOST9DYxs1opK4QDAnhAARCFKEt995n23b1vN7v/0p/uT//D0jI9cPZQLo7OrlG9/8McVpxZSU5FK+poCCeHd1i9nEPXfvoa6+maamtsmrvoze6OeYQ9Le0cuKZeWUluRPKUAAPF4fPb2DFORns3b1Mrq7BwjNojKNYDwSUsotwCWkhHe3/iDLlpazZ/c2/uvbP0XVUuv1pwrl5YWkO2yEIhEaGm7c3Kvbb4uVYrZYrBgUhfePxrqfr1+7gnXrVlK1pAyz2cTQkJvzF+oYGBji8Psz37RJte+ZQLCYEAJEIEghvvmtx/mnv/szPv7RB/n2d3427fMikQi19Y0cOn8llCkzM4PlVZXs3L6RaFSlpbWDi7UNk99o57hC7Ojso3pZGdmZGTjsFry+4JTnnD5bxz137UJGY9XKSk6fq5+TDTc7K6qXsu/2HXzzW0/MqcHaYiTTmcGI2zOtBOObEbPZyIpl5QDU1bcSjkaTbNH8sKyqDEkCWZaprCynrr557LmKihKsFjPvHDhC3eVmurqn3igRCATzgxAgAkEK4XZ7+Id//hbdPf1zHqu7p59/+tf/Jicrk+XLK6leVsmypRUcfv8UiizzK4/dR2tbF+2DbnwJiCcIBkP09bvIz82kpKSA2rqWKc9RNY3DR89yy451FBfl0d03SE+PSCKeLcFQCFlWsNnMeH2BZJuzoGRmpjMUL+gguJYVyyoxGBTcIx7a23uTbc68ICFx686NqGqUrKwsTCYTpaWFZDkz8Hh8PPfCmwmZYxThAREIZo8QIAJBitEYT5bMznJiMhmnFCNT3QQHhoYZODI8Li/EbreRkZHOg/dXEzVZ6I9KdPX288bzr81pB7m9s4f83ExKi/Kor29Fm0YMt8vlobmliyUVxWzduJrX33pfNJKbJf54RSOb1XbTCZCsTCd1l5unPvAmxOlMo7Qk1qDy/MWmRbNwvt7lw2I2UVZWzJKKUioqivneD55m5YpKVDWKoii0tffy05+9SE+f2NAQCFIRIUAEghTlD37/s1itZv7iS/9CdDrhEjMIoRrxePnWd57AaDRQsaKa0rVrsKXZx8THpz/+CL5AgN7eAXp7B+jp68c3jQVtX+8woXAEs9lEXm7WtG/+9fWtVFYUg66x59bNvPF2aiZTpzq+QOx3ZHNYYSDJxlzF4NDQtHKaZotBUZAVWXhAJkBCYu2qJQC0d/alftPBCa5jsiST4XQwPDyChMT//L1fpbAgB1mWGRnx0tzSjs1uZc2qpQDUXGzk2Mmaa8YRCASpgxAgAkGK8v0fPsXffvkLfOJjD/Hjx385L3NEIlFa2zrpVyUkJXY5kJC4WNtAQUEO1csr2bxpDQA//umzuFwjlBQXoGkaAwPD1yS2a7pGR1cfSyuKqSgvnLYAiWoa7x46zd7dmzCbDKxdXcX5mobEvtibAL8viK5pOGy2ZJsyjiNHTs1rTkpUVfnuD56aUynpG5XSknwy0tOIRlVq6xeHh8igKCytLKNgeSmlxfmUFBegqipf/tp/oKNzoaaO998/SUt7FwMDQwCsW7MMRZFRFIUzIpdMIEh5hAARCFKU1rYufvqz5/nsZz7M2XOXOHe+dsLj5hpOoX+g3KWOzqkzV3YPHQ47BbnZuOM7p9u3rqeoKB8Al9vNQL+LU2cu0Ns3iCzJtLZ0saSiiJxsJxnpdtwjvmnZ4fH6uNzcSVVFEeWlBbR39OJyp/hubYqho/OTn72Azzu993yhuGvfHhqbW2ltPDev8yyW0KKFwmQwUF0dSzyvbWgllGI9YmRJJtOZRm5uNjk5mQQCQU6euYjRZOT++/ai9XXT0dHNW/sP097RPVbhbf+B8R5Ss8nIpg0r0DSNs+fqJ6/4JxAIUgYhQASCFOaV1w6wYf1K/sdvfJQ//PxX0a6TnzFfe79er4+Gqxa0zz7/BplZGeTkZJGXnUV2TiaKrACwedNq1q1dQV9vH7qusn7dCi7WNuNyuYlG1Snnqq1toqQwF4vZyMb1yzl4+My0zhNcweVKvTAkk9mE2Wyat/F3bF1PYWEev3z+jXmbYzFSvbwcs9HIiNdPa0ty++xYLRayszPw+gK4XCNULS3nrn23YDDEliHuEQ9N8fy3QCDI9374ND01F6bVC+Sjj92DpmnIssLps3Xz+jqEj00gSAxCgAgEKYyu63zjW4/jsNsmFR+J2vOdbgqJGg+/GhgYppbGcc+1d/agKDI52ZkApDus/Mqj96AoCm6Ph56uft7YfxiArMwMRjzeawTGuwdPsvvWTdhtVtaurpr3BcWNxro11VgsFo6dOJtsUxaM7OzM64rzm5GMdDtlZQUAXLzYuGDeIZvVQigURtU01q5eTlVVBTlZTixWCwAnTp7j/aNnGBgc5v0jp+kfGGJgcJhQKBwbQJIB8Pn805rPmZGGokhoms7B904t2OvUZ9kkUSAQxBACRCBIcVyuEVyuEYxGA0sqy6irb0rsBAm8kfb09NMTr9q1Y+sacrKdnDh1Dr8/TFZWxthNW5FlPvGxB5GQcHs8uFxe3K4Rjp88TyAY5MLFRrZsWklxYS4ut5fmls6E2Xijk53lpKAg96YSIFlZGbS2diXbjJRi9aoqJCQ6e/oZGEqsV8ygKETV2MbBxvWryM5ykpGRRlZmBharhad+8Qo9Pf3IikzAH+BsZy9DQy6Ghl2442GVLtcIZ1wjE08wekmaxrVp184NaJqGpkFjc0ciXp5AIFgAhAARCBYJDz2wjw89fBdf/Ot/obXt2sVWqiXgNjZ3kpPtJDsznTNnjxO5qpKXpuk88+zrZDszyMrOwJmRQVlZEUfji+ZtW9aTnm7F7XKzZtVSSksKqKtrobd/EINBQdd00XBuEjweH1VVFck2Y8EwGBQy0tMYGBxOtikpQ1lpAVnONKKqyqXallmNocgyqqZhtVhYuWIpGc40nBnpODPSMCgK//39JwGoWlKGpMi4XSO0d/QwNOTCFRcWZ8/VcpaJc9fmSkFeDo88vI+AP1Zd7e0Dx+Zlng+SatdZgWCxIgSIQLBIePHlt9m2ZR1f+OPP8edf/L94PPGyponyYCT4vto/MMyIx096mo3ysgIamq7sTuro47wlH+TkqfPk5GRRUV6ApqrxHVYHvf2DrKxeym27t+HzBRjxeBkZ8dLV1UtNbQMSEmnpNryewE3XCXwUj9eHxWLGZDSmTDJuVI2iqvOTy5Od5USSZQaFAAHAajGzqroSgLrLbQSDoQmPMxmNaLpGNKpSVJDH0qVlpKfZSXM4SEt30NLawRtvvYfRpLBty7qYJ3bEQ09PH8Nuz1hC+FO/fDWh9k8nFNThsPHZX32Mgf5YJ3O/P0hX99ybt84MEYIlEMwFIUAEgkVCOBzhn/71O3ztK5/nj//Xb/DVv/vPhC3q5iucuamlgw1rl1NZXkRzS9e0vRZdPf109fTT0NDCvtu3EQmHcDodQCzPZP+7R0lPs5Oe5sCZkUY43rjQ4bDx2U8/hqZp+HwBfF4/Xp+f1988iKppFBflo2saHp8fvy9wQ3pRRoVpmsPGYIr0xThw4Aih8MQL4bkyOOjiyadeYnDINS/jLzbWrVmGwaAw4vWPy6/aumUdBfk5OOw2HHY7FquZV18/wOWGVrKynFSUFTPi8dLbP0hDYyu9/bFGMiMjPv7rO08k6+Vcg9Fo4Fc/9SjhUJBIJIyu67y5f2G8HzGEB0QgSARCgAgEi4jBwWH+5evf5Ut/8Qds3riaYycSUdZ0/nbyuroGWLGsAovFRFFRLu0dvTM63x8Mca7mMmtXVZGbk0lujpP+gSshHh8kEAzy3Atvkp7mIC1tdKFlGRMae27dSk5O1pXx/QHeevswLW2dlBQXUFKUjz8QxO8L4A8EGPH48E4zGTZVGHKNcPj9U4TC4WSbMkZVVQXdPX0kOHsJiPUA6e2/Obpdm4xG0tPsWG0W7FYbVrsFvy9A3eVmbFYLD9x3GwG/D0mSWLViOevXreG/vv1TItEoNosFXYt5Hr3eFkY8Pnp6YiLjwsV6LlxMpd4Zk1+TPv2JR8jNyaK1tQWAS7XNoly3QLAIEQJEIFhk1NU388d/8jV6+2KLh8RVfUn8zp6mazS3drKyupKlFSUzFiAArW09ZKQ5KCstYPOGlRw8fBqfPzjhsdGoSlv75MnIv3j2NRx2G3aHPf63DVe8Q3dWZgYrV1Zhs1mR5Vglnvr6Jl578xBpDjuPPnI3AX9MmPj9QQLBIEePnUNHJz8vG4BgMEQwGCIUTl7oUzAY4uTpC0mbfyLKy0rmLQRr145NDA25qE10cYZ5RpZkLBYTFosZi9lMV08snGjFiqVkZzqxWcxY7VZsFgvHTp6jqbmdFdVLuG3P9rExIuEITS3t1F2ONRj0+31IQH+/i5On6/D6fGNekAOHFtJLMAemiME6ceoCQ0NDZKTbkCQpaU0HRc8ZgWBuCAEiECxCRsXHnXfsYrjXy0hbYI4jzt/NtLW9h2VLy3A4rOTnZdHbNzTjMWouNZGVlYHDbmXvni289ub7s+oPEgpHCIXdE4YmnbtQx7kLdUhImC0m7FYLqhZ7X1RNpaGxFbvNitVmIT8/F4NB4cixWNL8HbfvJCf7imdF01Reee1dmprbqVpazvJlFYSCYULh2J/+gWFaWjowKAr5+Tmxx0NhwqEw4XB0zoubkuICoqo6aY7NjcTqlVWcPZ+cUs2KLGMymTCbjZhNJkY8XgLBEDk5mZSWFGI2GjGZzZjNRoaH3Jw4fQGb1cKnPvkIFrN53Fjf+u8nCEciVJaXkJPjJBgI4/f76e0bwB+ICe6m5jb6BoZiQtgfHFfYYfWqpUiAy+3h6IkLN9QCWUJi3dpqzp6vpb29i43rqgA4ePj0WDWuBTRGIBAkACFABIJFiiRJbN+2gcqicr79j0/SPzQwu4HmeZ0Sjaq0dnSztKKEqiWlsxIgqqZx5Ph57rp9B+gae27dzNvvzM+Oro4+5skYxe8PcvjIqUnPeeHFt7BYrVjjO9pWi2VcUrTBYMCebcNsijXka23tpKWlA7vdyoc/dM/4+TWNb377p6iaxl37bsHpTCcaiRIOR4hEo1y4UEdXTz95OdmUlBQQiUSJRCKEIxF8Xj+9/YNs37qecCTKwUPHiaoq0WgUNaqOW7DeCNjtVixWy3UT0BVZxmBQUBQFxaCgKAb8Pj/hSIT0dDtZTicGowGT0YDRaMTt8dLS0oHNamHnjo2YjCaMRkPsj8HAz55+CYDHPnQPRUX54+Z6481D1NY3UZify7Yt6wmHwgTDIcKhCN54M89wOMKpUxcIBkIEQqHY38EQkUjsd/PKawcmfS1eXwCv79rNhpLiPPJzM1E1nbPnLy968XG19RISH/nwvWxYv4revkHu2LsFgEAgTFNz8spzL+53WCBIPkKACASLFF3X+fq//4C//+Kf8vFPPMR/fesncxtwHnf2mlu6qCgtItOZRkF+Nj29M4/ZDwbDvH/0LDu3r8NmMbFpw0pOnbk0D9bOnMkWhgANja00NLZOfJ7Xz49/+ixmkxGz2YzJbMRsMI7lrAwMulBVDZPBgNFsxG62ocQ7R+flZbNl8xqMRuNYyFhLaycvvPQW/kCQqqXlVJQXj5vvv7/3c4LBEPfevYfionyiURVNU9E0nRMnz1N3uZnSkgK2blmPrmmomoamagwPj/DekZMA3LF3Z2yBq+sQ+49jx8/iDwRZsWwJuXlZgI6mAXqsaACAohjYsX0DcjzERpYhGApz/MR5IBZKZTYZ459DCUmSOHXqAq4RDytXLGVJRQmyrCDJEoqs0NLSzlDck7Vzx0Z2bt+IrEgoioKqavzo8V8C8ImPPkRmVsa49+HFl9+muaWD6qpKduzYNPZ4NBql4XILLS2xim1ZmU4ikQiRSIRAKEQ0HBkrT3vm7CVqahviXqswwVAEz0gsF+F8TT3nayYODYqqKidP10z43GywWEysWrkEgMuNbXi8iytnaXJiS/xHHtrHxg2r+PlTL+GwWzAoMkgSL796MMn2CQSCuSAEiECwiPH5/Pzbf/6Q//Pb/5P77r2N7zz105Tc/QwGwzS3dlK1pJTqZRX09g7Nys6BITd1l9tYXlVKUUE2XbMUM6mCqmmTJtQDnD4z+UL16sRhg0HBaDAyumhzu0fw+wO89sa7KIoBg6KgKDKReG5KQ2Mrg4PDGAwKsqwgyxKe+A59NKri8fpQZBlFlmLPK1fUaXa2E0mSkEY7IkixRT9AVraTstJiJOKh/DL4/LEFsaLEekaAHqu6poPH5wNiAiQ/LycmQGJHoAMGU+wWpcgxz4WqaWhRlXA0FsqWnZ1JJBKhrb0bXVdRVR1NVQlHrnh63jtyEoNBIRpViUZVVFUdEy7nauq5VNcUFxnquNLN/kCQp37xyqTvf2Nz26TPLSRrVy7FZDDgHvHS1HRjNeK7/97b2LF9I8/84lXq6pt45MG9AJw4WYMvMHEe2Hwj+oAIBIlBCBCBYJHT1d3LM794lbWrl2E2GwmGZlb9SJ+vGrwfoLGpg7KyQtIcVoqL8+jonHlCOkB9QyvZ2U6yM9PYsHY57/nO3kC7vrNjdHE9iscT6wXS1dU/YT+UyTwyAN09/XRfJ3fkqWcmX5QfPnLqmlA1SZLJKVzBwOAQZ08eRJ+kP8svn3990nEnq9KUn5fNe4cjk3obAJpbJl+Uh0Kx3JvFSlFBLvn52Wh6LPRKW6Dv8kIgSzK5udk8/+JbHD91nocf2IvZbMTt9s66uWIiWajrpkBwoyIn2wCBQDBHdKi/3MJTz7xEMBRGlmb7tZ7fnb1IVKWxMbYYrF5WjiLP/vJz9Ng5BgZdGAwKt+7aiMkg9lKuZmjYTU9PPyazMdmmADDkcuGfpHLZXOjtG7yu+LiRsVhMrF4dC71qaOxgxONLskWJw2I0omkaP/rxLzl85BTFhbk4M+wAvH/sfFK9vMIDIhAkBiFABIIbBomc7Ew+/4e/wdLKsmQbMyGtrV0Eg2GsFhNlZYWzHkfTdU6fqUMHFFli796tYmFwFZ1dvTzz7GuTdsFeaHZu30zV0oqEjmkwKKxbU43NZknouIsBCYmN66oxG424PT4aGtuTbVLCWLummgfuvx2H3YaOjiLL7Ls9Vnp4cGiEvv6ZF7EQCASphxAgAsENhMs1wsCgi1/99KOUlkx3ga/PXyv0DxDVNOoaYuE/VUtLMBiUWY8VikQ4dPg0kiRhMihs37omUWbeECiyjDFFPEOyJE/V3mHG5ORkcdue7Ths9sQOvAioqiolOyuDaFTl9JlLE4bZLUZWrahiz61baWppH2sAesdtWwEdSZJ5460jyTVwHCIESyCYC0KACASLnKvDEaKqyuNPPEd3Tx+//quPUZCfM4ORFsaD0NHRh9cXwGw0srSiZE5juUd8nL/YCEBOdgZVS1PT85MMPvmxh9i2dX2yzZg38nKy0DSVoWFXsk1ZULIzM1heVQrAhUuNeH3JScZONOvWVLPvjl1cqKnn9JmLABQW5FBYGLuGvXfkLOFI8hp8jiEcrQJBQhACRCC4YYjdGcORCD/40TMMD4/wmU89Oqdci/lAR6fucgsAlRVFmOeYp9DS2kVvX6wPRPWyMnJznHO08MZgxOPFmeFIthnzRm5uFoMDroVvRJdETEYjG9dXIyHR0dVHR2dfsk1KCFaLhe3bN3DmbM1Yx3aTwcCtO2MCuqGpg4bG1Kg6FiMVaw0KBIuL1FqZCASCGTPRrTAYCvP9Hz3Nk0+9NNZT4joDLDjdPYO43B4MBiVemnVuHD9Vw8CACwnYvGHlDb3wni7uES/pGWnJNmPeyM3Jpm/g5soHWL92GRaLCZ8vwIW4528xIyFhUBQCwSA/+/mLHHzv5Fgu1+7dm7BaLbhHvBw7fj7Jll5BOEAEgsQgBIhAcIPi9flpbe9ClmTu2ncLdpvt+ics8J21tr4FgPKygoQkEh87eZGBgVhlrN27NuGw33zJyVfjdnvISEsNAeL1evH7J27UOFt6+wZoa+9K6JipTEVFEfl5WaiazqmztePKLi9GFFnmzn27uOeu3QBjfWgAKsuLsJpNSJLEe4fPEFVvjBwXgUBwBSFABIIbhMmqQKWn2dm2ZT2/8dmPYDGbFtiqyRkYdNM/4EKWJFbHOznPBU3XOHHmEpquo+sat+/ZisWSOq93oXG5RzCajClRJerNtw/R0DR575HZsP/Akev2M7mRcKbbWVVdCcCl2ibcI4u75K7BoHDvPbexfFkllxtaxj3nsNsoKykAdOrqWxkYcifFxqkQfUAEgrkhBIhAsMiZ6jboGvHw3R88RWZWBp/9zGMYjeMrI+n6wlXB+iA1tU1ouk5+bhYF+dlzHi8aVXlr/zFAQtd19u3dhnEOlbYWM+0d3Xz7O0/MS/+NmXLPXbexLIFleNPT7KQ5bo7qVwaDwsYNK5Alid7eQVraupNt0pwwm4w89MA+ykoKeenl/dRfJUAUWebWXRvR0QlHVI6kUOjVKKLct0CQGIQAEQhuAnp6+/nBj56hqDCPT3/ikYkT0xNdJ3UaeL1+mppizQnXrFw6p7K8o4TCEd4+cBxJkpGA2/duS7lE/IUgGlUJhVOgahBgtVqxWhPnidm8eS0P3n97wsZLZdauqsJusxIIhjl7/nKyzZkz1cuXkJuTyXMvvElLW+e451Ysr0CSQELmnYMnkmTh1OhX/V8gEMyOm++uLBDcoEwlH9rau/jx479kaNiNpqXOzbOhsR2fP4jFYqK6qjwhY/oDQQ6+dwoAk0EZqxx0s3Hn7bvYsG5lss1IOAV5OfT1DybbjHmnoqyA4qJcdHROn60lHI0m26RZM7q5cO5CHU/8/EW6esZX8MrNyaSyogiAi5eaCAXDC26jQCBYOIQAEQgWOzMIn2poauO5F95ER6estCi+KEhuScmopo1V9KmoKCQjPTGhNa4RL0eOnUfVdArys7llx43bE2My0tLsFBblJduMhGI0GMjOctLTM5BsU+aVnKwMVq1cCkBdXStDwyNJtmj2OJ0ZfPLjD1MZ7/tzdcI5xMKytm+JNRJtbe+hfzCVq5vdfBsZAsF8IASIQHATYjGb+LXPfJhf+8xjmI3JT9TuHxims6cfCYm1q6sS5q0YGHJz5lwtAE6ngy0bbzxvwPUYGnKT5XQm24yEkp+fgyTL9Pb2J9uUecNms7BxYyzvo7Orn4bmjmSbNGsKCnL5yIfuQY2q9PdfKyxkSWLvni2MboTUxavjpTqiE4hAMDeEABEIbkKCoTA/evyXlBQX8KufeRSLyZT0fb1Ltc1EoyrOjDTKywoSNm53zyCNLbFY84L8bNatWZawsVOdoWE3TmfanHJgrhaDVouFtDQ7Tmc6OdlO8nKyMccrq6Wl2SkpLqC0pJDysmIqyorJzckCQNVUTCbD2OMVZcWUlxWPjZ2T7aSgIJf8vGxyc7LIzszAbIo1qDQYFMwmIwaDgoSEzWphZMTLYIpWR5orBoPClk2rMBuNuNwezl9YvHkfK6qX8uFH7sbldvPMs6/h9fmvOWbXjvUYDQqSJPHuoVOxvkWpvLZP9oVSILhBMEx9iEAgSGVmuxPX0trJt7/7Mz776x/nkYfu5JV3j5HYTg0zIxgMU1vfwppVS1mxvIKe3gGCocQkUV+qbcZqsVBUkE1ZST6SJHH2fH1Cxk5FJCTMZiPhUBhZlllRvZSGplZCoTClJYUUF+VhMpkwG40YzUY6Ono4d6GOnCwn9917GwaDAYPRgMloIBKJ8u3v/hyAxx69h8zMjHFzvfDy27S0dLBi+RJ2bN847rnLDS289sYhTp44y5q11Tx0/+3jFnDf+K+foGo6t+3eTlFR/rhz33r7MBdrG1ixfCm3790x9ng0EqWtoxsdHYOi8Nij9xKNRolEooTDYUKRCO+/f4pgKExFWTE2m4VwKEIwHCIYDOPx+giFUje/YOPa5aQ7bIRCYU6cvkR0qkaiKYpBUdi8cTV19U0cePfYhB3rV69YOtY09PS5ejxeP7IxJjxFmVuB4MZGCBCB4AZBmkUVq67uPr77g6e47xMfQVaSv7XX2tZDSXEezow0Vq5YwumzdQkb+9SZS0gbVlJYkE1pcR4+n5+GpsUT2mI0GJBliVA4gsNuZenScqwWM1arFZvVjKrpvPr6uwD8+mcfw26/0njyjtt34nKP0NnVS2FBHiuqqwhHwkRCEUKRyNhiLxgK0dTcQTQSJRKNEo1GCUeuJD7vP3AEWZbRNA1VVVFVjZERDwDna+qpv9wc78MC6NpYs7yMLCfnL9Rx8dz76LqGBEiSHNvtBl5/6xAmgwFJlpElGcUg43bHxm3v6OKV1w5gUBQURcFkNuDxxnfSJejrH8BgiIklq9VCxlXd31evqmLJkvGFDQ4dOs7pc5dYWlnGbXu2EQgGCQZCBPxBBgaHOXH6AgAV5cUE/EF8fj9+fwhNn38hUF1VTn5+Nqqmc/z0JYKLMBHbbDJiMpnweH0888tXCU4i9nJynFRUFALQ3tlHR2dv7IkkVOObDUIeCQRzQwgQgeAmZ3DIxS+ffx1jehpms4k0u42BIVdSbNHROV/TwK27NlBcmEtHZx/9A8MJG//kmUtUV5WzrKqUFcsrsNlsnLuQfE+I0WAgLc1OWpqD3t5+gqEwq1cuY/mySux2K3a7FZPJxJmzFzn43gkcDju7dmwmGAjiDwQJBIL4/d6x8Q6+dxxdh2AwRDAUJhQK4ffF/FvHTpzl2ImzE9rh9QV47/2Tk9rZ2dU76XPBYIhgMHTN45IkU121hKbmVny+APoEC3mPZ/LGeu4RL+6R2GtLT7fzmU8+yi+fex2IlRref+DopOe+9OoBZEnGZDZiMZuxWEx44+LF7R6hpuYyFqsZq9WC1W4lM75Lb1AUHnpg39g4uqbhDwR58plX8Hp9rKheisNmxeP14fH48Hh9+HyBOYmUooJcllWVAnC+5jIul2fWYyULZ0YaD9x3B6FQkKd/+dqk4sNut7B5w0okoLOrb1F5I2/GanoCwXwgBIhAsMiZczLkVaEOu7ZvZNmyCl586W26epKT5Ose8dHS0k1lRRHr1y7j4KHThCKJ62dR19CKqqmsWF5BWUkeZqOR46drEjb+ZDjsVjIy0rFaLGNdwR9+cB/5udlYruqR8ezzr9Pe0YOu6wSCQQYGh/D5Avh9AQbi1YF6egf45rcfn3Suyw1XOoRXVJSQm5PJpdrGeXplC0dBXi6yLDM0PP38D03Xroijq04bGHJNKrSjqsp3f/AkdpstJgBtNux2G8FgrKljYUEuVUvLsVjMY+eMelaKCnKpXrGUEbcX94gHt9uDyzVC5DoldJ3pdtavjeUmNbZ00tHZN+mxqUppSQH33n0bwUCQN/cfmfQ4o0Hh9t1bAR33iJdzFxquOSZ2TUttH4MIERMI5oYQIALBDUIi9uUOHzmFMzODRx66i1deO3BNo7CFou5yK7k5mTgcVtatqeL46UsJHb+hqQObzUpZST75+Zls3bya4yfnLkJkScbpTEMCBofdODPSuPuu3WQ6MzDFk6qjkSiNTW3o6PT0DNDd04fH7WPE643tpHtjnoqLtQ1crL12cTZTKsuLKcjPvTEESEEeLpd7Qk9LovH7g/j9QfonqPa7/8AR9h84gsloxOGwkZbmwOWKqRuzxUx+bg7LqyrHfucdHT388vnXMSgKt+zczLDLzbDLzeCgC01T2bxpNYoi0zcwTG1ty7y/tkSzdvVy9uzeRkdHN6+9cXBSz4eExN7bYuJDkmSOn6wZC8O7+hiBQHDjIwSIQCCIIcXyC1546S3uvWsPD9x/O2+8eYj6hpYFNyWqqpw+V8uuHRvIz8+mvKyA1raehM5x7sJldF2jvLSQ/NxMtm9Zw9ETF2Y8TnFRPqtWVJGd5SQzy4nBoNDU1MpLrx4gGAwxNOiisbGNYZcbl2uEEY93zGs1WShUIhkadrOiOlbaeLGXDi0syKWnN3X6f4QjEYaG3eM8Ms0tHTS3xHKLrBYzGc70MS+jxWqhpCSfNWuWIcsKmqbR1dlFJBLG6wvQ1+8mNyeTwSHXNQvzVMbvD3LufC3vHT513TC0HdvWYjYakCSJg4dPJazIxEIiBJJAkBiEABEIFjuJWFNeNUY0qvLKawe44/adWK8KDVpo3CM+autbWL2iklXVSxgaGrmSfJwgztc0omlQWV5Ibo6TVSsquVjbfM1xZpORvLxs8nNzyM3PJi8nm+MnznGxtgGr1YIzM53+gSFq65sYGBxmcNAFxModv7n/cEJtnilDQ24MBoWMjDRc7sXbzM5gUMjKcnKhZvHkCwSCIQJXhTJ6vT4e/9kLY56y9WuXYbdZCEeinDhVw2OP3k96ugNVVRkcHKavf5DTZy7icqdePojVYmHVyipOnr5AY3Mbjc1t1z2+sqKY7Kx0IPa9c7m9kx+8KHTyojBSIEhZhAARCG4YZrczN9GuuKppvPHWe2M/L6+qoLml47px7PNBc0sneTmZ5OY42bi+mvfeP5vwneGaS42oqkrVkhKWVBSjKDLt7X0UFObR3NxGKBzh9r07WVZVQTgcoa9/kMamVgaHYsnxDY2tNDS2TjFL8hi1MyfLmTQB0tTUSu9EsUwzIBpV+e73n7whYu91Xae8vAC7zUJUVTl2sgavL8hPf/Y82TmZ5OVkkZ+XQ2FhHqfPxhpp7tqxibzcLHp6+unu6aent59QODkehIL8HO65aw9Gg4H6y83XdDb/IDk5TlZWVwCxvjwtbV1TT5Kqv2fhABEIEoIQIALBIidxYTUT31ntdit37N2Je8TDS6/uZ2Tk+ouNRHP2fB27b9lEepqdFcsrqKltSvgctfUtpKXZyc/NpLy0kNUrl5OTk82zXi8dnb0cO36Wo8fO4nKNLLowJr8/yIWaOvzxBOpk0NbeRSA49y4z4QQWI0gma1YtobggF03XOXm6dqziVSQapaenn56efmB8CeqhYTeZmRmsXVPN1q3r0TWN/QeOUnPpMmazCVVVx8oezxcSEps3rmb79g309Q/y6uvvTik+cnOcbNuyBgno6hng1JnaqSYRCAQ3AUKACASC6+LzBXj6F69w/32387HHHuCV19+lozOx+RjXIxiKcO78ZbZuXkVlRRH9A8P0zbE0ryLLFBbmUVZaxPtHTqOjU1JSjEGWCAR8eL0ehl2usXyDmVRdSkWuV6p2Ibh19zZamttorDs16zEeuv8OOrp6OX1m/iuWzSfLq8opLytEB86crZ92menaukZq62KFBJzOdIqL8unqjlXLWre2mq2b19HV1UtrayfNrZ3z4u1asWIJO7Zv4OSZGo4dm9obmelMZ8fWtei6zog3wNlz0w2fS32Rv9g2IgSCVEMIEIHghmGWW4f61CUvB4ZcPPnMy9xz124eeehOXnx5P60LWCGrt3+I5tZuKssLWb92Oe8ePkVoFgmsVUvLqVpaTnlZMSaTEa/Pz8WLl3GNeHj+hTdRNY2S4jw2rqvGaFC4586dvPXO8QWpujSfmM0m8nKzaO9YOOF4NQZZQZblWZ9vNBgoKyta0M/cfFBRXsTyeK+PmosNsy517XKN4HJdERiX61sIhyOUlxWzc+cmbr11K8ePn+XI8bPIkjznJorpaXZGPD7q6poZdo3EPTTXx5lu59adG9B1jUhU5fDh0zMLn0zR9b1w0AgEiUEIEIFgkZOonbipqrsEgyFeePFt1q9fQWfXwi9ka+uayc7OIN1hY/3a5Rw7MfVOuCLLFBcX0NYeiznfvnU9alTl1JkaWls66B8YHnv/RhdHHZ19eH0Bdu/cCLrG7p0bOHriAiPXaZaX6pSWFHLfPbfx3e8/iT+QvFCs2VJQkIMsy3QuoOct0RQV5rJm5RIA6hraaElgVTfXiAfXuVrOnqvFaDBQWlrISLx546qVVWzatJqGhlbq6hoZnIE3z6Ao7NyxgXVrV/Lzp15kYNA1LfHhcNjYfctmdF1DVXXeeucY0emKj0Wywk9RfSQQLBqEABEIBNNG0zVOn7kIQFZmBntu3cqbb7+H1zf3+P6pUDWN02fquHXXevJyMqmuKqeuYeLk76zMDFatrKJ6+RJsNis//skvcY14eOqZV6aVR+ByeXjrnaPs2L4Om8XMru3rOHuhnu6ewUS/rAVhYCDWwDA3N3tRehGKC/MJBoIMDS/OKl65OZlsWLccgObWbi43XL9i1FyIRKM0NbeP/dzXN0h7ezerV1axedMaenr7OX783JQ9fpzOdO69czfZOU4OHz7JQLyy21TYbRZ2bl2DrmtoOry5/8i856YIBILFhxAgAsENgiTNNgRrdqcZFIXMzAw++pEHePm1A9PaGZ0rHq+P8zUNbFi7nGVVpXh9fjq7x8973z23UbW0nGAgSG19E5dqG3CNxJJ8Z5LE7A+EOHjoNFs2rSQ7K4PNG1ZS19A2r4vH+cLt9hIOR8jNzlyUAqSwKJ+u7t5FGXef6Uxny8aVyJJEZ1c/NZcWtiFk38AgfQcGeffgMSrLS1i5qgqDMXbrdzrT0VT1Gu9eaUkBD9x7Oz6/n6eefoW+uICdCqvFzK7t6zGbjXi8AY4cPUdkluIjVX/Xog+IQJAYhAARCBY5CbtRz/C+2jcwxM+ffon777mNDz9yNwcPHef8AvRo6Ojsw+GwUVVZwrq1y/EFQuTkZNLe3k0oFKajo4fGxlaamtuJqnPbeY1Eoxw7UcOeWzdht1moriojzWHn1JnEdmafb3R0BgaGyMnNSsr8oVCI0CTdsafDm2+9h9G4+G5X2ZkZbN28aqzL+dnzl5Nmi6ppNDS30XBVv47tW9axrKqChsZWjhw/N9bNfWBgmJpLlzly9My0S29bzEb27d0G6ASDYY6eOE9oVlXLFskCP1XLBAsEi4TZZwUKBIKbHr8/yC+fe4NLlxrYsWMjtgVqXFhX10pv3xCKLLF75wbuuuMWKitjyb3na+qob2iZs/gYRdU09r97gr4BFwBFBdnsuWUT8mw9Tkmiq7sXLUndtV974wCXG2ZfPtnj9S26SmQ5OU62bVmNwaAwMOji1OnaOSeDJ5q33znCu4eOU1CQx6c+/hD/49c+Sk5OJoFgiIPvnZi2+DAbjey7fTugI0kS7x05SzA4O8EpyQqykspic3F97wWCVEUIEIHgpkefU3O32AL9KI8/8Rz+QBCz2URFWXEC7bsWq9VMdk42RpMZXdeoq79MQ0PLvM557MQFGlti4UvpaTa2bVmN2Wic1zkTyftHz/D6m4eSMvee3TsoLy+d1bmbN65h+5b1CbZofsnPzWLrptVjno8TJy8mTBAnkkg0Sl19E61tHciyjNFkxDDDamVWi5k7921HAiRJ5u0DxwnMpGqcJGOwWDE5nVgLCjBn56CjE/X7Z/ZiBALBokIIEIFgsZOwSIC57ez5/bHqSqtWVvHQg/u4fc92jIb52cnMysqgpKiQ+suthEIRbBYzG9cun5e5ruZSbTOnztQRVVVysp3csXcb2ZkZ8z5volBkGVMSRJMzI500h31W566oXoLdYUuwRfNHQX42mzetRJElensHOXnq0vQrQC0wJcX5fPLjD1O9bAnvHjzGt/77CXr6BrGYTdx3923Y7dbrnp/msHPrLRvGxMf+gyfw+aeusqaYzRjTM7Dk5mEvLMKYno6kS0RGPAR7uvC1txEenl7eSbJI1RwVgWCxkMp+ToFAsAg5feYi0UiUW3dtoaS4gNffOkRvX2KqRy2rKqehoY2Ozl5++JNfEIlG6eruZce2deTnZ7NieTm19RNXxkoUXT39eLx+dmxdg9lsZOf2tTS1dHFxHjq0J5pPf/JD1NU1cuT42WSbMi3SHHayspwcXST2FhXmsnH9ciQkOnv6OXu2Hi2FcwWCoTB9/UO8e/DYuI7mDruNgsJcPvrY/bz86jsTfn9zc7LYvKEag0EhEAxz+MjZST0fssGIYrGgWMwoJjO6qqGGQ6h+P5GIGy0cIhoIoAYCRAMBSLFQtXEsstBLgSBVER4QgeAGYjYVWuYSfjUZ52vqeeKplwhHIjz26L047HPfwd61YxP33n0bxcV5AGPx6cMuD+cvxJLfq5aUUhJ/fj7xeH3sP3gCfzzOfUlFEbfv2YJBUeZ97rkwODhMQUFuss2YNqUlheiaRsci6P9RUpzPxvXVSEh0dPVx5kxqio9VK6p49JG7UWSZgYFhXnpl/zjxAfHGo0+/hNfr59GH7yY/N3vc8xVlhezYGstvGXKNcPDQqXHiQ1IUDDY75sxsbAVFWHJzUcxmtFCY4OAgwYE+Aj09+Ds78La24OtoJzQ4QNTvS23xMYok+oAIBHNFCBCBYJGjo6dkXqTL5ebpX7zKiy/vx+vzIyHNOgxn/doVbN60hoOHjtPR2XvN8x1d/TQ0xXofrF29jNwc51xMnxbRqMrb7xyjtT22OLbbLNx5+zYc9oVJxJ8Nvb395OfnLppSomWlhfT2D6Z8J/ry0gI2rF2GBLS193DmXH3Kheg4M9J49OG72XfHLrweH8oUYtnnC/Ds828wOOji4Qf3YbGYAVi1YglrVi1F13UCwTDHjl0grGpX8jjy87HlF2Cw2dHVKGGXi1B/f0xwdHXia2vF29pCsL+XiNeDrk4v0V0gENxYiBAsgeAGwaZYsSlWQmqYKDO/qc9HZIGqaWNdyNeuWc6uHZs4cOgYl2qn3wvBmZ7Grh2bOHvuEmfOTV7+tra+FbvNSmFBDls2reL4yRoGBue/ctL5mgZ6egfYvmUNBoPCrTs3pmzTwu7efkwmI9nZTgYGhxdsXk3XZlW19MSpC5jNpsQblECWVBSzakUlEGsyuNB9PqbD2tXV3HrLZnz+mKho7+ie1nmRaJQXXn6LnJwsgsEQWzeuJj8/Ex1w+YIcP3sZQ1YOZpMRLRpFC4eJeLzokQhqKDgWVqUG579R6UKxOKS7QJD6CAEiECxydHQGgwM4bOVkWrKRkNB1lbAWIaxFiGphwmqEsD5JWUydBalpX1ffRF5uNnfecQtLK8t499CxaxqgTcTKlUsJBkO8f+T0lMeePluPrMjk52axZdMqjp24uCDlW/sHXLy5/ygbN6wgOzPWtHBg0M2xExdSKgynt3cQTdPIycpcUAFy4vgZ3B7vjM9bSBtnioTEmlVLKC8rBKChuYPaupbkGjUJgVCQc+frOHb87LRL644SDIXp7Oxl3YYV5JQUoBoM9A37uFTfiWQwoAYDREbcaJEwUb9/ceRxJID5CF0VCG4mpKoVt4hvkUCwyJElmRxzDmbFjEk2I10VZCPpxEWJTlSPEFbDRPQIETVMWIugKzKO8gosOTn4uua/S/bSyjL27N6KxWzmyadfYnAaAsFsMhIKT6+pmSLLbN60krycTKJRlaMnLjDs8szV7GkhIbFty+qxELBoVOOdQydm3RNhPpjJe5kIJElm774HGRxycf70IfRpLkzXralGluXrer2ShcGgsHnDCnJzYt6A2roWGps7km3WGHa7le1bN2A0KLw2y9LLkqKgmC2YbBY2bFpLWrodWVVpbmzjcl0TejRC1B9ADfqJ+gM3TShVujGddHMGrsgIfcFrw0EFAsH0EB4QgeAGQNM1+oJ9Yz+bZBMmxYxFNsdEiWJGkRRkjPz/7d15cN/3fd/55/f+4b4JgAQJkgAvkJQokjoiWpLPxPFRp47jOEnTbLJtusmk2dndzuxMZzvTnW522tndZtvNJruZpEkbZ5PUju3KiWNFciSbkqyD9wmQIEEQJAEQ9/U7vuf+8fvhR8CkJFIEv+DxesxgOPqRwO/7E3j8Xt/P+6iwHCrLbSMGkZFgufUYdiWR5RFGISH3bmfBhYHLDF0ZZvu2zeXw0dz0/nfk7+QNcxTHHDlylv37emhuqufp/bt4692TTM/c+R34O5WQ8PahU3Sub+OxXVuwbZNPfewZTp29wMClex/ubkea4WPRrp3buTgwyMkPPsQqe2z3dkZGxu7dRX1IlRmP/ft3UltdSRTFHD3Rx8jo/VFu59g2T+zZyd49PURRxDuHT9z+JxsmlucWp1W5HqZtk7Ftntm7HSMOsQpZXNPi1BtvE+ayxP79E6pXh+7ditwNBRCRh5Af+/ixzzw37vzbho1ruXhmhkwplDiGA5aJa3tYdmUxiGCQJDFBEhLEIWHiE0QhYbJydzj9IODEqT4AWtc08eUvfZb+/kEOvnmI+SUTeerra/mpz3+Kv3np1qNA30sYxxw6cpYn9/fQ1FDH00/u4q13TjIz+8ElXythcGiEiclpnn9uP2YSs3P7Jhrrazh15sKqBIClWlua+MynP8rXv/ndm6Yf3S/q6+toaKjjjR8eXu1LWaa+voYnn+jB8xwKBZ93D59mOqXfUx/Etix+7iufp7qqkuMnejl05CSFwvuHBNN1sbxM6cMhDkJiPyCcn2djRys7t6zHyM5ghhF+rkBVYz3+zHQ6L0hEHmoKICKPiDAJCcOQLDc2DJuYeG4FjX4VVZFHnPjYpothGNg42JaDkVRgOMUSroiQIAoJkpAw9gnjiJi7q/UevT7Byy+/zoED+/gHX/l7vHPoBMdPnCWKY+bnFqio8Fi7tvWOd4mEUcS7h8/w9P5dNNTX8NSTu3jr7VOpvemeX8jz3ZfeYOvWTjZvXEd7WzPtbS0cP3WeoSurN1Z2Zm6eqqoKOjra7mgYQJq6NnUQBuFtN0unYW1bM48/thXLNJmdW+Cdw2fui+lcHetaGRkdJwwj3nn7ONdGR5l9j1Bk2jZmJoPteZhuBpKYyPeX9XEk+TwH9vXQ1lSNMTeF74f85bdf5dd+9RcYLA2UEBG5WwogIo+wmJh8lGc+mCcKZpkv1TQ7hoNrOTimh2vauKaLYZgY2HimTWZJCVeYRIRxQBgHBElI9CFKuHrPX2RgcIinn9zDs888gWkYHDp6ijCKuDw0zK4dWzhxopfoDjdKL/aALIaQZ54qnoTMzWc/+JNXQJwk9PZdYnh4jGeeegzHtnh8Vzddm9bxxg/vvCF4JeTzBcbGp1jf0X7fBpDNG9dzeegaYXjvSgHvRPfmDrZv3QjA6NgkR4/3rfq1NTbUceDZfWzs7OCVv3uDs70X6D2/fBmmYVlYroeVyWB6HoZhEPsBsV8gmF8gCYNS03iWMJejynV4/iN7aWmsgiRhaOg6rx08RFNTPS0tjbz0ysFVerX3n/ttzLLIg0ZN6CKPOMM0qe3somJNK/PXht7z19lYOJaLazo4ZvFHyyjewzBKH5Qa3uMkJkxCgiggICj2ldxmCVdzcwOzM/P4QcDGjR1EYcgXPvdJ3n7nGO8eOfWhXqNj2zzz1C7qaqsJwojDR84wPnnvp2MtVWyO72FNqUHdMEwOHzvLteH0+xwOPLOPbds28R/+49fv+XMZhslv/OY/4+LAIN/59tduqwl9fUcbQRiteg+IZZrs2tnN+tJyy4FL1zjTO7Cqbz4rKzI8/eTj9PRsYW5ugTffOkL/hcHiTxpGsY+jVFZl2jZxEBD5PrHvFwNHPk+Yzd7Ux7Gxcy0vfGQvSZJQ8ANef+MYV4dv9JU1NzYwPnn/TiVLS51TS41Xx1QwzVj+/utREnlQ6ARERG5LSEQY5chFN2b6mxi4potjujimg2u62KazrISrMuEWJVylE5M4vOnN3Ph48U2OZZq88JGnyGQ8hkfG6OhYy6Ejpz/Um78gDHn7nVPs37+TxlI51olT57ly9foHf/IKieKYdw6dorGhjmeffowkidn7+Daam+o503sx1TvqQ1eH2bt3J00Ndbc1hexuXb02ckcjdVezRG1RdVUFe/dsp7amioSE02cucuny6peEtbY2071lI2/+8AgnT/URWxZOTS2W52F5LnEQEfs+4fx8KXwUyqccUT5/08htA4MXntvLhvVtJElCEIT89d8cZH4hh4HB/n27OXzklMKHiKwonYCIPOJu9wTktr8eBk6p4d0unZS4pnvL0cBAqYTLJ4xLvSVRQFTqK8l4Lk/u382undsJw5Bjx05z+kw/2Xz+Q12bZZo8/thW1rY1A9DXP8j5/rt/zXfKtkwef2wbba1NGBTn6Rw+eja1aUq2bVFXU51K+DAMk607nyLwAwbOH/3AE5CPPLuPoSsjDF5evalhHevWsGtHF7ZtUfADjp7oY3x8elWuJeO57N69ncb6Wl565XUM26KippbYNEt9HAmxXyifcsRBQJQrnnBEuRzJ+5QtZjIuX/jcx/Dc4r3IsYkZ/vblN4niGNdx+MqXP8e2rZv5gz/6CwYu3T9jhlfT4gnIZDDNuE5ARD40nYCIyIpKSPCTAD8MgBvNsDZ2qa/EwbE8XMPBMiwMw8Q1M3jFTy6XcAVJQBgFvPv2aU4cP8cTT/Swdl0bex7voffcRd45dOIDp/z8qCiOOXKsl+y2jXRv6mBbdyeVmQpOnj6f6sLAMIo5fPQsTQ117N/Xg2Nb7H9iB4VCwBtvHyeb/XAB67afP4xSCR+LPv7Cs1wcuMzA+fefw1tdXcWex3YwMTmdzoX9CNuy2NnTVS65Gp+Y5tjJc6uyx6WyIsOex3vYtWs7iW3Re2GIqrZ1JCbEBb+4+G9hshg48rlyWVVym31FXZvW8dT+XTiOjWEYHDpytrzFfU1LEz/7M5+juame//TVbyh8LHHjNoqI3A0FEJFHXFrvu0NCwiiEKAelSbTFEi6vWL5luTiGi2PZkBg4uLiWWwwlkcHZdy8REdK9tZN9+3byWM92jp08y1vvHL3j5vTevkvkcnl29XSxvmMNFRmXQ8fOpt5YPDE1w/dee4cn9++iqb4Gz3P4xAtPMjI6ydHjvYTRvbuetW1rOPDsPr754t/e89dt2za2bX3gr9vS3UkUJ1y8ePmeXs+t1FRXsXfPdmqqK0hIONc/RH//UPr9HoaBk8nwpV/4IobrcvLCEL1n+liYnVvex1Eqq4oLdzaJq7qygs98+jkyGQeAXK7Ay3/3VnlPzpqWJv7pr/9DpqZm+H/+4M8YHk6vTPFBkUB6f3GKPKQUQERk1cQk5OM8+TgPpRu3Bkapn2Sx2b3YX2IYBiY2F/uvUlgIefbpJ9i3dQ+7N+/g0NGT9PVfwI8Cgji4rdHAg5dHyGV99u7ZRnNzPc8+/TjvHj5NLuXRqmEY8cO3jlNTXcmBZ/Zg2yataxp44bl9nO0d4No9asTO5Qu0tbXQ0dHOpfvkDve27k1cunwl9V0pGzra2NmzGcs0KRR8jh7vS3VIgek4NLa0sPOxHo739lPI5jn4xiGuj1wnP79Q7OlYLKu6RR/H7Xpy7056dmwiSRKSBI4e6+X02YskJHSuX8vg0DWuj03w4rdf4eiJs4SrMKVNRB4NCiAissRiR8LqSUjKixSXlXAZdrmfJHc1z+VvDfPU3sdoa2vmUx9/jpaGZs6fG2B+IUuURKWRwEG5r+RWo4Gvj0/yw3dO8NS+ndTWVPKRH3ucw8d6mZyaTfEVF83NZ/nuK2+yvqOVLV0bqKzw2LtnG49HW3njrWPMzq3s/pKp6Rmmpmbo2rT+vgggjQ11tKxp4t3DJ1N7Ttu22L2zm3XtLQBcH5/i+Ilz9zwAGbaF5WWwvQyNa5rp2bGFzR1tBPk8/ad7mRm7zoWhQcJsliifI7nLk7C6mio++5nnsS2TJEkIw5i/+psfMDeXZdu2zXzs+afp7FzH7/zen3Dl6gjvHknve/DgUQmWyEpQABF55D0YpQRhUizhyi4p4Xrx9WEc06WjvZ1PPf8Rnj6wh/HRSS5dvsrhw6eJo7DcV5IkSWn6VkiYBOXt7jOzC7z+w+M8uX8ntdWV/NjTuznXf5n+/iurMm516Moow9fG2Lx5Pdu2bMCy4PkDTzA9M887757CX8G70hcHhti5o5u/461V32swN7fAyy+/zuBQOs3nLc0N7N7ZTWWFR0JCX98g/QP3JogZplmaUpXBzHgYpkXs++zZsYWn9vYwPzvH2y+/xrEjxynMzREHKxOATMNg547N7Hl8G4ZhYBgGp85c5PDRM+zasYVPfvIAba0tDA5e5T/8x69z5erqTx97UKz2nxeRB50CiIg8sCJiojhP/9UBBr82xP69u/j0T7zA/s072HtgByePn+Pdt0+SX/Dfd7t7GIcce/c8W7etp31tE9u6O2lurOfoib5VaUAO45hz/YMMXRnh2WcepyLjUl9XzU986sc4ebqfoSujd9z3cisXLw2xb+8u1q5dw9Vroytw5bfmBwH+B7ypDsLwpkV694LnOvRs38y6tcVTj2yuwNHjfUxNr+Cpl2FguW4pcGSwbIc48LFI6F7XxtT4BINDo1zys0xf6OP4oRMr8v1cqrmxnk994hkcp9h7MzeX5diJPsYmpgFoa2thanqWb/2Xl7m0ihPHHjiGTkBEVoLG8Io86gyDuo3dpTG8V3hQTkTei4HBE3t6eOH5p6irrcZxHF77/tuMX59moH8IIhPHKpZymZilzyl9JLCmpZHNm9dh2OCHASd6+xgeGbvj7e4raU1zA0/u31ku/sjnfa5cG+N8/+BdvXE1MFi3bg3Dw2Mr/ga4/ByGSde2fYRhyOCF47ccw9u5YR3bt27ie6/98J42xHesW0PP9s24jk1CwqVLw/T1D67Ic5qOU1wAmPGwXI84Ku7jiH2f5rpqdm/voqd7A54Br73yA179/lsr8IpuVl1ZwSc/8Qy1NZUAxHHC1PQCXV0bWdu+hpf+9ge8+oO378lzPwrq3Qaq3Gom/UkmCumMzRZ5GCmAiAh1m7Y8NAFkKddx6O7q5MCz++javIEoihgevs7b7xzj+Mk+oiAqbnc33NKIYBfbsKmqzLB7VzfVlZXEUczQlREuDlwpNbmHhIlPGEUESXrN0gYGnRta6e7aQMZzi48ZJv0Xhzh3/u6CyL1kGCY/83P/FVevDPPmwZduGUA+/9mPU1lRwV98/a/vyTVUVWbY3dNNc2kL/ezcAidOnS9PfvowDMvCyhT7OEzPAyD2faLSiNwkCAhzWXq6NvClz32c2ekZ3jl0nEOHT654Pw+A57o8/9w+2lubKP8ZNiy2bukiimJ6ey9w/FQvfX0X79vfKw+CxQAy4U8wWZhc7csReWCpBEtEHlp+EHCmt58zvf2sbWvhK1/+HOvWtfHFv/9pWltbOPjGIdrbmplfyHH16igJCSYGTt5h+M0R9uzazrbNm9i6fSOt7U0cPdZHNpu/qYSruN09JCptd7+dKVx3KiHh0uURhq5cZ+vW4h6TJInp2rSO7s3rP3QQyWQ8fvLHn+ftd45zbeTejFxtbWlmYf7Wb7praqroXL+WV7+/8nflDQy6Nq1jS/cGLMskimPO91/m4sDVO9/7YpjYnoeZ8bAymXIfR+z7hNni/o0wl6OxuoJ9u7bgZ3N89+UfcGZuhv80NUVf38V70jdgWya7d26hZ8dmLMsEEkzT4q++exDHcTh2oo/e3osfWAInt0cFWCIrQwFERMoM4+Edb39tZIx/++//iKbGep4/8CT79+9m69ZNmIZBc3Mj2VyegYuX6b94meMnzjKTm+P7R96lf/gSzz7zOFXNFTz50e30nRlkcGAUx7AxDBMDG8+0ySSLb06M4hSuOCCMg3Lz/EqVcEVxzNnei5w7d4mtWzrp3ry+HETWtbfQf3HojnpECnmfmppqduzoumcB5P3s6tlCEIacOz+wol+3ob6GXT1d1NVWA8WlgidP97NwB0seLc/D9DLFBnLHJQ4D4oJPMDtHEvhE+QJhPofh+/Rs6eSZTz1DZ+c6ZmbnefOHRwDI5wv09l1Y0dfmOg4JCT3bN7N3z3ai0pQs27aZns3y9tvHGR+fAtAej3vkYf17UiQtCiAiUvSI/IM6MTnNN7/9Mt956TUaG+u5fn2c3Tu38fd/6sfp6Ghn+/bNnL9wiWwuz5P7d1NdWcmJUxfo3NBKW2sT2/esp31TPW8fOs346DSO5eIYxUWKrulgGTYYJq7p4eEtmcIVEyQhQRQQcmMK14cVxTFn+wY4d36QLd0b6Fi7hkzGZVdPF7t3buHCwFXOnR8gjN4/iCQk9PZdZO+eHn5w8F2CFHc/GBhs39pFb+/FFXve6upKdmzppLW1CQA/DDl7doChqx/cZG/aDlamFDg8jySKifwCUTZLEMwQ+wXCXI4ol8MIAxrqarg+NUlzUwM/+6XPcK7/El/9029xtu/CipY51dZU09m5jo3r17FhQzu1tVUMD48QxxFRFGFaFoePnOXk6fMr9pwiIveSekBEpNgD0tLKwsgVkkfw1l59XQ0Hfmw/jz22nbraaibGp3jr3WPU19Wwb+8uMpkMURRx5co1pqencJzivZvLl4d55/AZsrkbd9WL291dbNMt7y2xTafc6A7FZvfF0cBLS7jC2CeMow9VwmWZJh0da3hs55by99AwDCamZjlxso/5hfe+819bU8Uv/eJP8/L33ljxu/WGYfIbv/nPuDgwyHe+/bWbekBqqqsAmHuPEq3blcl4bO3ewPqONcX/tyQMXblO3/lLFAq3Lj8yrOI+Dqt0yoFBuawq8hf7OHJEuSxhLodtwvatXezatZXtWzczOzvP//Hv/hCA+toapmfn7uo1QDFAdaxrp2NtK68dfIcwDPmVX/oS3V2dDA+PMD09XR7EZBgmZ/sGOHzkjPo6UtLoNlLhVjFemGDKVw+IyIelExARueFhrsF6H9Mzc/z1d1/lO999jc2bOtjzeA/VVZV8+zuv8nevvcVHn3+aufkFmhrrOXrsDC0tdWzfupENG9rp7FxLGMHwyDjDI2Ncu3admdk5iJdvVHcNB8dycEyvFEyc9yzhCpOoFEZKvSW3UcIVxTGDl0e4cuU6W7o3sKVrPUmS0Fhfw0ef28/4+DSXhoYZHZ28qRdhdm6BK1dG2Lpl44oHkPdiYGDZ5l0HD9e26eruYOOGtVhmcarZ6OgEvecHmZvP/siTLunj8DxMyybyA2K/gD+dIwlLgSOfI8xmiYMbI5hbmhv5jV/7RTzP5erVUV597S1Onu4r//ydhg/btqirrWFichqAX/7Fn2bt2lZqaoqBbGEhy/GTvczOznP58hBRmCdJkvIf0avXxjj45hGCQNvKV8ej9/ekyEpSABERKUlIuDAwxIWBofJja9e28szTe7Asi4FLV1izpomTp84xPj7D/id2UFHpYZmwqbONZ595gtNn+vnmiy/TUF/LT3zyOcbGJ7k+Psn4+CTj41Ms+DfeFNvYpZHADo7l4Ro2Vqm3xDUzeMWLwsAgTuLiIsUoJCAobndPbg4lURzTe+4Svecu0dbWxI6tm6iszNDcXE9zcz2GYXJ1eIwzvReW7Th59fs/JHsH/RF34uixU0xNzyx7bEt3JwcO7OfP/uLb5POF9/jM92abJhs719LV1YFjF/8pm5iapbfv0rKdHpbrFXdxuB6W6xCHIbHvE8zNkwQBUSFfLquK8jkAHMemZ8tmdu/aiud5/PGf/CXj41O88r03ONPbXw4Nt3WdlkUYRdTX1nDgwD6amxtpaW6gsaGehYUcv/VvfheAyekZrlwbYWRknCtXh0nimOcO7KOxsYYkSYqLNIOQ02cvcu78IPlC+vtpRERWigKIiFC8m6c7erdyvv8Sv/Wvf5eeHd08/lgPP/X3PsXW7o189c9f5MrVUfY8to2Nne0AXL58mYXsPC3N9di2Q119LVu2bKSqqriTYXp6hn/9v/8+AJ/99MfI5/NMTE0zNTnD1PQsE3MLGIBrujimi1vqL7FNB8MwcHBxLJfKhPIUrpBik3uQBKXG97B8wjEyMsHIyASVFR7dXZ10rm8jSWLWtjWxtq2JQiHgyLFeJqZmmJ4p3sG3bWvFd3EkcXLTwdq+fbuYnJi64/Bh2xYdHa10b+oojyOenc/S13eJ0bFJTNvGrq7GLpVVlfs48jmC2RnioDi1KsrlCHM5WFISVl9bw+c/9wm6uzqLJx3XrnPyZG/xNZBw8M1DN12P49jF70MYsXHDOnbs6Ka5sZ6GxnoaG+s5eaqXv/zmS1i2Rc/2bq6PT3LmbD9jY1OMXh8vf53/8u1XAFjb3sK+J7aztr24KLEYPuDIsV56+wZUaiUiDwUFEBFZQkMmbyVf8Dly7AxHjp2huqqSyooMAF1dG/jpL36Gubl5BgcvYxgJbWsa+ckfP8DI6AQv/tXLDI+MU1mRoaW5kUymuC/CwGB9RxtNzfXUVFeXn+f//L/+iJHRcZ58Zjfr1rYyPTPLzOw8c3MLjA1PsjCXwzFdnFJviWEYWNhYpk0myWCUvn9hEhYncMUhQRxSyAWcOHWO02f6Wb++jZ7tmzEN8DyHH3t6N/MLOebmsszMZfnYR5/hz/78ReYXciv2/2/v3t1cuDjI2ZPF/964sYPmpka+cfCl2/4aVZUZNm5Yy/qOVmy7uN07my9wrv8yI5PzWJ5HZdvaZX0cwfx8sawqmyPKZwmzOZKoWLJUW1NN9+M76Nq8gTAM+eaLL5PN5fE8l9e+/xYnT51jIZejtrqKrk0buDBwGYCPvfAMHR3t1NfWUF9fQ1VVJV/9029x6ux52tvXsKtnCxOT01y+fI1jx88wdGUYKA4/+N9++w9u+doynkvPji529XSxeCMgSSBfCDj4+mFGrmvh3f3mXoxUFnmUqAldRKjb1F1sQh8dJolXb+P3g8YyDdZ3tLOlexNbtmxkTUsjg4NDBEEBs9SPMDE5w8lT57l85dZTmDzXoaGhnvq6avovDhGGIc8d2M+O7d3U19VQW1uNbdt896Xv89rBd9i+bTNf/tJnmZubZ2E2T34hz+TYLG+9dQLXcNiyuRO/EJDPF/ALAQXfJ/RDoiQqjQQOCJKQiiqXjZvW0trSUH5DD+A4Lnnf5/U3jt51fwbc3IRuGvCVL3+OXL7AN771wQGkubGOTZ1rWdPahAEkGMznfS5fn+T65ByYFnEQEPk+ccEvBo58rnTCkSX2/dL3qvj9aG9fw1d+5rM0NzcCMDMzx+TUDEeOnebdQyeoranmv/nHP09NTVV52ADA//Qv/y1hGPHFn/oJ6mqqmZ6ZKwbEmTkuXrx8xz0gnuOwdWsnu3duwbbN8uNJAr29A5w9f4n5H+1hkVXX5DWRcSoZK4wx7U+v9uWIPLB0AiIixalJuhVxx6I44dLla1y6fI2X/+4NKjIZaqorWVjI8tSTu+jc0E5TYx0ffX4/gR9y4dJV3j10etnd04IfMDI6xsjoWPmxg28c4uAbN8p9Kisy5cV54+NTfP/7b1NbU0VVdSVVVZVURC7j+TEMDH7jyz+HGVsYsQGhCTH86VdfZGpqlmf37ae9rYVCrkC+UCAIAgYvXcWPfDZ1tWPaEAQ+lgEvfOQJCoWAy0MjDI+O49g2CRBHMVEcE8URhbxPFMeYhlksFbqN30SVlRVEUczB198tP2aZJoZpYJkmpmkRhiFtrU1s3tRBdXUFiWURWw7zhZDrk3NcHryCBWzZ0I5tGrgGZEiwifnWN74DScKXv/RZNm5YR2VVBa5jY5omf/rnL3Jp8AoL2TzNpef2PJfamiraWoqP5PMFTpzsZXZ+nrnZBebmiidQUVgsfbqd0PReHMema1MHG9a3saaloRxSoRQ8+i5x9ETvipfAycrTX5cid0cnICJC7cYuKlvayI6NEEeaqrNSOta18sTj22mov1FmNTef5eLFK2zauIHr45NcuTLCtZExwhXag5HxXKoqK8lkPCoqPCoqMpw7N0ASGex7bBcb13WQcTJk7Ay2ZXG2t59z5y+xrr2VZ595gkK+QK6QI1tYIDZiEiMiMWJsx6ayqoqqqio81wXD4D9//a8ZvT7BCx95isce216+hiSOOX6yl4NvHKJ1TTOf/8KXiRMDz5jGtCCf9/nDP/4aAL/4C1+gvq4OkoSC77OwMM/45DSmlwHLBsehsrKSuqoqKhybi+cu8N3vvkqVY/Hrv/wzxZOOwCeOIZfP8zu/+yfsfWInX/ripwHw/YDx8SkGh67wg4PvMjU9Sybj4ToO2WyOMLq3b/Zty2LTpnU88fgOMp7D0reuc/NZxsamOX6y7+aJXXJfWjwBuV4YY0YnICIfmgKIiCiA3GOObbN920Z6tm/CKzVOA2QyFdTX11FdXc34xBR/+EdfYyGbo662hvn5hXvecGwbdnGBouHgWC6u6WJi8tT+x6itraav9wJtrY1UVVQQExMTkRgJiRUzMzfLtdFxro9NkKnI0FhfX+xAMQ1Mw2BiYoprI2NUVVXyD3/pnzA+Ocn85CVmZmeZnp7jTG8/ALt6uqmtq6WqrgY745FYDokBQS7P2LUxZqdnyWcX8OcXKMzPsTAzQ25+gSce62HX7m2sW7uG+rpaAF753hu88uqbNDbUsb6jnavXRpmYmE61Xt80DBob62hb00RraxNr21vKezuKDAYvD3PsRB8zs/OpXZesjGavCU8BROSuqQRLREq7P3Qv4l4JwpCTp/s523uRDevb2Lyxg/a2JvL5HCMjOZI4IYwSmhrryOfz/IOf/wLtbS2MjIwzMTHFxNQ0R46dZnx8Ctu2iMJ4Rd5Uh0lIGIZkAUq7+ixMvvPmOA7FcDJw9Sqe7bG2vZnuzeuxLIskjHArMjR3NhNvTEjMCD8KuTY6ysDQVWZm5svXl83mmSyFjq2b1/Pmm4cZujrM9h3dtHa0UVFbQ2JYmHFEHARMXLvK8NURrg1dY0NrE03VFdS3NdDSuIm29jX8yVe/wZX5Berra3Adm2PHznJ1eJRrV0eZmJoGYHJqhsmpmVu+5pW2GDi2dnfS2bkW17FuWuZpGCZXr13n8NGzy0YEywPsEdyXJLKSdAIiItR2bqZyTRvZ8VHiFSoFkvdXkfHYtHEtXRs7aGisLT9e8H0mJ2YxTIu62loaGutpaqznP3/9r7kwMMQnP/YsLzz/VPFN9uQ0k5PTnL8wSG/fRUzDwLSsFSvn2tWzhXy+wMWLQzimg2O6eJZLc30Drc0ttLc2UVtTVQxEUUQUJcRxTBAFTM7MkA/yjIxP0LhuC1t3bCE7f4XZXIHKmmqMJMaMI8woJPADbKCuooIqx+Lf/fbvQ5Lw3/3mr9BQX8tUKVAMj1zn0OGTqYWLW3Edm/r6Grq7NlBVmaG5qX5ZszoUN9DPzC7Qe26A0dFJhY6HSLPXjOdUcD1/nZlg9X4fijzoFEBERAFklTXU17B5YwebNq6lsjKz7OemZ+YYHZ1gZHSC0dEJGhsb2LhxHU0N9TQ2FXdNnD5znr995XU61rXxG7/2i+Ry+fLH9Mwcf/L/fQuA5w7sxzRMcvkbP3/12ii5fAHXccoL/aA4ZvTnf/bztLY283//3lcp+MGPXHVCWIhxLZctGzvZtL6D1qYmiCGKIsIYQsMgxCSsaCyWIWWvY8QhRuIzPT3N2MgwP/nxAxTm5pmcnGJ6aoaJqRlefe0tEhIyGe9DLSlcCZmMS31tNXV1NdTVVtO1eQOua5MkN5fFRVFMFMVcGLhC/4UhBY6HmAKIyMpQABERajs3U9HSRm5CAWQ1GRi0tTXR0d5Ca2szDQ01GMsbCJiammXk+gRjY1PlHSFhVHxTXF1Vwbatm4uTsTIZKioyxEnMi3/1PQB+7Vd/vryPZHEC0+//wZ9z8dIQn/7Uc3z0hWeWPdfRY6fZvGkDC9ksa9tbl/1cEIT8i//5t7Fti3/yj75CdU0lC/mAhZxPITQwExsnTrAjAytKMKIYCgUo+CT5AokfkhATGzGREZHzc1yfGGd0YpyCH5DN5cnn/dJHYcWaxQ0MPM8h47l4novnOXhesWF/86YOaqorMU3jpjKqZV/DMCkUfM71X2bg0lUFjkfIYgAZzY8yG+j7LvJhKYCIiALIfcpzHFpbG2ltbaKttYmG+tpb/rqFhRyzs/PMzi0wM7fA7MwCs/PzLMznb9krYmDgZVwqMxnm5hcIwpDWliaamhqW/brp6Vks2+If/8rPMjBwmXPnB8hknOIbd9fB9Fy8qmoS0yIxLcwkxkxirDhidmaW69dGuTo4xP/yz/8HXnvlIK+9/AatjU201DfR1dmJkSREYVQ8QQgjojAijhNiMyIhIjKLE7giIwIjYW4+S6HgU19fV7zApPTqErg+Nk4cJzQ01OE6dvlVm4ZJPp8HEqqqiuHidhmGybXh60xOzTAzs8D0zBwzs/MEgf6MPKqaMy14dkYBROQuqQldRJbQJvT7SSEIuHxltLzEMOO5tK4phpHGhlpq64ojcauqKqiqqqC9veWmrxGEIWEQEQYhQRgV/zsMCYKQIAyJoxjbtnBsG8exsW0L27FxbLv8Y3//eRJgc3cHsWkTmzaJZWMkCWYS4WezzM3OMTU+wbXBqwwNDPKJ557kia2bePmb36GhrorYjDh2/syya/MsjzUNjbQ3t7KhvR3HcLFMk8aGeqorq4o7R4KIOIqIjQjPqyTOxMRGWBoRfKMcat3aNe/5/9FxKm96rHiyZBAEIcMjYxQKARWVGQYHrzI5NcvszDzhPZ5CJg8ubUIXuTsKICKiKVgPiHzBZ3BomMGh4fJjGdehtraa2poqamqrqCv9WFtTjWWZxWBh21Dh3fHzJYZJbNoElk0QwXw2S5CdZX5ujonRMaYnp5m6PkZ2ZpYwnyWJIlpaGvmnv/pzPL57O1/7y+8Qv8+b+EJUYGh8mKHxYd7pPQYURwN7llf8MIs/ZpwMFRkHz/XwXBe3tLk9SYqnJREh+bBAEIfYroFlWxgYGKZB4AfMzM1TKAQUCn7pI9AbSBGRVaQAIiLyAMv7AfnxKa6PTy17fLHXwXascgixbRvHsUo/lk47LJMwjAiCiCCOiTCJLZvEtAhj8HM5/GyW/EKWOPD59f/6y2zpfJx33jzEa69exvVzzJfCx+c+8zF+5qc/w9z8Av/rv/k9jp84CxQXBN5uM/niaOCFcKH8mIlZDiWu6ZGxPBzTLYaMxdebFF9zkiSEiY8fBfhJQBAVg0mMTjPk7umMWGRlqAdERKjdsImKNW3kJ8aIwh+ddiQPLwPLdbG9DFYmg+m4xL5PFPjEBZ849AnzecJcljCXJSrkqajI8ImPPctnf/KjNDbWA/Av/9W/52xvP5/59Eepr6/lG996aVngWN+xlsnJKRayuRW9+sUTErd8WuJiYpVe2WIoKf5XGIcEcQE/DvBjnyDyiRRK5A61ZFpw7QzD+RHmg7nVvhyRB5YCiIhQs34jla3tCiCPAMt2sDIZLC+D5XrF/R2+T+T7xH6ByC8Q5nOE2QXCfO49F65ZlsX6jnZqa6vpvzBI9n3Cxb/45/8tr/3gLQ6+/va9ellljuGUQomLZ2XwTBfbcIBSKAEonZbESVQKIwF+4uNHPmGiBnN5b2sya3BsTwFE5C6pBEtE5CFmmBZ2KXDYXnHHSOT7RPkC/twcSeATlE44wlyxlOp2RFHEpcErt/VrP/mJ55mZnUslgARJQBAGsCRHmIZJxswsCyWu5UFi4poZPDtTDiVJEhe/RlQ8KfFjnyBWz4j8CG1CF7krCiAicoOhCucHn4GdyZTLqgzTKp1u+OSzk8RhQJTLlULHAnHw8J94xUlMNsqSjbLlxwyMUumWu6y3xDBMbFxsy6UyqSp3mQRxQBj7xRKuyCeIVcIlIvJhKYCISJHu6D2wLNfD8jxsrwLTdYmDgMgv4M/OEgelPo58ljBb7OOQ4hjVQpSnEOVhSQZzTKfcW7IYTGzDxrRsPMsmU/xkDAyiOCydlvjl3hKVcImIfDAFEBGRB4xpO+WyKsv1SOKYqFAgyGaJZ6aJ/cKSsqocJLpTf7uCOCCIA+bD+fJjlmHdFEpc0wXLwsW6qYRrsWwrKJ2YqITr4aPvp8jdUQAREbnPGaZVPuGwMx5gFPs4Cjf6OMJcjiC3QJjLkUS6C7+SoiR6zxKuzLJJXC6GYeKYHg5eeTQwsCSQ+OX+Eo0GFpFHlQKIiMh9x1jWOG5YdmlClU9+apo49IlyOcJ8tnjqEfirfcHv6//9g69y7Nip1b6MFfW+JVxWhox5YxKXhYVp2WQsmwoqMRKgVMK1dFeJH/mEKDzezwzD0NmHyApQABER9X/cByzHxcpkSn0cDnEQEvs+/txssaejkC+fcET5ld2nca8NDFxmcnJ6tS8jFeUSLm6MaLUMq7TZPYNXCiWO4YBl4WGRWVbCFZX6SUpN76URwXJ/UQmWyN1RABGRGzQFKzWm7ZRPOCzvRh9HmMsSzfjF5vHsQqmX48Hu4/itf/U/8o1vfoff+d0/Xu1LWRVREpENs2S5UcJlYi4bC7zYW3KrEq7idvfS9K0lTe8q4Uqf/oYUWRkKICIiKTBMsxw47EwGMIlKi/+C+TniMCDMZstlVQ9TH4dlWpimudqXcV+JiclHefLR8qlkbimMLG16Nw0LE4cKy6FyyXb3KA5LDe+lZvfIJ+T29rjIXdIBiMhdUQAREZIkIVEZ1gozsD0PK1OB5XqYtkMc+ER+4UYfRz5XnlQV+YXVvmC5DywuP5xbUsJlG/ayXSWu5d0o4bIqyFBxyxKuIC7gRwFB8vDvehGRB4sCiIiUGSrBuiuW4xZH42aK43HjICD2fYL5+VL4yBNmswS50j4OhT65DWESEoYhCyyUHzMxl0zf8vAs9xYlXNVLSrgW+0luNL2rhOvD0N+RIitBAURE5EMybRvLqyiOyHU9kiQpjsfN5fBnZsp9HGHppCOJ9YZPVkZMTC7KkYuWDyTwlkzfWuwtKZZwuVRY7rISrjAOy6OB/dgnjAKVcN0mNaGL3B0FEBFBBc23xzBNLDdTGpHrYRgWUVAgKvjk5+eLfRxLFgDGoUpfAC4ODDI0dG21L+ORUIgLFOICc8GNEi7HcEqh5EZviW04GLco4YqTiCAuNrz7SXFniUq4ltIJiMhKUAAREXlPpT4Or7iTY2kfR2FmhiQMiqcb2WLoUB/Hrf3yP/rvV/sSHmlBEhCEAQvhkhIuwyyHkcXeEmfpIkXbo3rJdvfiFK5gWdO7TgFE5MNSABERWeJGH4eH5WZIwpCoULipjyPM5wjzOfVxyAMpTm4u4TIwylO4FntLMlaxr8Qql3BVlbe7F0u4CqWmd58g8okekb4ShS+Ru6MAIiLFCqxH9I20adnlxvHFPo7Y94lyefyZ2WIfR7msSn0c8vBKSMolXMu2uxtOKZQs9pZ42IZdKuGqJFP8ZIzSaODyrpLS7pIweXhGShsqwRJZEQogIvJIMQwDy6vAzhRLqwzTIvILxL5PfmGhGDiWlFWpj0MedYslXCzJEaZhkjEzy0KJa7lgWLhYeMu2u8cEi4sUF09LHvASrgf3ykXuDwogInLDQzmGd2kfh4fpuMUTDt+/uY8jnyuOxxWR9xUnMdkoSza6sd3dwCiVbpUa3kuTuAzDxMbFttzydneAIA4ISmHEj4qTuDQaWOTRoAAiIg/dEkLLdoq7ODKZG30cvk+wsEDsTxH5hRtlVerjEFkRCQmFKE8hyi8v4TKdZWOBPSuDhYVp2WQsm4riJ5dLuPwkIIyKje5+5BNy/5RwPYy3aERWgwKIiDzwyn0cnoftZUgSiP0CUa5wo4+jfMqRJYm060AkLcWTjoD5JY9ZhrVsLLBrerimW9zujkXmR0q4Fsu2gtgvb3df1RIu3bQQuSsKICLywCn2cSzu41js4/CJ/QL57OSNwJHLEeYWiAP1cYjcT6IkIhtmybK8hGtZKCmVcy3f7r4YShLCJLjRU1I6MVEJl8iDQQFERIDkPr+jZ2C5LnZpWlW5jyPwiyccoU+Yz5fLqtTHIfLgSUjIR3nyP1LC5ZouruWRWbLl3TIsTBwylkMFlRgJsKSEK4iK44GDKLivSrhEpEgBRETuS+U+Di+D5XokUVTq48je6OPI5wizC+rjEHmI+XGxQX2eG9vdbcMuhhEzg1cKJY7hvEcJV1TaVRIQxAWCKMRP/Lu6pgd5gpfI/UABRESWWL0WS8O0yiVVtpcBIPJ9onwBf26OJPAJlu7jUB+HyCMrTELCMFxWwmViLhkL7JZ7S5aXcFUvK+HyS/tKwtss4TIMQ9FDZAUogIgIJKtxP8/AzmTKZVU3+jj8Yh9HGBDlcqXQoT4OEXl/MfGNEq4lFre7L/aWeJaHWSrhqrAcKpPFWy+lEq7SiUsQFxcqhtx8s0MnICJ3RwFERFJjuV5pUlUFpusSBwGRX8CfXZxUlSfMZwmz6uMQkZWxGCjmfqSEa/GEJFMKJfZiCZdVQYaKm0u4Ip8KK0M+0c0QkbulACIiN6xwBZZpO+WyKsv1SOKYqFAgyGaJZ6aJ/cKSsqocJJpgIyL33mIJ1wIL5cdMzCXTt4rBxFk6hcv2qHJqmC9cf+h2J4mkTQFERChWE9z9P6iGaZVPOOzMkj6Owo0+jjCXI8gtEOZyJJGm04jI/SEmJhflyEW5ZY97S6ZvZaMsV7NXV+kKRR4eCiAicheMZY3jhmUXFwD6PvmpKeLQJ8rlCPPZ4qlHcHeTZ0RE0laICxTiAnPB3Af/YhG5LQogIlJmGB9cg2U5LlYmU+rjcIiDkNj38edmiz0dhXz5hCPK5z7w64mIiMijRQFERN6XaTvlEw7Lu9HHEeayRDPF7eNhLlvq5VAfh4iIiLw/BRARKY6ULLWAGKZZDhzFPg6TyC8Q+QWC+TniMCDMZstlVerjEBERkTuhACIiADhV1bg1NUR+QBz4RH6B/NR0sY8jnytPqor8wmpfqoiIiDzAFEBEhGBhnsLMFBgm4cI8kZ8nzBbLqqJCHjRyUkRERFaIAoiIEMzPMd3fh2nbhLksSaw+DhEREbk3FEBEBICokCdSdZWIiIjcY+ZqX4CIiIiIiDw6FEBERERERCQ1CiAiIiIiIpIaBRAREREREUmNAoiIiIiIiKRGAURERERERFKjACIiIiIiIqlRABERERERkdQogIiIiIiISGoUQEREREREJDUKICIiIiIikhoFEBERERERSY0CiIiIiIiIpEYBREREREREUqMAIiIiIiIiqVEAERERERGR1CiAiIiIiIhIahRAREREREQkNQogIiIiIiKSGgUQERERERFJjQKIiIiIiIikRgFERERERERSowAiIiIiIiKpUQAREREREZHUKICIiIiIiEhqFEBERERERCQ1CiAiIiIiIpIaBRAREREREUmNAoiIiIiIiKRGAURERERERFKjACIiIiIiIqlRABERERERkdQogIiIiIiISGoUQEREREREJDUKICIiIiIikhoFEBERERERSY0CiIiIiIiIpEYBREREREREUqMAIiIiIiIiqVEAERERERGR1CiAiIiIiIhIahRAREREREQkNQogIiIiIiKSGgUQERERERFJjQKIiIiIiIikRgFERERERERSowAiIiIiIiKpUQAREREREZHUKICIiIiIiEhqFEBERERERCQ1CiAiIiIiIpIaBRAREREREUmNAoiIiIiIiKRGAURERERERFKjACIiIiIiIqlRABERERERkdQogIiIiIiISGoUQEREREREJDUKICIiIiIikhoFEBERERERSY0CiIiIiIiIpEYBREREREREUqMAIiIiIiIiqVEAERERERGR1CiAiIiIiIhIahRAREREREQkNQogIiIiIiKSGgUQERERERFJjQKIiIiIiIikRgFERERERERSowAiIiIiIiKpUQAREREREZHUKICIiIiIiEhqFEBERERERCQ1CiAiIiIiIpIaBRAREREREUmNAoiIiIiIiKRGAURERERERFKjACIiIiIiIqlRABERERERkdQogIiIiIiISGoUQEREREREJDUKICIiIiIikhoFEBERERERSY0CiIiIiIiIpEYBREREREREUqMAIiIiIiIiqVEAERERERGR1CiAiIiIiIhIahRAREREREQkNQogIiIiIiKSGgUQERERERFJjQKIiIiIiIikRgFERERERERSowAiIiIiIiKpUQAREREREZHUKICIiIiIiEhqFEBERERERCQ1CiAiIiIiIpIaBRAREREREUmNAoiIiIiIiKRGAURERERERFKjACIiIiIiIqlRABERERERkdQogIiIiIiISGoUQEREREREJDUKICIiIiIikhoFEBERERERSY0CiIiIiIiIpEYBREREREREUqMAIiIiIiIiqVEAERERERGR1CiAiIiIiIhIahRAREREREQkNQogIiIiIiKSGgUQERERERFJjQKIiIiIiIikRgFERERERERSowAiIiIiIiKpUQAREREREZHUKICIiIiIiEhqFEBERERERCQ1CiAiIiIiIpIaBRAREREREUmNAoiIiIiIiKRGAURERERERFKjACIiIiIiIqlRABERERERkdQogIiIiIiISGoUQEREREREJDUKICIiIiIikhoFEBERERERSY0CiIiIiIiIpEYBREREREREUqMAIiIiIiIiqVEAERERERGR1CiAiIiIiIhIahRAREREREQkNQogIiIiIiKSGgUQERERERFJjQKIiIiIiIikRgFERERERERSowAiIiIiIiKpUQAREREREZHUKICIiIiIiEhq/n8CHV+IQ2EI4QAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from mindquantum.core.gates import RX, RZ\n", + "from mindquantum.io.display import BlochScene\n", + "\n", + "%matplotlib widget\n", + "\n", + "state = np.array([1, 1 + 1j])/np.sqrt(3)\n", + "scene = BlochScene()\n", + "fig, ax = scene.create_scene()\n", + "scene.add_state(ax, state)\n", + "plt.show()\n", + "\n", + "n_step = 100\n", + "amps = np.zeros((n_step, 2), dtype=np.complex128)\n", + "for i, angle in enumerate(np.linspace(0, np.pi * 2, n_step)):\n", + " state = RZ(angle).matrix() @ RX(np.pi / 4).matrix() @ np.array([[1], [0]])\n", + " state = state.T[0]\n", + " amps[i] = state\n", + "scene = BlochScene('dark')\n", + "fig, ax = scene.create_scene()\n", + "scene.add_state(ax, np.array([1, 1 - 1j])/np.sqrt(3), with_proj=False)\n", + "objs = scene.add_state(ax, amps[0], linecolor='r')\n", + "anim = scene.animation(fig, ax, objs, amps,history_len=10)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 多量子比特\n", + "\n", + "二量子比特的标准基:\n", + "$$|00\\rangle,|01\\rangle,|10\\rangle,|11\\rangle$$\n", + "其中 $|00\\rangle \\equiv |0\\rangle|0\\rangle \\equiv |0\\rangle \\otimes |0\\rangle$ 。\n", + "\n", + "> 不像单量子比特对应Bloch球面上的一点,多量子比特并没有一种简单的几何图景。\n", + "\n", + "对于任意矩阵 $X\\in \\mathbb{C}^{m\\times n}, Y\\in \\mathbb{C}^{p\\times q}$,张量积(Kronecker积)定义为\n", + "$$\n", + "X\\otimes Y \\equiv\n", + "\\begin{pmatrix}\n", + "x_{11}Y & x_{12}Y & \\cdots & x_{1n}Y \\\\\n", + "x_{21}Y & x_{22}Y & \\cdots & x_{2n}Y \\\\\n", + "\\vdots & \\vdots & \\ddots & \\vdots \\\\\n", + "x_{m1}Y & x_{m2}Y & \\cdots & x_{mn}Y\n", + "\\end{pmatrix} \n", + "\\in \\mathbb{C}^{(mp)\\times (nq)}\n", + "$$\n", + "\n", + "因此二量子比特的标准基的矩阵表示如下:\n", + "$$\n", + "\\begin{align*}\n", + "\n", + "|0\\rangle \\otimes |0\\rangle \n", + "\\equiv \n", + "\\begin{pmatrix}\n", + "1 \\\\\n", + "0\n", + "\\end{pmatrix}\n", + "\\otimes\n", + "\\begin{pmatrix}\n", + "1 \\\\\n", + "0\n", + "\\end{pmatrix}\n", + "\\equiv\n", + "\\begin{pmatrix}\n", + "1 \\begin{pmatrix} 1 \\\\ 0 \\end{pmatrix} \\\\\n", + "0 \\begin{pmatrix} 1 \\\\ 0 \\end{pmatrix}\n", + "\\end{pmatrix}\n", + "=\n", + "\\begin{pmatrix}\n", + "1 \\\\ 0 \\\\ 0 \\\\ 0\n", + "\\end{pmatrix}\n", + "\n", + "\\\\\n", + "\n", + "|0\\rangle \\otimes |1\\rangle \n", + "\\equiv \n", + "\\begin{pmatrix}\n", + "1 \\\\\n", + "0\n", + "\\end{pmatrix}\n", + "\\otimes\n", + "\\begin{pmatrix}\n", + "0 \\\\\n", + "1\n", + "\\end{pmatrix}\n", + "\\equiv\n", + "\\begin{pmatrix}\n", + "1 \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix} \\\\\n", + "0 \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix}\n", + "\\end{pmatrix}\n", + "=\n", + "\\begin{pmatrix}\n", + "0 \\\\ 1 \\\\ 0 \\\\ 0\n", + "\\end{pmatrix}\n", + "\n", + "\\\\\n", + "\n", + "|1\\rangle \\otimes |0\\rangle \n", + "\\equiv \n", + "\\begin{pmatrix}\n", + "0 \\\\\n", + "1\n", + "\\end{pmatrix}\n", + "\\otimes\n", + "\\begin{pmatrix}\n", + "1 \\\\\n", + "0\n", + "\\end{pmatrix}\n", + "\\equiv\n", + "\\begin{pmatrix}\n", + "0 \\begin{pmatrix} 1 \\\\ 0 \\end{pmatrix} \\\\\n", + "1 \\begin{pmatrix} 1 \\\\ 0 \\end{pmatrix}\n", + "\\end{pmatrix}\n", + "=\n", + "\\begin{pmatrix}\n", + "0 \\\\ 0 \\\\ 1 \\\\ 0\n", + "\\end{pmatrix}\n", + "\n", + "\\\\\n", + "\n", + "|1\\rangle \\otimes |1\\rangle \n", + "\\equiv \n", + "\\begin{pmatrix}\n", + "0 \\\\\n", + "1\n", + "\\end{pmatrix}\n", + "\\otimes\n", + "\\begin{pmatrix}\n", + "0 \\\\\n", + "1\n", + "\\end{pmatrix}\n", + "\\equiv\n", + "\\begin{pmatrix}\n", + "0 \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix} \\\\\n", + "1 \\begin{pmatrix} 0 \\\\ 1 \\end{pmatrix}\n", + "\\end{pmatrix}\n", + "=\n", + "\\begin{pmatrix}\n", + "0 \\\\ 0 \\\\ 0 \\\\ 1\n", + "\\end{pmatrix}\n", + "\\\\\n", + "\n", + "\\end{align*}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "在mindquantum中,`sim.get_qs(True)` 可以返回量子态,并且用ket表示。\n", + "\n", + "> 需要注意的是,在mindquantum中,量子比特是按照从大到小的顺序排列的 $|q_n, q_{n-1}, \\ldots, q_1, q_0\\rangle$ 。" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1¦00⟩ [1.+0.j 0.+0.j 0.+0.j 0.+0.j]\n", + "1¦01⟩ [0.+0.j 1.+0.j 0.+0.j 0.+0.j]\n", + "1¦10⟩ [0.+0.j 0.+0.j 1.+0.j 0.+0.j]\n", + "1¦11⟩ [0.+0.j 0.+0.j 0.+0.j 1.+0.j]\n" + ] + } + ], + "source": [ + "from mindquantum.simulator import Simulator\n", + "from mindquantum.core.gates import X\n", + "\n", + "sim = Simulator(\"projectq\", 2)\n", + "\n", + "# |00>\n", + "sim.reset()\n", + "print(sim.get_qs(True), sim.get_qs())\n", + "\n", + "# |01>\n", + "sim.reset()\n", + "sim.apply_gate(X.on(0))\n", + "print(sim.get_qs(True), sim.get_qs())\n", + "\n", + "# |10>\n", + "sim.reset()\n", + "sim.apply_gate(X.on(1))\n", + "print(sim.get_qs(True), sim.get_qs())\n", + "\n", + "# |11>\n", + "sim.reset()\n", + "sim.apply_gate(X.on(0))\n", + "sim.apply_gate(X.on(1))\n", + "print(sim.get_qs(True), sim.get_qs())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "任意二量子比特可以写作\n", + "$$|\\psi\\rangle = \\alpha_{00}|00\\rangle + \\alpha_{01}|01\\rangle\n", + "+\\alpha_{10}|10\\rangle + \\alpha_{11}|11\\rangle$$\n", + "其中 $|\\alpha_{00}|^2+|\\alpha_{01}|^2+|\\alpha_{10}|^2+|\\alpha_{11}|^2=1$ 。\n", + "\n", + "如果使用标准基进行测量,得到 $00$ 的概率是 $Pr(00) = |\\alpha_{00}|^2$ 。\n", + "\n", + "# 部分测量\n", + "\n", + "如果我们只对第一个量子比特进行测量,我们会得到 $0$ 或者 $1$,假设测量结果是 $x$,此时第二个量子比特就会变成\n", + "$$|\\psi_2\\rangle = \\frac{\\alpha_{x0}|0\\rangle + \\alpha_{x1}|1\\rangle}{\\sqrt{|\\alpha_{x0}|^2 + |\\alpha_{x1}|^2}}$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们考虑一个特殊的例子\n", + "$$|\\psi\\rangle = \\frac{|00\\rangle + |11\\rangle}{\\sqrt{2}}$$\n", + "\n", + "先对第一个量子比特进行测量,如果测量的结果是 0,那么第二个量子比特应该会变成 $|0\\rangle$;如果测量的结果是 1,第二个量子比特应该会变成 $|1\\rangle$。因此,如果再对第二个量子比特进行测量,测量结果将和第一次测量保持一致。" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "√2/2¦00⟩\n", + "√2/2¦11⟩\n" + ] + }, + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\n\n\n\n\n\n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": "
\n\n\nShots:\n 100\n \n\nKeys: M0 M1\n \n\n\n\n0.0\n \n\n\n\n0.122\n \n\n\n\n0.244\n \n\n\n\n0.366\n \n\n\n\n0.488\n \n\n\n\n0.61\n \n\n\n00\n \n\n\n\n39\n \n\n11\n \n\n\n\n61\n \n\n\n\n\n\n\nprobability\n \n
", + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from mindquantum.simulator import Simulator\n", + "from mindquantum.core.gates import X, CNOT, H, Measure, BarrierGate\n", + "from mindquantum.core.circuit import Circuit\n", + "from IPython.display import display_svg\n", + "\n", + "sim = Simulator(\"projectq\", 2)\n", + "\n", + "sim.apply_gate(H.on(0))\n", + "sim.apply_gate(CNOT.on(1, 0))\n", + "print(sim.get_qs(True))\n", + "\n", + "circ = Circuit()\n", + "circ += Measure(\"M0\").on(0)\n", + "circ += BarrierGate()\n", + "circ += Measure(\"M1\").on(1)\n", + "display_svg(circ.svg()) # 代码块内部调用 .svg() 要使用 display_svg \n", + "\n", + "res = sim.sampling(circuit=circ, shots=100)\n", + "res.svg() # jupyter notebook 代码块最后一行可以直接使用 .svg() 渲染" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 习题\n", + "\n", + "## Exercise 1\n", + "\n", + "对 $|\\psi\\rangle = \\frac{|0\\rangle + (1+i)|1\\rangle}{\\sqrt{3}}$ 分别使用 $\\lbrace|0\\rangle, |1\\rangle \\rbrace$ 和\n", + "$\\lbrace |+\\rangle, |-\\rangle\\rbrace$ 进行测量。\n", + "\n", + "## Exercise 2\n", + "\n", + "画出下面几个单量子比特在Bloch球上的位置。\n", + "$$\n", + "\\begin{align*}\n", + "|\\psi_1\\rangle & = \\frac{|0\\rangle + |1\\rangle}{\\sqrt{2}} \\\\\n", + "|\\psi_2\\rangle & = \\frac{|0\\rangle - |1\\rangle}{\\sqrt{2}} \\\\\n", + "|\\psi_3\\rangle & = \\frac{|0\\rangle + i |1\\rangle}{\\sqrt{2}} \\\\\n", + "|\\psi_4\\rangle & = \\frac{|0\\rangle - i |1\\rangle}{\\sqrt{2}}\n", + "\\end{align*}\n", + "$$\n", + "\n", + "## Exercise 3\n", + "\n", + "对 $|\\psi\\rangle = \\frac{|01\\rangle - |10\\rangle}{\\sqrt{2}}$ 的两个比特进行测量。\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + }, + "vscode": { + "interpreter": { + "hash": "fe23db6dbd04142dcf620a84033ad5fbdd1968100e6cb68cefa531a9613914d5" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/lecture4.ipynb b/lecture4.ipynb new file mode 100644 index 0000000..76badd8 --- /dev/null +++ b/lecture4.ipynb @@ -0,0 +1,538 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 单量子门的矩阵表示\n", + "\n", + "对于一个单量子门 $\\mathcal{U}$ ,其作用效果如下:\n", + "$$\n", + "\\begin{align*}\n", + "\\mathcal{U} |0\\rangle \n", + "& = \\alpha |0\\rangle + \\beta |1\\rangle \n", + "& \\equiv |\\phi\\rangle \\\\\n", + "\n", + "\\mathcal{U} |1\\rangle\n", + "& = \\alpha' |0\\rangle + \\beta' |1\\rangle\n", + "& \\equiv |\\phi_\\bot\\rangle\n", + "\\end{align*}\n", + "$$\n", + "\n", + "如何写出 $\\mathcal{U}$ 的矩阵?\n", + "$$\n", + "\\begin{align*}\n", + "\\mathcal{U}\n", + "& = \\mathcal{U} I \\\\\n", + "& = \\mathcal{U} |0\\rangle \\langle0| + \\mathcal{U} |1\\rangle \\langle 1|\\\\\n", + "& = \\left( \\alpha |0\\rangle + \\beta |1\\rangle \\right) \\langle 0 |\n", + "+ \\left( \\alpha' |0\\rangle + \\beta' |1\\rangle \\right) \\langle 1 | \\\\\n", + "& = \\begin{pmatrix} \\alpha \\\\ \\beta \\end{pmatrix} \\langle 0|\n", + "+ \\begin{pmatrix} \\alpha' \\\\ \\beta' \\end{pmatrix} \\langle 1| \\\\\n", + "& = \n", + "\\begin{pmatrix} \n", + "\\alpha & \\alpha' \\\\ \n", + "\\beta & \\beta' \n", + "\\end{pmatrix}\n", + "\n", + "\\end{align*}\n", + "$$\n", + "\n", + "注意到\n", + "$$\n", + "0 = \\langle 0 | 1 \\rangle\n", + "= \\langle 0 | \\mathcal{U}^\\dag \\mathcal{U} |1\\rangle\n", + "= \\langle \\phi | \\phi_\\bot \\rangle\n", + "= \\alpha^* \\alpha' + \\beta^* \\beta'\n", + "$$\n", + "因此 $\\mathcal{U}$ 是一个**酉矩阵**。\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pauli矩阵\n", + "\n", + "下面介绍Pauli矩阵 $X, Y, Z$,它们的作用效果如下:\n", + "$$\n", + "\\begin{align*}\n", + "X |0\\rangle = |1\\rangle , \\quad & X |1\\rangle = |0\\rangle \\\\\n", + "Y |0\\rangle = i |1\\rangle , \\quad & Y |1\\rangle = -i |0\\rangle \\\\\n", + "Z |0\\rangle = |0\\rangle , \\quad & Z |1\\rangle = - |1\\rangle\n", + "\\end{align*}\n", + "$$\n", + "\n", + "因此 $X, Y, Z$ 的矩阵如下:\n", + "$$\n", + "\\begin{align*}\n", + "X & = \n", + "\\begin{pmatrix}\n", + "0 & 1 \\\\\n", + "1 & 0\n", + "\\end{pmatrix}\n", + "\\\\\n", + "Y & = \n", + "\\begin{pmatrix}\n", + "0 & -i \\\\\n", + "i & 0\n", + "\\end{pmatrix}\n", + "\\\\\n", + "Z & =\n", + "\\begin{pmatrix}\n", + "1 & 0 \\\\\n", + "0 & -1\n", + "\\end{pmatrix}\n", + "\\end{align*}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X:\n", + "[[0 1]\n", + " [1 0]]\n", + "Y:\n", + "[[ 0.+0.j -0.-1.j]\n", + " [ 0.+1.j 0.+0.j]]\n", + "Z:\n", + "[[ 1 0]\n", + " [ 0 -1]]\n" + ] + } + ], + "source": [ + "from mindquantum.core.gates import X, Y, Z\n", + "\n", + "print(\"X:\")\n", + "print(X.matrix())\n", + "print(\"Y:\")\n", + "print(Y.matrix())\n", + "print(\"Z:\")\n", + "print(Z.matrix())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pauli矩阵具有如下的性质:\n", + "$$\n", + "\\begin{align*}\n", + "X^2 = Y^2 = Z^2 = I \\\\\n", + "XYZ = iI\\\\\n", + "XY = iZ \\\\\n", + "YZ = iX \\\\\n", + "ZX = iY\n", + "\\end{align*}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X^2 = I : True\n", + "Y^2 = I : True\n", + "Z^2 = I : True\n", + "XYZ = iI : True\n" + ] + } + ], + "source": [ + "from mindquantum.core.gates import X,Y,Z\n", + "import numpy as np\n", + "\n", + "x = X.matrix()\n", + "y = Y.matrix()\n", + "z = Z.matrix()\n", + "\n", + "print(\"X^2 = I : \", np.allclose(x @ x, np.identity(2)))\n", + "print(\"Y^2 = I : \", np.allclose(y @ y, np.identity(2)))\n", + "print(\"Z^2 = I : \", np.allclose(z @ z, np.identity(2)))\n", + "\n", + "print(\"XYZ = iI : \", np.allclose(x @ y @ z, 1j * np.identity(2)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 旋转矩阵\n", + "\n", + "首先我们需要给出以矩阵作为指数的自然指数函数的定义:\n", + "$$e^A \\equiv I + A + \\frac{1}{2!}A^2 + \\frac{1}{3!}A^3 + \\cdots$$\n", + "\n", + "**引理:** 如果 $A^2 = I$,那么有 \n", + "$$e^{i\\theta A} = \\cos\\theta I + i\\sin\\theta A$$\n", + "\n", + "**Proof:**\n", + "\n", + "$$\n", + "\\begin{align*}\n", + "e^{i\\theta A} \n", + "& = I + i\\theta A + \\frac{1}{2!}(i\\theta A)^2\n", + " + \\frac{1}{3!}(i\\theta A)^3 + \\frac{1}{4!}(i\\theta A)^4 + \\cdots \\\\\n", + "& = I + i\\theta A - \\frac{1}{2!}\\theta^2 I\n", + " - \\frac{1}{3!}i\\theta^3 A + \\frac{1}{4!}\\theta^4 I + \\cdots \\\\\n", + "& = \\left( 1 - \\frac{1}{2!}\\theta^2 + \\frac{1}{4!}\\theta^4 - \\cdots \\right)I \n", + " + \\left(\\theta - \\frac{1}{3!}\\theta^3 + \\frac{1}{5!}\\theta^5 - \\cdots \\right)iA \\\\\n", + "& = \\cos\\theta I + i\\sin\\theta A\n", + "\\end{align*}\n", + "$$\n", + "\n", + "下面给出三个旋转矩阵:\n", + "$$\n", + "\\begin{align*}\n", + "R_x(\\theta) & \\equiv e^{-i{\\theta\\over 2} X} = \\cos{\\theta\\over 2}I - i\\sin{\\theta\\over 2} X\\\\\n", + "R_y(\\theta) & \\equiv e^{-i{\\theta\\over 2} Y} = \\cos{\\theta\\over 2}I - i\\sin{\\theta\\over 2} Y\\\\\n", + "R_z(\\theta) & \\equiv e^{-i{\\theta\\over 2} Z} = \\cos{\\theta\\over 2}I - i\\sin{\\theta\\over 2} Z\\\\\n", + "\\end{align*}\n", + "$$\n", + "\n", + "$R_x(\\theta)$ 表示在Bloch球中,以 $x$ 轴为旋转轴,以右手法则确定旋转方向,旋转 $\\theta$ 角度,$R_y$ 和 $R_z$ 同理。\n", + "\n", + "更一般的,如果以 $\\vec{n}$ 为轴旋转 $\\theta$ 角度,那么旋转算子为\n", + "$$R_{\\vec{n}}(\\theta) \\equiv \\exp\\left(-i{\\theta\\over 2}\\vec{n}\\cdot \\vec{\\sigma}\\right) = \\cos{\\theta\\over 2}I - i\\sin{\\theta\\over 2} \\vec{n}\\cdot \\vec{\\sigma}$$\n", + "其中 $\\vec{n} = (n_x, n_y, n_z) \\in \\mathbb{R}^3, n_x^2 + n_y^2 + n_z^2 = 1$,$\\vec{\\sigma} = (\\sigma_1, \\sigma_2, \\sigma_3) = (X, Y, Z)$。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Lemma:** $\\vec{n}\\cdot \\vec{\\sigma}$ 的特征值是 $\\pm 1$.\n", + "\n", + "**Proof:** \n", + "\n", + "$$\n", + "\\begin{align*}\n", + "\\vec{n}\\cdot \\vec{\\sigma}\n", + "& = n_x X + n_y Y + n_z Z \\\\\n", + "& = \n", + "\\begin{pmatrix} \n", + "0 & n_x \\\\\n", + "n_x & 0 \\\\\n", + "\\end{pmatrix} + \n", + "\\begin{pmatrix} \n", + "0 & -i n_y \\\\\n", + "i n_y & 0 \\\\\n", + "\\end{pmatrix} + \n", + "\\begin{pmatrix} \n", + "n_z & 0 \\\\\n", + "0 & n_z \\\\\n", + "\\end{pmatrix} \\\\\n", + "& = \\begin{pmatrix} \n", + "n_z & n_x-i n_y \\\\\n", + "n_x+ i n_y & -n_z \\\\\n", + "\\end{pmatrix}\n", + "\\end{align*}\n", + "$$\n", + "\n", + "$$\n", + "\\begin{align*}\n", + "\\det\\left(\\vec{n}\\cdot \\vec{\\sigma} - \\lambda I\\right)\n", + "& = \\begin{vmatrix} \n", + " n_z - \\lambda & n_x - i n_y \\\\\n", + " n_x + i n_y & -n_z - \\lambda\n", + " \\end{vmatrix} \\\\\n", + "& = \\lambda^2 - n_x^2 - n_y^2 - n_z^2 \\\\\n", + "& = \\lambda^2 - 1\n", + "\\end{align*}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Theorem:** $R_{\\vec{n}}(\\theta)$ 的作用效果是在Bloch球中以 $\\vec{n}$ 为轴旋转 $\\theta$ 。\n", + "\n", + "**Proof:**\n", + "\n", + "因为 $\\vec{n} \\cdot \\vec{\\sigma}$ 的特征值是 $\\pm 1$,不妨设 $+1$ 对应的特征向量是 $|a\\rangle$,$-1$ 对应的特征向量是 $|b\\rangle$,那么根据*谱分解*定理,我们有\n", + "$$\\vec{n} \\cdot \\vec{\\sigma} = \\sum_i \\lambda_i |i\\rangle \\langle i| = |a\\rangle \\langle a| - |b\\rangle \\langle b|$$\n", + "\n", + "对于任意单位向量 $|\\psi\\rangle$,将其用 $\\lbrace |a\\rangle, |b\\rangle\\rbrace$ 这一组基表示,忽略全局相位\n", + "$$\n", + "\\begin{align*}\n", + "|\\psi\\rangle \n", + "& = \\alpha |a\\rangle + \\beta |b\\rangle \\\\\n", + "& = \\cos{\\theta\\over 2} |a\\rangle + e^{i\\phi} \\sin{\\theta\\over 2} |b\\rangle\n", + "\\end{align*}\n", + "$$\n", + "\n", + "考虑 $R_{\\vec{n}}(\\theta)$ 的作用效果:\n", + "$$\n", + "\\begin{align*}\n", + "R_{\\vec{n}}(\\theta) \n", + "& = \\cos{\\theta\\over 2}I - i\\sin{\\theta\\over 2} \\vec{n}\\cdot \\vec{\\sigma}R_{\\vec{n}}(\\theta) \\\\\n", + "& = \\cos{\\theta\\over 2}\\left( |a\\rangle \\langle a| + |b\\rangle \\langle b| \\right) - i\\sin{\\theta\\over 2} \\left( |a\\rangle \\langle a| - |b\\rangle \\langle b| \\right) \\\\\n", + "& = \\left( \\cos{\\theta\\over 2} - i\\sin{\\theta\\over 2} \\right) |a\\rangle \\langle a| + \\left( \\cos{\\theta\\over 2} + i\\sin{\\theta\\over 2} \\right) |b\\rangle \\langle b| \\\\\n", + "& = e^{-i \\frac{\\theta}{2}} |a\\rangle \\langle a| + e^{i\\frac{\\theta}{2}} |b\\rangle \\langle b| \\\\\n", + "& = e^{-i \\frac{\\theta}{2}} \\left( |a\\rangle \\langle a| + e^{i\\theta}|b\\rangle \\langle b| \\right)\n", + "\\end{align*}\n", + "$$\n", + "\n", + "因此作用后的向量 $|\\psi'\\rangle$ \n", + "$$\n", + "\\begin{align*}\n", + "|\\psi'\\rangle \n", + "& = R_{\\vec{n}}(\\alpha) |\\psi\\rangle \\\\\n", + "& = e^{-i \\frac{\\alpha}{2}} \\left( \\cos{\\theta\\over 2} |a\\rangle \\langle a| + e^{i(\\phi + \\alpha)} \\sin{\\theta\\over 2} |b\\rangle \\langle b| \\right)\n", + "\\end{align*}\n", + "$$\n", + "\n", + "忽略掉全局相位,在Bloch球中,以 $|a\\rangle, |b\\rangle$ 为轴,旋转 $\\alpha$ 角度。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "下面我们来使用mindquantum来验证一下旋转效果。\n", + "\n", + "首先我们构建一个线路来实现输入 $\\theta, \\phi$ 输出对应的量子态,显然可以从 $|0\\rangle$ 通过两个旋转来实现。" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\n\n\n\nRY\n \n\ntheta\n \n\n\n\n\nRZ\n \n\nphi\n \n\n
", + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from mindquantum.core.circuit import Circuit\n", + "from mindquantum.core.gates import RX, RZ, RY\n", + "import numpy as np\n", + "\n", + "circ = Circuit()\n", + "circ += RY(\"theta\").on(0)\n", + "circ += RZ(\"phi\").on(0)\n", + "circ.svg()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们可以验证一下,$\\theta = \\frac{\\pi}{4}, \\phi = 0$ 的点的坐标应该是 $(\\frac{1}{\\sqrt{2}}, 0, \\frac{1}{\\sqrt{2}})$" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zhuyk6/.pyenv/versions/3.7.5/lib/python3.7/site-packages/mindquantum/io/display/bloch_plt_drawer.py:50: MatplotlibDeprecationWarning: \n", + "The M attribute was deprecated in Matplotlib 3.4 and will be removed two minor releases later. Use self.axes.M instead.\n", + " xs, ys, _ = proj_transform((x1, x2), (y1, y2), (z1, z2), renderer.M)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0628d35498694932b408d09d3d9301a9", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5Tk91ng+7+/38qhQ1XnnCcHjeKM8kiyJeMgr4Fl98IB1mYXG+zL3r02uyxem8VgwLBcWMMuXCwvcK73wHLsH7LXWFmWpZEVZzSjyT0dp3NXh+rKVd/w+6O6vtM90z3Tobqqw/PS6aOeip+uDvV5Pp/P8zyKaZomQgghhBBCCFEAarEHIIQQQgghhNg5JAARQgghhBBCFIwEIEIIIYQQQoiCkQBECCGEEEIIUTASgAghhBBCCCEKRgIQIYQQQgghRMFIACKEEEIIIYQoGAlAhBBCCCGEEAUjAYgQQgghhBCiYCQAEUIIIYQQQhSMBCBCCCGEEEKIgpEARAghhBBCCFEwEoAIIYQQQgghCkYCECGEEEIIIUTBSAAihBBCCCGEKBgJQIQQQgghhBAFIwGIEEIIIYQQomAkABFCCCGEEEIUjAQgQgghhBBCiIKRAEQIIYQQQghRMBKACCGEEEIIIQpGAhAhhBBCCCFEwUgAIoQQQgghhCgYCUCEEEIIIYQQBSMBiBBCCCGEEKJgJAARQgghhBBCFIwEIEIIIYQQQoiCkQBECCGEEEIIUTASgAghhBBCCCEKRgIQIYQQQgghRMFIACKEEEIIIYQoGAlAhBBCCCGEEAUjAYgQQgghhBCiYCQAEUIIIYQQQhSMBCBCCCGEEEKIgpEARAghhBBCCFEwEoAIIYQQQgghCkYCECGEEEIIIUTBSAAihBBCCCGEKBgJQIQQQgghhBAFIwGIEEIIIYQQomAkABFCCCGEEEIUjAQgQgghhBBCiIKRAEQIIYQQQghRMBKACCGEEEIIIQpGAhAhhBBCCCFEwUgAIoQQQgghhCgYCUCEEEIIIYQQBSMBiBBCCCGEEKJgJAARQgghhBBCFIwEIEIIIYQQQoiCkQBECCGEEEIIUTASgAghhBBCCCEKRgIQIYQQQgghRMFIACKEEEIIIYQoGAlAhBBCCCGEEAUjAYgQQgghhBCiYCQAEUIIIYQQQhSMBCBCCCGEEEKIgpEARAghhBBCCFEwEoAIIYQQQgghCkYCECGEEEIIIUTBSAAihBBCCCGEKBgJQIQQQgghhBAFIwGIEEIIIYQQomAkABFCCCGEEEIUjAQgQgghhBBCiIKRAEQIIYQQQghRMBKACCGEEEIIIQpGAhAhhBBCCCFEwUgAIoQQQgghhCgYCUCEEEIIIYQQBSMBiBBCCCGEEKJgJAARQgghhBBCFIwEIEIIIYQQQoiCkQBECCGEEEIIUTASgAghhBBCCCEKRgIQIYQQQgghRMFIACKEEEIIIYQoGAlAhBBCCCGEEAUjAYgQQgghhBCiYCQAEUIIIYQQQhSMBCBCCCGEEEKIgpEARAghhBBCCFEwEoAIIYQQQgghCkYCECGEEEIIIUTBSAAihBBCCCGEKBgJQIQQQgghhBAFIwGIEEIIIYQQomAkABFCCCGEEEIUjAQgQgghhBBCiIKRAEQIIYQQQghRMBKACCGEEEIIIQpGAhAhhBBCCCFEwUgAIoQQQgghhCgYCUCEEEIIIYQQBSMBiBBCCCGEEKJgJAARQgghhBBCFIwEIEIIIYQQQoiCkQBECCGEEEIIUTASgAghhBBCCCEKRgIQIYQQQgghRMFIACKEEEIIIYQoGAlAhBBCCCGEEAUjAYgQQgghhBCiYCQAEUIIIYQQQhSMBCBCCCGEEEKIgpEARAghhBBCCFEwEoAIIYQQQgghCkYCECGEEEIIIUTBSAAihBBCCCGEKBgJQIQQQgghhBAFIwGIEEIIIYQQomAkABFCCCGEEEIUjL3YAxBCCLGzXbhwgb//+7+npqaGz3zmM8UejhBCiA0mAYgQQoii0TSNn/u5n+PkyZMA1NXV8fGPf7y4gxJCCLGh5AiWEEKIovn93/99Tp48ye/+7u/S3t7Opz/9aaanp4s9LCGEEBtIMU3TLPYghBBC7Dxnz57ljjvu4GMf+xj/8A//wLvvvst9993HT/7kT/Ktb32r2MMTQgixQWQHRAghRMHpus6/+lf/isbGRr7xjW8AcMcdd/BHf/RH/M//+T/57ne/W+QRXtPa2oqiKPzwhz/ckMffs2cPiqJw4sSJDXl8IYTYbCQAEUIIUXA2m423336bnp4eysrKrMs/+9nPYpomH/vYx4o4urWJRCL81m/9FgcPHsTv91NWVsZdd93Ff/kv/4V0Or3s/Z588kkAnn766UINVQghikoCECGEEGKdBgYGOHToEP/5P/9nzp49i2mapFIp3nnnHT7/+c9z9OhRZmZmlryvBCBCiJ1GAhAhhBBiHTRN46Mf/Sj9/f3U1dXx/PPPE4vFiMfj/N3f/R0lJSWcOnWKn/u5n1vy/kePHqWmpobLly9z8eLFAo9eCCEKTwIQIYQQYh3+5m/+hvfffx+Ab3/72zz22GMAqKrKz/zMz/CXf/mXAPzTP/0TL7744g33V1WVj370o4DsggghdgYJQIQQQhTUe++9h6IoK/r46le/Wuzh3tLf/M3fAHD8+HGOHTt2w/X/4l/8C9ra2gD427/92yUfI9f7RAIQIcROIAGIEEKIguru7qampmbZj5KSEuu2t99+exFHemvxeNyqXvWhD31oydsoisITTzwBwHPPPbfkbR599FH8fj9vvvkm4+PjGzNYIYTYJCQAEUIIUVA//dM/zdjY2JIfb775JlVVVQB8+MMf5vjx40Ue7c1duHABwzAAOHDgwLK3y103Nja2ZKNFt9vN448/jmEYfO9739uYwQohxCYhAYgQQohNobe3l4ceeoje3l4+/vGP853vfAeXy7Xs7f/6r/96xUe5lvrIR1+PkZER6/OGhoZlb7fwuoX3WUiqYQkhdgp7sQcghBBCXL58mUceeYTh4WH++T//53zrW9/Cbr/5W5TH46GmpmbNz+l0Otd835xIJGJ97vV6l73dwusW3mehj3zkI9jtdl544QVisRg+n2/d4xNCiM1IAhAhhBBFdf78eR599FHGxsb4uZ/7Of76r/8am812y/v9zM/8DD/zMz9TgBEWRiAQ4IEHHuDll1/m2Wef5ROf+ESxhySEEBtCjmAJIYQomjNnzvDwww8zNjbGJz/5Sf7mb/5mRcHHZrEwYT4ejy97u4XXLbzP9SoqKgCWzBMRQojtQgIQIYQQRXHy5EmOHz/O5OQkn/70p/nGN76Bqm6tt6X6+nrr8+Hh4WVvt/C6hfdZKJ1O8+yzz6IoCh/5yEfyN0ghhNhk5AiWEEKIgnvzzTd54oknmJ2d5dd+7df4kz/5k1U/xt///d/za7/2a2sew3e+8x3uvffeNd8fYO/evaiqimEYnD17dtlSvGfPngWgtraWYDC45G1efPFFIpEIR48epba2dl3jEkKIzUwCECGEEAX12muv8RM/8RNEIhG+8IUv8LWvfW1Nj5NIJNbVMyOdTq/5vjler5f77ruPV199lWeeeYYvfOELN9zGNE2effZZAD74wQ8u+1i56le5alhCCLFdba29biGEEFvayy+/zBNPPEEkEuGLX/zimoMPgF/8xV/ENM01fzz88MN5+Zp+4Rd+wfra3nzzzRuu/4d/+Ad6e3sB+Pmf//klH8M0Tb773e8CEoAIIbY/CUCEEEIUxPPPP8+HP/xhYrEYX/nKV/jKV75S7CHlxS/8wi9w8OBBTNPkJ3/yJ3nxxRcBMAyDf/iHf+Bf/+t/DWQ7pT/66KNLPsZbb73F6OgoXV1d7N27t2BjF0KIYpAjWEIIIQrii1/8IolEAkVR+LM/+zP+7M/+bNnbfutb31p2sr7Z2O12vvvd73L8+HH6+/t57LHH8Hq9GIZBMpkE4MiRI3zrW99a9jHk+JUQYieRAEQIIcSG03Wd999/H8geN7pV7kZnZ2chhpU3ra2tnDlzhj/6oz/iO9/5Dn19fTgcDvbv38+//Jf/ks997nM3bXwoAYgQYidRTNM0iz0IIYQQYrNqbW1lYGCAl19+OW95IwtduXKFrq4uqqqqGBsb23KliIUQYrXkr5wQQghRRP/4j/8IwEc+8hEJPoQQO4IcwRJCCCGKSI5fLWCakMlAOp39f2kp2GzFHpUQIs8kABFCCCGK6Ld/+7fRdZ0HHnig2EMpDNMETcsGGblAI/f/TAbTNMEwYG4O6utRamvB4Sj2qIUQeSQBiBBCiA2VyWSw2+0oilLsoWxKx48fL/YQNsZ8QLFkkGEY2UAk9//5D9MwQFWzAUc6jTI9DRUVEoAIsc1IACLEFpbIJFAVFbtqx6bKMQWx+SSTSUpKSvjJn/xJ/u7v/q7YwxH5ltvJWCLQWDbIyNW+cTrB5coGFw5H9t8OB9hlaiLEdie/5UJsUbF0jMuhy3gcHlRVRUHBrtpv+LCptkX/VhVJchWF89RTT6FpGrOzs8Ueypr19/cXewjFpeuLg4sFn5sLg4sFn1tBxsLAYuH/JcgQYkeTMrxCbEGmaXJp6hJ9oT4aShowMVEUJfuBAgqL/m19rijWjsmiIEWx3XCZHJcR65VMJmltbWV8fByv18tv/MZv8MUvfrHYwxJL0fWlj0ul02AYS+5mmLnAY2FQcX2wsR4DA9m/W83N4PXm5+sUQmwKEoAIsQWZpkn3dDeJZIKOYAcKCpqhLfrQTT37f0O3LjNMY8WByvVByfU7KbnARQIVsZw///M/53Of+5y1Gu52uxkcHKSqqqrII9uhDGPZ41Lo+o1BBly7LHdM6vrjUg4HbNTfAAlAhNi2ZA9UiC3ONE1UVcVhc+Cw3XzF0TCNawHKgsDE+ree/Xw1Oyo320VZGLyInSWTyfCVr3yFhWtcmUyGP/zDP+RrX/taEUe2zRnG8jsZun6twlTu/ywIMnI7GEvtZBRzoUEWOYTYdmQHRIgt6vLUZRLJBO2B9rxP8HPBSW4XZbmgBa4LTNSlg5RcfspSuyiSn7I9pVIpurq6uHr16qLLZRckD67vlbHw/5p28yDDZls+yNhsTRBzOyAtLeDxFHs0Qog8kh0QIcQNbKptRUHNUkHJwt2UjJFBN/VV56fcbDdF8lM2v1QqxW/91m8xNDR0w3WZTIavfe1r/OEf/mERRraF5IKM5crYLlFdyipja7MtfVzK6dx8QYYQYkeSAEQIsWa5gMCFa9nbmKZ5w07KUoHKavNTbrWbIvkpxfONb3yDP/iDP2CpDXZd17l48WIRRrVJLbeTkQsybtYrY7mdjO3SOdw05fiVENuUBCBCbGGKomCyuU9RKoqCXckGBTdjmMaSuynryU+51U6K5KfkXzKZvCH343pjY2OcOHGC++67r4AjK6Lre2WstCGfoizulbEw0NguQcZKSBAixLYjAYgQYlNQFRXVpq4qkX7J/BQ9+/nNAhVVURddt5LdFAlUVuapp55iYmLiprd55513eOyxxxgYGKC6urpAI9tgmrbsbsYtG/I5HNkg4/rdDOmVIYTYpuSvmxBblMLOXBVUFRWnzYnT5rzp7W65m2Jm/73S3ZTlGj1eX6Z4JyfSr2T3IydXEWtL5YIs7JVxfaBxs14ZcGPp2oWfCyHEDiNVsITYorqnukmkErSWt97yeJNY2q3yUxZWA1tPo8fcLorD5rCOhW3H/JTvfOc7/NRP/RSmaS76+nL/vvPOO5mZmaGnpwfTNPH7/UQikSKOeAnX98pYbUO+65O/czsZ2/D7veH6+lBsNpTWVnC7iz0aIUQeyaxFiC1O1hDWbqX5KaZpLhmk5Jo7rjWR/mY7KbmPreTRRx/lxIkTzMzMLCq/+xu/8Rvcf//9/O3f/i2Tk5O89NJLADQ1NRVnoLfqlbHwqNRW6ZUhhBBbyNZ6dxNCiCJQFGXVjR6vz01Zb6PH63dTNmMifVlZGceOHbvh8t/93d/lyJEjlJeXU15eTldX18YPxjSX7/p9q14ZdvvyZWwlyCg8ec2F2HYkABFii9qOR3i2urXmp+SOgS1MpF/Y6FFV1FXnpyyVWL/t8lOu75Wx2oZ8SwUYm7Eh304mf+eE2JYkABFii9vsZXjFjXKNHm/WPwVYtgv9ehs93qrZ46YKbk3zxjK20itDCCG2NAlAhBBik1pJHsj1+SkLk+rX0+hxuV2UfDR6NAwDTdNwOBzXHuNmXb9v1itDVa+Vsd3JvTK2I8lvE2LbkgBEiC1qp5bhFYutJT9l4W5KIpUgkUqQyqRIpVNktAy6rmMYBplMxvrQMho2mw2bLRt4qKqKx+XB7XLjdrpxOVy4HC48Tg8upwu3w43P48Pj9vDwww9z5MgRBnt7mRodJTY7i55IUOb14gQSc3No6TSZdJp0KkU6ncYGqKqKOv9citOJ4nJlPxwOVLcbV0kJ/rIySpxOSkpK8Hi9m2v3RgghxJKkDK8QW1TPdA+xZIzmsuZb5hyInUvTNCKRCNFolOnpaWKxGIlEgnA4TCQSQdf1Rbc3TIPcf7qpL/r/ws/hWhCcm/QrioJqmNh0HZtuYDcM7IaJQzex6yaqbqKioqJgMxVs2FBMsGX3YDBstuyH3Y5ut1v/Nle4k2FTVfx+P36/n5KSEvx+P8FgkOrqapyumx93E5tQby+Kw4HS1pbd0RJCbBuyAyLEFidrCAJA13WmpqYYHR1lZmaGSCTC7OwsmUzm1ndWsnkpqqri8Xiw2+3ouo7NZsNut2OzZ3NW/H4/qqoSnp4mGYugJxNo6QRaPI6RSWFmUuh6Bl3XME0D08yWtDVDQ2goGBX14HCizwcWut0GdgeK24nd6cbpcOH1einzleFwOFFNBZ/XR6A0gJbRCI2HrN0ZE9AyGewOB7FolEg0im4YhOfmCM/N3fAllpWWUl1dTV1dHTU1NfhLSmS3RAghikQCECGE2GJM0yQSiTA5OcnVq1cJhULMReZYrh5BLrDw+XyUlpZSUVGxaJfA4XBYR618Ph8AQ4ODJCMR0tEoejKBomm0BQL4nE4GIlHG4kmi0Rhz4VkcBmCaKKYdsGOoKnavB7vXi2FXePPiRarq69hz9GFmYxFisRixVIxUJo2BgZlJo2QyQAQlrABXcbtclJaWUqlUovgVAlUBWhtaUVCyeyimgmIq+H1+7Kqd8EyYeDROIpYkGU8Qj8cxTZNwOGwFJeG5ObqvXAHA5XRSV1dHdXU15YEA1VVVOJxOCUqEEKIA5AiWEFtU70wv0USUptImXHY5XrKdGYbB2NgYg4ODjI+PMzs7e8PRKQCbzUZ5ebk1sc4FGa4Fx49yXcnT6TTjY2MkwmGS0QhKOoNNN9jX1YmSyTAyeBXTMHDa7Wi6xuzsDOGZWUITk2TSaQxVxbCp6DYbTp+P6sZGgrW1lFdVUlZWztjYGJFohMaGBn7ug0c5/sgj/N+/9+eotmvrXtnjYVFisShTM1MMjQ4RCoWIp+PWUTAdHcM00dFxu1yUlZZRVVVFQ0ODtSNz80R6O5lUmonxSaYmQ8xMzRCZi6KY2dvkuF0uAoEA1TU1VASDtLa1WWO022Wtrih6erK5P3IES4htR/6qCiHEJpROpxkeHqa/v5/BwcEbAg5FVaisqKS8vJyamhpqamooLS1dtIJvGAaJeJy5UIjk3BzJSAS3qtJcW4ctESfT00OJy03QYcfl8eB0ODDDYTBNAj4vQ6OjnB8eYXpuDt0+f2zK50UNBqipq6Ouro76unrKy8sWPe/o6ChzkTlaW1op8fuW/RrtdjuBQDmBQDmNjY0cPngYgFQqRSgUYmRkhNlwmPDsLPF4HEMz0KY1hqeHGbw4iMPpoKGxgeraagKVARRFQTMXNHrkWsUvf5WPkmo/bbRhGAazs7OEpqaYDk0xNTmFEleYjE/SM9JDia+E8elx2lvbGR4axmFz4PV68Xq9+Hw+vD4fqvQKEUKINZMARIgtTFEU6QOyjUQiEXp7e+nr62N6ZnrRkSqbzUZVdRX19fXU19VTUVGBLZecbZqY6TSJUIj47Cweux2/w8nc5ASjVwfBNHE7nPjdbrweL2Z4Fptp0l5fP1/G1onpdKArKoOhSa4MDDA0MQ7zDRApL6Wqsoq6ujpq62qpqqy69tzXSafTTIYmqa2tpaysDEPXVv06uFwuXC4XbrebBw4exO12E4/HrRyX8fFxZmZnQIPx/nHG+8dBgWAgSHNLM01NzXj9ngXliXX0+epfuqljmAb+Uj8lZSW0t7eR0TKMjIwyPDzM5OQEc+E5ht8Z5qV3XqKstMwK9HLHvvbu3ofP7WVudg4FhVJ/KX5fyabpSL/tyLE4IbYdCUCEEKJITNMkFArR399Pb28vsVhs0fUlJSW0tLTQ1NxETXUNqq5f65ExPY2SzhCZniYcChGLRtB1DQWorKjEFwziR6G1pg6Xx43qdGE6s52/zQX9MkxVZWJygt6eXvr6+tG0+aR1RaWiooK29nba29pwu90r+pqcTie7unYtOvbl9rjxuD2rem0CgQCTkyGGhobo6OiwdiCampoAyGQyjI2NMTQ0xODgIKlUiunpaaanp3nv1Hu43W5aW1tpbGykpqbmhoDJNM1FPVNqSmo51HWQWCLG1eGr9A8OMDY5RmhmiqmZaRRFobm5idaWVsKpWSKZOYbHholGotndFlXF5/VSV1NHqb8M+3wPlesbPto2W6NHIYQoAskBEWKL6pvpI5qM0lDSgNu+ssmh2BxSqRQXLl7g0sVLNwQdgZIS2hoaaGtspMzjQclokMk25cuk0sSiUeKxKOVl5XjcLkKhELG5CD6fD095OZ7SEhSXa3H37yVyGJLJJJcuX6LnSg/RaNS63OPx0NHRQVtbO4FA+Yq/JtM0mZ6ZIVBevuh4kqFrvPf8t/GXlNB59IOLckBuJRwO0z/QT0tzK+XlZTd97pnZWQbmj6uF58KLdo9Um43mpib27t1LZWXligOARCJBf/8A3b2XmQhNYJjZnJSa2ho6uzqpqKwgY2SIxqPE43ESyQSVlVV43R5mZmdIJVP4S/zZRHm7fcn8FJuq3tjkcZ2NHreNK1eyfV/a27M/x0KIbUMCECG2KAlAthbTNBkbG+P06dOMDg+hZjRsuo7dNGmsrqahupqGqiqcDse1bt9Gtt/GVCjE3OwsyXQK027H6fVRXd9ASUXwWtfvFSZKR6NRzp8/z+Xuboz5vBLVZqO1pYWOjg5qa2vXNPGdnQ0zMNhPa0srZWXXggVD1/hPn/lZ7rrzLj72qX+7qgAEoLe3l2QqxZ7du1ecd5FOpxkdHZ3fHblKJpO2rvN4PHR1dbFr1y68Xu+KxzExMcG5c+e5enXQuiwQCLB3717a2tpQVGVRR/rJ0CST05PEEnEMU8fpcRIIBPD6vDfkpyzXkT4XkKiKzdpRuSFQ2c7HviQAEWLbkgBEiC0qF4DU++vxOFZ3vEUUwPxxqeTcHH2XLtF76RLxmVlUXUcxTTxuF+3t7bS1tmaDDsMA0ySTzjCXSDCXTFDX3IzLX8JEeIakpuMLBCjx+3GuoSLQzMws586dpbev19odyE2gW1pacKxjgmcYBhcvXcLtcmUn4wsT4XWNj9yzd8kqWCuRTCaZDc9SXVW9psRvwzAYHh7m/PnzjE+MX9sZUaCurp72tjZaW1uXzWm53tzcHBcuXKD7yhUrgHO73ezbt489e/bcUDErlUoRiUSIRCJUVlbi9XmZnJ4kPBfG6/fi9rhBZVF3es3M5s0sDFQUdekgRUGZD0Zs2FT7soGKqmzBpPlcANLRseIAWwixNUgAIsQW1T/bTyQRkQCkmAwjm4+Ry8vIZFDSGcxMmonRUS5duMDk5CSKkf0zqyhQU1VFV1cXFTU1KPPJ39gdTMeizESiRNNJFFXF7/NTV1eHx7O+7+3ExATvnz3L8NCQdVlNTQ0HDhygvr4+L8d8xsbHmJiYYFfXrhtyRdYbgORTKpWiu7ub3t5eZmdnrctVm43Ghgb27ttLdVX1il6TZDLJ5e7LXDh/gVQqBYDX6+WOO+6gtbX1po8xNT3N5MQkqXQSRVEoLSmlsrISv99v3SYXjFwLTK4l0ueCFN3UV7yboirqTXdTNmV+igQgQmxb8hsthBA3YxiLAgzS6Wt5Gbqe7UQ/v3thzq+2n33/fRKxOIaqottUSqoq6Ni7l+aODpw+HzgcZDSNcDhMeXk5drudeCyK4nLSWFNNWWnpunpPmKbJyMgIZ8+eZXx83Lq8sbGJgwcPUFVVlY9XBsgmg09MTFBVWbXiRPXVyh1fczqdVFRUrPlxXC4XBw4c4MCBA8zOhrl48QK9vX1oWobBwUEGBwfx+XwcOXKE1tbWm+64uN1uDh08xP59++np6eH06dPE43FeffVVLl68yJ133rns61wRDFIRDJJKpQiHw8zMzJCe71gfj8cxDAOfz3fLn4HrE+lzQYoVuOgaGTODYRorDlRsiu2WuymSnyKEWC/ZARFii5IdkDwyzeWDDE1bFGQsys8wTbDZMB0OhicmOHvpMlORCLpNBYedxqYWDhzYb01EM5lMtjN3OEw0lk38zuVM5BoErtfU1BTvvPOOFXgoqkJ7Wzv79x+4aSL3WuW6svt8viWPMeVrB2RgYIBYPM7ePXvyOvk1DIORkRHOXzjP2NiYdUTL4/Gwa/cu9u3dt6LjaZqmce7cOd4/e9Y6mtXa2srtt9++aGdjObnv/9DQEFPTUzgcToKBAOXl5esO7AzTWHzE6/pAZX5HZan+KTcLVHIByYblp3R3o7jdsgMixDYkAYgQW1QuAKnz1+F1rDyZdsfKBRnXHZdCy162ZJCRu8xmA7vDKmOb+zAdDvoGBjh58iTxeBzIHufpaG/ntttuw+PxoGkaNlt2xbi3t5dINILf56e8vJyysrK8ddmOx+OcOnWKnp4eABRVZc/u3ezdu3dFE+C1WEnQlK8AJB6P032lm6amZoKBwJoe41ZylcEunL9AOp1NXFdtNjo7Ojh8+PCKjsPFYjFOnTpFb28vkP0+HDxwgP37968okDFNk2g0yuzsLLOzsximQWNjExXBYN6C1OUYprEokf6GY19G9tjXzQIVVVEXBS029eaBijq/47Kk7m5Ujwc6OrK/g0KIbUMCECG2qIHZAeYScxKAXG+5nYxckLHcbkauIZ/Dfq2qVK6M7RI9JHp6ejh16hSJRALITjT379vHvn37cLvdxGIxpqenmZmdoaW5hbKyMpLJJDabbV0J39fTNI3zF87z/vtn0bVs8vJqVt7XY3R0lGQyedOcB0PX+Os/+hK7unZx75M/t64ckJ6eHjRNY9euXRs6Edc0jYsXL3L27FkrEEGBluYWbrvttkVVvpYTCoV45513mJiYALI7KkePHrX6mKyEYRiEw3P4/T4cDgejo6MkEgmCwQrKykqLdgxq8W7K+vNTriXSLw5SHL39OLwlqF1d2B2urZlIL4RYkgQgQmxROzoA0bTFQcbCnYxccLFUkKEoVtfvhTsZOJ0rWmE1TZO+vj5OnTpl9e9QVJVdXV0cPnwYt9vN7GyYiYlxEslE9hhNMEBFsCKvQUduLAMDA7zzzjvW7ktlZSV33nkn1dXVeX2upWiaxoULF6isrKSurm7Z2xm6xne/+ac0NTZw5IM/ta4AJNcXZFfXrnUn56+EYRj09/fz3nvvLeqVUldfz6FDB6mprrnp/XPfo3fffdf6eens7OTOO+9cUyWz6ZkZQpOTJJIJnA4XlZUVBIPBFVfwKqRb5afohn7LQMXVNwgeN1pbC4rdbiXS33DcS7HhsDmsY2GSnyLE5icBiBBb1LYPQDTtxuNSmQxk0jcGGbD4c4fj2m7GwiBjHcedJicn+fGPf2xVT1JUld27dnH48GEMw8Bms+F0OpmYmCAajW7oKvVSq+u333477e3t63o+0zQxTdP6ehRFIZPJoM8n2+feLhwOB1PTU0xMTNDU2IzdbrOuU1XV2nkJh8MYhs6XP/2zHDp8iJ/8zL+ntLQMm81GIpEgM594DdlJp9PpxOVyoes6yWTSmojmHtfpdJJMJnE4HItX0Dd4wplLgj93/jwjw8PW5cFgkKNHj1JZWXnT+2uaxnvvvcf58+cB8Pl83P/A/bcMYJYTi8UIhULMhmfp7OjE5/Nt+PGsjWKa5pK7KZqhYevtRXc6iDfXYaiLd0xWkp9yY17K4suFEMUjAYgQW1QuAKn11eJz+oo9nLWZ75VBOn1jXoZhLA404MYgI5eXYXfAwl2NPEomk7zxxhsMDmYb0Kk2GwcPHGD37t0kEkmmpkLE4jGqq6qpq6vbsImgaZokk0lOnjy5KM/j0MGD7Nu3j2g0RiaTxjAM6yMQCODz+ZidDRMKTVrBhWGY+HxempubrSNc178V7N+3H7vdbuWtLFRbW8vkZAiP220l0+e4XW52794NwJn3z2BoGrPd76IoKmWdR9i9Zy8ej4erV68yPTO96L651zASiWT7lSxgtzvYv28fAGfPnUPXtUXXt7e1U1JSwvjEONNTM9l8hPlJa1lZGdXV1aTTacbHx1FVFVVVUdRsjkKuSEBulyN3vc1mszqY50xNT3Pq1ClGRoathPW6+nqOHT16yyNvY2NjvPbaa9kdKwUO7D/A4cOH17yDkclkcDgcmKZJd3c3TqfzhnK+W5ZpovT0oHg8mO3tGNc1etSu302Z/7eVn3KTQCVX3Wy53ZTrgxYhRP5JACLEFjUYHiQcD2/+AOT6XhkL8zJuFmSY5uIgw+GEhfkZBVj1Pn/hAqdOnbKqGtXW1XLfvfeRyWgMDQ+h6xo+r49gRQXlZWUrapRnmiaapi340PH5vDidTubm5giHw2iahq7r6LpOSUkJ9fX1XL16lVdffQ1Ny+4alJeXU19fzx133IGiKFy5ciW7a6CqqIqKqirU1tZSVlbG3NwcMzMz2Un3/ATM5XJRUVGBaZqEQqHs2BdM1MrKSlFVlXg8jq7ri1aYNU1jcHCQ1tbWRRP03PW542aZTAZD1/jZDx7j/vvv5zNf+kOcLrf1GMb89zz3NpSb8Ou6bvXWyO28KIqCz+dD13UuXrpEoLwcl9udLX9smpSVleFwOAiHw1Yp21zA5fP5qKioIJlMMjg4iGGYGKZhPf+B/fsBuHjxEql0ctH3q6W5lfLyMkKhEJOTIWy2bGCSyWj09fUyOTmZ/dpVhY72Dvbs3YvX48Fut1u7SAul02neeustK0k9EAhw3/33ryux3jRNpqammJwMkc6k8Lg9VFZVESgv35K7IsDiAKSjI5ujtQI35qdkP65PsAespPmV5Kcst5PitDllN0WINZAARIgtajA8yFx8jhpfTfEDkFv1yliuupRpZoMJ67jUgiDD4djwIGM5U1NTvPnmm4RCISB7xOnOO++koqKC0tJSEokE09PTBINBPB7PomNLmqYxOzuLpmtoGS07CTcMOjo6gKUnuc1NLQQC5UxNTzMVClmT19yxrv7+fi5evAhk+0/cdddd1NTUWNcXY5JpGMaKAq6NaER4+fJlHA4HbW1t636shXLHzXRdxzAMdN3A5/PicDisbua563Vdx+fzoaoqb731FtPT2d0c1WajpqaGqspKDh8+jKIoDA4OkslksNvtOBwObHYbc+E53nnnXTKZNIqqcOS2I+zfv3/dR+jC4TlCoUlS6TR79+xBVdUVf682lTUGICt76MX5KbqhkzEyN+ymWPkpy+ymmJiUucuoK6mTBHkhVknCdiG2OJMCrSGY5pJdv9EyS/bKMK8PMpYoY4vTWbQgYylLHbfavWsX5eXlzEXm0HWd0tJSUqk06XSaq1evktE0NC1DeVk5LS0t6LrO8MgwNpsdx/yEM3dMRlEU6upqAbDb7YsCDbjWoC5nYmKCEydOEIlkj0CtJ4E5XzKZDIqi5K188FoEg0GGR4bRNC2v48h9r5ZSUlJCSUnJktd9+MMfZnBwkLfeeotEIsHoyAhToRB+v5+Ojg6cLieGYZDJZIjHE+i6RmNjE08++TFeeeUVJicnOXnyJL29vezatZtAsJya6hoMwyASieB0OnE6nbc8qqUoCuXlZZSXl6FpGqqqkk6nuXz5MpVVlVRVVm3KhPVCUxQFu3LrPJDr81OuD1om45OEE2EcNgfVvo0v/CDEdiIBiBDimut7ZdyiId+isra5Xhkux41lbDf56qthGJw/f573Tp+2jlvV1NRQVVWFzW4jnshWmQrMBwe5Y0Eej4dSpwOH3WE1i3M6nRw6eGjZleyVlHDVdZ333nuPc+fPgZndgbn33ntpaGjIx5e7LpOTk8zMzrJv794Vr9a3trRSV7t8pazVKisrY3hkmPDc3KKArVgURaGlpYWmpibOX7jA6dOnSafTvP7665w7d46jx47S2tq66D65gPT48eNcvHiR98++z+zsLGfPvs9dd90FQCqVon+g37qPzWbH5XTS2dmJoiiEw2FsNhtut/uGQCz3b1VVCQaDTExMEApNUVNdTUVFxdbbESkCRVFw2Bw4bEsHpS67i0gmsuR1QoibkyNYQmxRV8NXCcfDVPuq8TvXmHQajUI8viG9MjajXP6Fw+FA0zSGhoaIRqP09PQQDoeB7BGn+++/H1VVmZ6Zwe/zUVJSisuVrdC00SvIoVCIEydOWONpa2vj7rvvxuVybejzrkQuUAsGg9TX16/sPrpGzxvP4XA4ab7j4bwcwQKspOuWlpa8PF4+ZTIZTp06xaXLlzCN7FtsU1MzR4/es2z54ImJCV5++WVSqRROp5PjjxynuqqaTCZDOp0mncmQTqcwdMN67c9fuEAmk+1TYlNtuFwu6uvr8fl8pNPpRfk4uQT86ZlpKoIVNDY2FuCVWAfDQOntzR7B6uzcVDulOaF4iEgmQrW/mipfVbGHI8SWIgGIEFvUugOQZBLz6lWUeDwbSCwMMpY7LrUFgoyF0uk0kUiERCJBPB4nmUricXvo6urCNM3sJPHS5ewkToH6+gYqKyrYu3dvwSf8pmly5v0znD59GkxwuVwcO3aM5ubmgo7jZmZmZhm8OsDuXbutHZ9bMXSN/+MD9/Doo4/xqf/wu3kLQNLptFWOd7OKx+OcPn2a7ivdYGaP9N11553LNlKMRqO8/PLLzMzMoKgKR+85SldX17KPbxgGyWSSVCpNKp0knUpTU1ODy+ViaGiIqekpbDY7Xo8nu1tXWmolxrtcrvkyySbl5WWb73WUAESIbU2OYAmxxa15DSEcRpmLZHczgsFrOxlFPNu/HrquE41GicfjuN0eAoFykskkQ8NDuJxuvF4PgUAAj8eDruu8+eabXLlyBcBaSa+srKSmpqbgORapVIpXX3vN6jHR3NzM0aNHVzzJL5TZ2Rk8bs+qxzU3N8dseDavY8l9jzZz/wuv18uxY8fo6OjgRz/6EfF43Pq5e/DBB2/IKfH7/TzxxBO89toJrl4dtPrO3HHHHUsemVJVFa/Xi9d7Yx+gqqoqfD4/qVSSeDzO9MwMNpuN6upqotEoo6Oj2ZyURJyJCTe1tbWUlhavu7oQYmfZmjMNIcT6KQp43FBaCivIS9iscj0u4ok4pmlis9mpqso2hvP7/Rw8cHDR5G16ZoZnn33W6kxdV1dHS0sLdXV1yyYZb6TpmRl++PLLRKNRFFXl6D333HTVu1hygW5wE+Rc5Fy9ehWApqamIo/k5qqrq/nEJz7BqVOnOHf+HFNTU/zj0//I7bffYVWqynE4HDz88EOcOZPdDbtw4QKz4TAPPfjgqgJjl8t1wy5e7nuYS4hPJBMAJFNJ+gf68Xl9NDc3F7XIwVYiB0iEWDsJQITYonbqSmUymWRmZgafz0dpaSmQ7R9RX1eP3+/H5XIt6p6dY5om586f59Spk5iGiWqzcezo0XV3D1+Pvr4+Trz+Ooau4/V6efjhh2/ZVbtYFEXJe9nb9XI4HIRCIRobGzf974Oqqtxxxx20tbfz6o9+RDgc5t133qGvt5djx45RUVFh3VZRFA4fPkxZWRmvvvYaoyMj/OAHP+ADH/jAkrsdK5V7jUpLSyktLcUwDGKxGJFIxApKNE3j6tWrlJaWEgwGi1c1awtN7jf7z54Qm5EEIELsdFvgjX5hf4NYPIZNtVmrtLmyozeTTCZ59dVXGR0dBbI7I/fffz/V1cUpnWkYBidPnuT8+fNAtsHhgw88uOmOXC0Ui8Xwer2barLl9/sZnxgnHo/j823iZpwLBAMBPvaxj3Hp0mXePfku09PTfP+fvs+e3Xu44447Fk34W1tbKSkp4aWXXiIcDvPss8/ygQ98IG+dzlVVvaG8cK7x5MjoCKNjowTKA1RXVxe3CMIm+pkTQuSH1OETYosrWB+QIgqFQgwM9mOaJk1Nzezbt2/RivHNTExM8PTTT2eDDyXbS+PjH/940YKPRCLB888/bwUfBw4c4LFHH9vUwUcmk+FKzxWr2d5qORzZUsX55vP5UBWVSHRrlUJVFIU9e3bz8SefpKqqCky4ePEi3/72txkbH1t024qKCh5//HF8Ph+RSIRnn33W6guzEbxeLx0dHQQDQUzTZHpmmpGRkQ17vq1sJ/ztFWKjyA6IEDvVFlhVTCaTuN1uKioq8Hg8q1r5zR25OnnyXTCzE6sHH3ywaIEHZHto/PCHPySRSGCz27n/vvs2ZRnZ683OzqIoyop6mCzlC5//AhUbcLRMURT8fj+xaAxq8v7wG87n8/HEE0/Q09PDm2+9RTKZ5Llnn+PgwYMcPnzYOkJYWlrK448/znPPPUc0GuWZZ57hgx/84Jq/H7dis9loamqioqKCoaEh5iJzTE1NYbfbcTqdy5YS3qkUNv/fUiE2G9kBEWKL2u5velPT01zuvkwymURV1VUFH5FIhBdefJGT72aDj8rKSj72sY8VNfjo7u7mmWefIZFIUFJSwk986Ce2RPAB2QCkxF+y5q7jr504QX9/X55HldXQ0HBDk7+tRFEUOjs7+clPfIL6+UaT77//Ps8995xVKAGyx80ef/xxSktLSSQSPPvss8zOhjd0bF6vl66uLhrqGygpKWF8fJyenh4ymcyGPq8QYvuTAEQIsSmNj49TVlq2qqNJqVSK3t5eXnrpJUbnj420t7fzxBNPFK2yj2manD5zmh//+MeYhkljYxMf/vCHCQTKizKe1cqVas0l/K/Fj370CmfPncvjqK5xOp3FS5TOI7fbzWOPPsr999+PzW5nYmKC/98//iMDAwPWbXw+n7XzkUwmefbZZ5iemdnQcSmKQmVlpVWqWjd0uq9cIZFIbOjzYpqbfpdWqmAJsXYSgAixxa37TXCTvolqWga3Z3V5EcPDw7z77rvZLuIK3HHnnVZX82IwDIO33nqL0++dBrL5HsePP7ylypxmMhk8bs+6ApCNNjQ0dEPuxFbV3t7ORz78YXw+H4au88orr/D6669jGAaQ3ZV4/PHHCQQCpFIpnn3mWaampgoyNqfTid3uwNB1LndfZnR01BrXhtnkQYgQYm0kABFip9rkb+ylJaVMToZIp9M3vV00GmVqepqJiQneeustEokEDoeTDzz2Afbv21eg0d5I13V+9KMfcenSJQDuvOsubr/99k1VRWolvF4vu3btwuHIfxJ5vhiGQXiDjyMVUllZGU8++aR1RO/KlSs8/fTTVvK52+3mAx/4ABUVFWQyaZ577vkN3wmBbENJTcvQ2NhETU0Nk6FJ+vv7N/x5NzNFUbbc77QQm4EEIEJsUYqisJ3TQBoaGvB6PMser9F1neHhYXp6e7h86RLPPPsM6XSakpISPvzhn6Curq7AI74mnU7zwosvMDg4iKIqPPDAA+zbu7do41krwzCIx+Ob/qiJz+8nmUqiaVqxh5I3drudhx56iPvuuw9FVYlEInzve//bOpKVC0KqqqrIZNK8+MILRKPRDRlLbpejtLSUpqZmyspKqa2pZVfXLuv3LJPJbPqfEyHE5iEBiBBiU3I4HLS1tWGz2UilUly5coW5uTlM02Rubo5Lly8TmgoxF56ju7vbSjb/8Ic/XNTjQvF4nGeffZbxsXFsdjuPPvLopmvgt1KRSITuK90kk8liD+WmfPPN+RYmbW8XHR0dfPzJJ6moqEDTMrzyyiu88soraJqG0+nkkUcesRLTX3zxxVvuGK6GrutMTExw/sIFYrEYiqIQDASsFX+3243H48E0Tfr6+uju7iaVSuXnybdAMCNleIVYOwlAhNji1v0muInf6HMTHV3XMQyDvv4+Lly8yNDwMHabjchchL6+bHWlYiebA4TDYX7wgx8wMzODy+Xi8Q9+kPr6+qKNZ70ikQhOh2vdPUqe+NBPcOS2I3ka1Y1cLhc2m33jE6OLpKSkhA996EPsnd9FGxgY4Omnn2Z2NozL5eLRRx/F7XYTDod5+Ycvo+v6up4vFotx9epVzp8/z+jYKGWlpTc9gqcoCg0NDWi6zuXLl5mant5RuyHbvSKhEBtBAhAhtqid9Kbn9Xqprq6hvq4ev89HJp1m8OpVent7Adi3bx/33Xdf0ZLNAaampnjmmWeIxWJWf4fKDeh9USimaRKem6OsrHTdZ9z37t1DTc3GlUBWFIWW5maCweCGPUexqarKXXfdxUMPPYRqsxGLxfjf3//fjI2NUVJSwqOPPorNbmd8bJwTJ06sKgDQdZ3Z2bC1exGJRIhEo1RVV7Fv7z6amppuGdj7fD5279pFWVkZQ0NXGR4eXtfXa5H8CiG2JWlEKMROtUXe2DOZDCMjI8yGZ6kIVtDU1ERvby8j8xOcAwcOYLPbOHfuHH6/H5/Ph9/vL2iztLHxMV588SV0TSMQCPDoo4/inT8WtFUlEgk0LbOq/ivL+fp//a8cP/4I+x/+WB5GtrSSkpINe+zNpKWlhcrKSp599lmi0SjPPf8c9x67l87OTo4//DAvvPgC/f39+P1+br/99mUfJxqNEolEiEajxBNxABrqG3C5XFRXV1NTU7PqwNNms9Hc3Iy/pMRaIDFNU5K0hRA3kB0QIba47XrUwTRNpmdmuHT5MpFIhKamZurq6njxpZcYHBwE4NixYxw5coSO9g4qKyvJZDKMjo0yMTEBgKZpjIyMMD0zQyqV2pDXamJiwgo+amprePzxx7d88AHZ187ldOclANE0DU3f2ARxTdMYGhratsewFvL5fHz0ox+lpqYGTHj99dc5efIkdXV13HvsXgDOnj3LhQsXMQyDWCxGKBRicHDQ2uWYnZ1lanoah8NBQ30De3bvsXbsVFVdV9AQDASsPjdXr15lbGxs9b97W+Dv2nb92ytEIcgOiBA73SZ9EzVNk7GxMfw+Hw0NDdhsNl588UVGR0cBuOeee+jq6gKyXaL9fj+1tbUYhmGdgU+n08yGw2RCkwCoiorX66WjowPInnXP9jawr2nCNTk5yfMvvICuadTW1fLI8UfW3C18syktLd3UvT+up6oq0zPTuFyugu5+FYvD4eCDH/wgp06d4uzZs5w9e5bJyUnuuvtuDt92mNPvnebtt99iYmKc8kA5iqLgcrqygaXLRX19PQ0NDRu6O2GaJk6Xk/HxcSKRCM3Nzbhcrg17vmKRHR4hVm97vFMKsQOt+01PUTblMaxoNIrT6cTpdLKrqwu73Y6u6zz//POMj4+DgnXkZCmqqlq5IF6vl31792a7ecfjpFIpDDNbUtQ0TXp6ezBNE1VRcbmyyda1tbU4nU7S6TSKoiwbnExNTfHCCy9mdz5qarZV8GEYhlVlaatQVRWP20M8Hi/2UDaMaZqk02kMw8Dj8aDNH/lraWlhYHCA8fFxXnzhBR5//HFi0RhXrlxh8OpVurq6qK2tXZQjVYh8KUVRqK2ppcRfwsDgIJcvX6a5uZmysrLVPMjGDVAIUTTb491SCLHlmabJxOQEY2NjVFZU0tDQgN1uR9M0fvjKK1bw8eADD9La2rqqx3Y4HEtOenZ17SKZTJFKJ0mn0iSTSSvYGBkZITwXRlVUHA4nTqeDiooKysrKmJyc5IUXXiSTSVNZWcnx48e3TfAB2Z2h3r5ednXt2lK7CV6vl7m5SLGHsWa6rpNOp8lkMrhcLlwuF+FwmMnJSdKZDJlMtsSu3+eno6MDm82GaZp0dXVRXV3DuyffJZFI8P3v/xOPPvoIsXic0ZER3njjDT7ykY8ULaDMJagPDg4Si8VWF4AIIbal7fOOKcQOtR1q0WcyGQYHB4nGotRU12TPtpM91//CCy8wMTGBoqocf/hhGhsb8/KciqLgdrvnS8zeOCGqra2lrKycTCY7IczmkMDsbNgKPnI7Jpe7u3HY7VRX1xAIlJNMJolGo9hsdhwOO3a7HYfDsWxTxc0mN/b1lt/NCQQCBIOBvDzWzbg9HkJTIXRd31SvtWma80n9GhlNQ9c0NE2zdiUGBwcJh8PW7hxAfV09VVVVqKqKw+HA5/PhcDhwOp3W90VVVdrb27O3r6+ntraW559/jmQyyXPPP8+xo0cJz84SjUY5ceJ1Hn74oaIdF7LZbIsWDubm5vD7/UWtXJcvO6kioRD5IgGIEDtdkXNADMOg+8oVDMOgrbXNyjswTZMXX3rRCj4+8Nhj1NbWFmxc14KTa+bm5njmmWfIZNKUlZVx7733oqoqGS2DltGw27OT3lg8zsjoyKIkVa/HS1dXF6ZpcvnyZex2u/Vhs9moqqrCZrMRj8cxDAObzWZdpyhKQSeOkUiEEr8/b8/5e7/3+wU5SuP3+airrduwx9d1HU3T0HV9/nMdjyf7cxKLxZiens4m3Gsamqbjdrtoa2vDNE26r3Rbj6MqKna7wwow/CUluN1u7A4HDrsdp9Np9d0oKSlZcYWvQKCcJ598kpdeeonJyUlOnDhBZ2cnPb09XL06yPkLF9i/b9+GvDYrkft50jSNgYEBXC4Xra2tS+/MbNLcNCFEfkgAIsQWtdVX3UzTzOZfqCoN9fV4vV5r0mWaJq+99hrjY9ljV8cffrigwcdSIpEIzz2XXV0uKyvjgx/84LLHkyqCQYKBALquk8lk0DTNmnyZponP58uuhmcyJBJJdEO3KhCNjY0RiS4+RlRXW0d1dTXhcJixsTFsNhs2mw1VVXG5XdTWZF+biYmJbAUjVUVVVFRVwe/3Y7PZSKfT1uutKIr1/+uDDE3TSCQTVOSxh8l/+k9f5OHjD/MLtz2Qt8dcSq6EbC6HxTAM6yNXbCCVShGLxzFNE0PXMUwDu91BRTCIrutcvXrVKmSg6wa6obNn925sNhsDAwM3fG/q6+pxu93Z1y2RwG6343K58PnsVsK1qqp0dnRaO2HXr/oHA/nbHXK5XDz++OO88cYbXLlyhStXrlBRUcHU1BTvvvsOVZWVVFdvXE+WlbDb7XR0dNDX30/3lSu0trTg8/mKOiYhRGFJACLETlXE5M7ckSuXy0VjY+MNZ8JPnTpldTg/es/RvB27WqtoNMpzzz1HPB6npKSED3zgA7fMjcglsF+fG6Kq6k2/nubmZjKZjLXKrhsGnvmdGLvdjs/nszrDZzIZazJrmiYTExPoxuIu2Ht278FmszE6OspseHbRdTXVNdTW1jI3N8fg1asoimLt2sxMT1Mx39ivr68PwzCsr0tRFOrq6nC73UxNTxONRBYFMj6/n4pgkFQqxdjoCEduvwO/v5SrV69idzhpaGgAYHR0lEwmYz2naZpUV1fj9XqZnplhdmbGClRN06SkpITa2lrS6TQ9Pb2YzF9nGJimyYEDB+a7eA+RzqQWfa2NjU1UBINEIhGGR4atr0VVbZTMj1dRFHRdzwZ2LpcV6FmvV00NlZWVi3ancteXlZXdNLehkBNsVVU5duwYXq+XM2fOMDU1hcfjIZFI8Morr/DRj340b8fr1srr9bKrq4u+vj56entoaW5Z+vXbxEnopmlu+YUgIYpFAhAhtritVos+N9kFllyJvXLlCmfPngXg8OHD7Nq1q6Dju14qleKFF16wOpx/8IMf3NA+H0sFLTk+n2/ZiayiKBw4cMCarOdW/nO7SjU1NQQCAQxj/nrzWmDjcrmoqqrENK7d12a/NvF2OBzour4oGMgx5nd54NrPYm5yaxgGiUSS6qoqfD4PiUQSh34tzyGdTlvVxnJfQ+4xFJQbdmpyr4uqqlaHdkVRUFQFVckGYrOzs5iYtDS3oijXqqLldiOCwSCBQGDJXheqqlolmpd7/bcKRVG47bbbcDidvPvOOyQSCVSbjUQiwauvvspjjz1W9PKxDoeDzs5OxsbGtnTvnGK/jkJsRYq51WYvQggAxqPjhGIhSh2lVHgrVv8AMzMwNobpckEBjjeZpsn4+DjjE+P4fX6am5utyXHO8PAwL770IpjQ2dnJvffeu+Hjuhld13nhhRcYHx/H4/HwxBNPbPuO24Zh5DUx2NA1PnLPXo4/8gj/9+/9OaptY9e9pqamGBoe4sD+A5sqEb2YLl++zBtvvJH9hwKYcPi2wxw+dLio47peJpNhbGyM+vp6bJqGMjSE4vdjtrUVe2hLGpkbIUOGhrIGSl1bp2eOEJvB1i8/IcQOtdVW3XLHW2pra2lvb78h+JiYmOCll18CE1pbWzl27FiRRpplmiY//vGPGR8fx2a388ijj2774EPTNM6eO8vsbLjYQ1mz3NG4ndARfaV27drFfffdh6Iq5IrmnX7vNCMjI8Ud2HWSySSzs7N0d18hlUxu6uNXsD0qEApRLBKACLHFrflNsEBv7qlUyprQ1tfXU1Ndc0PwNDsb5vkXXsA0TILBYHayVOTJx5n3z9Db2wsKPPzQQ1Y+xHYWi8UwTRO3O7/dqnP5EoWQO/6VTCYL8nxbRUdHB48cfwRlwe7Wa6+9RjqdLuKoFispKaGzsxPDNOjp7SWVSt36TkKILUkCECHEholGo3R3dzM2NpZN2FwiqEgkEjz77DPommblWBT76Exvby+n3zsNwN133WMlTW938Xgcm+1a9aZ8+dXP/iqPPfZYXh9zOaqqEgwEsW3wUa+tqKGhgUeOHyeXN51MJnnzzTeLO6jreDweujo7sdlsXB28irEFTolLIroQqycBiBBb1GZ/05uanqa3rxe3201nZ8eSwYemaTzzzDOkUimcTicf+tCHitatOWd8YpwTr58AYN++fezZs7uo4ymkaDSK3+fL++7TlSs9hCZDeX3Mm2lqaiIQKC/Y820lDQ0NPP7449njWGQrnPX39xd3UNdxOBx0tLdTU1uzLRoVCiFuJL/ZQuxwygYsMIZCIYaGrhIoD9De3r5sVae33nqLSCSCarPx+ONPFL0STjgc5qUXX8Y0TBobm7jjjjuKOp5CMgyDRDKxIZWevv+//zfvnnw374+7nGz1rcSWqxBXKDXVNTzx+BPWTsirr71KOLy58n7sdjslJSWYpsnIyAhzc3PFHtIN5OdLiLWTAESILW7Nb4IbmGNRWlpKfV09jY2Ny65gXrp0iStXrgDwyPHjRV+xTiaTvPTSS2QyaSoqKnjwwQeKnodSSKqqsn/ffoLbINclHJ7jcvdlNE0r9lA2raqqKisIMQ2T73//n4jH48Ue1jULesMkEgl6+3qZnZ0t7piWsZP+TgiRLxKACCHyIpPJ0N/fTyaTwel0UlVVtewb8+TkJG++lT17fvi2w9TX1xdyqDfQdZ0f/vCHRCIRvF4vx48fX3bXZju7vvHeVuXxZBPRpRLWzVVXV3PvsWypa03L8L3vfW9TJaUDqDYbbW1tlJWW0dffx9TUVLGHJITIAwlAhNii8rLqlqeVu3g8zuXubmLx+C1XnVOpFC++mO31UVlZyaGDh/IyhrUyTZMTJ04wMTFhldst9lGwYhgcHGRsfKzYw8gLl8uFoihSRWkFOjs7aWlpAbK/mz/4wQ823c6Rqqq0trZSEaxg8OrgpjkuJmV4hVg7CUCE2OnWeY55djZMT08PdpuNrs5Oqw/D0k9l8uKLL5JOp3E6nTz66KNFP75w4eLFbBKuAscffphgIFDU8RSDaZqb8oz9WimKgsvpklK8K3Ts2DGr8lk4HOb555/HMIxb3KuwFEWhqamJpsambd+PR4idQAIQIba4YvYBSafTDF4dwO/309nZecsKVu+++y6hUAgUeOyxx/Je7nW1JiYmePfddwC44447i34UrFjS6TS6oeNxLx88rsf99z/A/v37NuSxl+PxeNB1vaDPuVU5nU4eeOAB69+Tk5P88IevFDfJeonnVhSFyspKVFUlFosxOjq6KRLBN3tFQiE2IwlAhBBrYpomTqeT9rZ2Wltbb5k7MDw8zPnz5wG48867qKysLMQwl5VMJnnllVcwDZPm5mb27d1b1PEUU2w++XgjKmBBdmeprbV9Qx57OU1NTbS2thb0Obey+vp6Ojs7rX8PDV3l7bff3hQT/KXE43HGxscYG9sexwaF2GkkABFiiyrWqptpmoyOjjI6OgqA3++/5TGqSCTCK6/8CICurq6iT/ZN0+TVV18lkUhQUlLCvffeW/SjYMWUiMdxOlwblnj/B1/7A5577rkNeezl7OTv51rdeeedi3YxL168yDvvvFPEEQHL/J2rqqqivq6esfExJiYmCjymrOWaqwohbk0CECF2ulWscOZq8k9MTqx4sqrrOs8//zyalqG8vJy77757rSPNmzPvn2F0dBRFVXnwoYeK3vyw2Kqqqmhqatywx0+n06Qzha2ulEqlOH/hAtFotKDPu5U5nU6OHDkCgDJfPvvChQu8//77xRzWsmpqaqiprmF4ZLio1bEkCBFi9SQAEWKLK9QRCdM0GRoaIjQVoqG+gerq6hXd78033yQajaLabDzyyCNFL/M6OjrK6fdOA3D0nnuo2AZ9L9bL6XTi9/uLPYy8cjgcZDJpUpusrOxm19XVRSAQwDQMysrKADh16hSXL18u7EBW+Hetrq6Omuqamxa/EEJsPhKACLGFrWvlbZX3DYVCTM9M09jYtOL8jfGJcavZ4LGjR4s+yY3FYvzoR9mjYB0dHXR1dRV1PJtBIpFgaGho05VeXS9VVbHbHaSlFO+qqKrKXXfdBUB4LkxdXR0Ab7z5BgMDA8Uc2pIURaG+vh6v14thGJurmaIQYlkSgAixRRV627+iooL2tvYV7xhomsYrP3wFgLr6ejo6OjZyeLdkGAavvvoqqVSKQCDAPffcU9TxbBaxWIyp6allO9ZvZW6XS3qBrEFtbS2NjU1gZqvs1dbVggk/evVVJicnCzuYVfydGx8fp7u7m1gstoEDukb6gAixdtvvHUcIsTo3OepgGAYDAwPE43FUVV1V/f2TJ0+STCZxOJw8uKDEZ7GcPHnSajb44IMP7shO50uJx+N43J4NCUAM0yAUC+EJeHH4HYRiIQyzcP0lXBKArNmdd96BoiqMjY6xe9du6urqMA2Dl156qWAT/NWqrq7G4/HQ09NDIpEo2PNKGV4hVk8CECG2uI1ahdN1nd7eXubm5lbdT2FkZISLFy8C8OCDDxS938fg4KBVAvj+++6zzrYLiMcTG9b5fTo+zf6/OMjQ7SP8Xfzv2f8XB5mOT2/Icy2lsrKS5ubmgj3fdlJaWsr+ffuBbP+e+++/n9LSUlKpFM8++2xhjuytcpfXZrPR3t6Ow+Ggp6dHgk8hNjEJQITYqW7y5q5pGr29vSQSCdra2la185FOp608i7a2NhoaGtY91PWIx+OcOPE6AHv37qWlpaWo49lMdF0nlU5u2wRet9u9bb+2Qjhw4AAul4toNEpPTw8PP3wc1WYjGo3y8ssvb2wBjDU+tt1up7OzE0VRmJ2dze+YrrNZe6QIsRVIACLEFrWR2/4DAwOkUina29tXnTj++uuvk06ncTicRc+zME2TE6+/TiaTJhgMcscddxR1PJtRXW1d0YsDbBRd1xkaGpLE5DVyOp3cfvvtAJw+cwaXy8nxhx8GJVtN7tSpU8Ud4DIcDge7d++mpqYG2PhAQcrwCrF6EoAIsdMt8eZcW1tLe3v7qjtjDw4OMjg4CGSPXhW7v0Z3dzejIyMoqsp9992/LROt18Nms1FdXV30I3IbRVEUpqanCpoPsN10dnYSDAbRNY2zZ8/S0NDAkduyvULOnj278ZWx1ji5z+V4TU1N0d/fL7sVQmwy8m4sxBaXrzdWwzAYGx/DMAx8Pt+q8wJSqRSvvXYCgNbW1qIfvYpEIrw938X5yJEjBALlRR3PZhQOh7d1oz6rFK/0AlkzRVGs5oQXL10iHo9z8OBBK7fmtRMnmJ6ZKeYQb8putzMbnmVsbKzYQxFCLCABiBA71YKVRdM0GRwcZGJiYs2rxW+//TaalsHtdnPs2LF8jXJNTNPk9R+/jq5pVFdXs2/v3qKOZ7MaHx9nerpwSeHF4HI6JQBZp/r6eioqKjANwyrm8OCDD1JTU4Ouabzw/PMkk8n8PmmeFlbKysqoq6tjbHyMmTwHSlKGV4i1kwBEiC0qX+eOTbIdzsNzYZqbWlZ97Aqy58F7e3sBeOjhh3A4HHkZ21pduHiR8bFxVJuNe++9V45eLcE0TZKp7ZuAnuOUAGTdFEXh8OHDQPZ3K5FIoKoqDz30EC6Xi2QyyfPPP49hFK7E8mrUVNcQKA8wODi4IflAUoZXiNWTd2UhdjJFYXJiwupwXl6++vK0hmFw4kT26FVHRwc11TX5HuWqzM6GeffddwG48447KS0tLep4NqtkMolpmrjd7mIPZUOVlpYRCASKPYwtr6GhwdoFOXfuHJCtMvbYY4+hqAozMzO8+uqr+X/iPCy0KIpCc3MzwWAw74sjkoAuxNpIACLEDpbLH6mrrVtxh/PrnTt3Ltuo0GYrepUpwzB4/fUTmIZBbV0tu3fvKup4NrP4/FG77b4DUl5eRmVlZbGHseUt3AW5eOmSdVSzoqKC++69D8hWzzt79mzRxngzqqrS1NSEw+Egk8nkJXdOEtuFWDsJQITYota77Z/OZFAUheqqaqqrq9f0GMlkktNnzgBw+NChoq+mnzt3jlAohN3u4N5j98rq5E3YVBvlZeXbviO8ruuEw+HCNM7b5nK7IIauW7kgAO3t7ezfn21aePLUSSYnJ4s1xFsyDIPLly8zPDxc7KEIsaNJACLEDjQ7O8vFSxfXfR76jTfewNB1vF6vNQEplqnpad47/R4Ad99917btbZEv5eVlO6Ipo6Zp9A/0Sy+QPFAUhUOHDgHXckFybr/9durq68GEH/3oR+vPu9mg3QVVVamurmYyNEkoFMrLY8pChxCrJwGIEFuYgrLqYwCRSIT+gX7KSsvWdfxmamrK6vlx3333FTXRW9d1Xj9xAtMwaWhspKOjo2hj2QpM0ySRSGzapOF8yvWikUT0/GhsbCQYDN6wC6IoCg89+CA+n49YLMYPX/nhpj2iVFVVRWVFJUPDQ9u6DLUQm5kEIELsILFYjN7eXvw+P01NTfMrd6ufJJimydtvvw1Ac3MzdXV1eR7p6pw7f46ZmRkcDifHjh6VFclb0DSNy92XmZuLFHsoG05RFBwOJ5lMpthD2Rau3wVZWH7X6XRy/wP3gwJjo2Ocv3AhH0+4/sdYQkNDA16Pl4GBgTUH4lKGV4i1kwBEiC1qtZNs0zQZHh7G4/HQ1ta2rh2L7u5uJiYmUFSVO++8c82Pkw+RSITTp7N5KHfffdeqGyjuRLmjM2739uyAfj2nQ5oR5lNTUxOBQABD17l48eKi62qqaziw/wAAJ0++y9Qm7TOjqiptbW20tLSse/dWyvAKsXoSgAixQyiKQltbG+3t7dhstjWvLGYyGd55J1vmdu+ePUXJtUgkElbTxLfefhvTMKipqaG9vb3gY9mKUqkUiqLgcu2MAMTr9WZ/5kVeKIrCwYMHAbh48SK6ri+6/siRIwSDQUzD5OWXXtq0BQAcDgd+vx/TNIlEtv9uoBCbiQQgQmxxtzoGYJomIyMjpNNpHA7HuqsevfPOO2haBqfTyW233baux1qtN954g5//+Z+nubmZffv209zczO/8zu/Q19fH3XffI0evViiZTOJyunbM61VfX09jY2Oxh7GtNDc34/F4SKfT9PX1LbpOURQeeeQRbHY78XjcOq65KgXMH5mamuJKz5VV54Ns1hwXIbYCCUCE2OZGR0cZnxhfdFZ7kVW8ic7NzdF9pRuAo0ePFrSE6//4H/+Dj3z0ozz77LPWkE0Tzr7/Pl//+p/x9NP/WLCxbHWapm37/h/XM01TJox5pKoqu/fsBrK7INe/tl6vlwcfeADIHtkcGBgo+BhXqqKiAp/Xx8DAwA27OSuxUwJ5IfJJAhAhtqiVnDuenp5mfGKc+rr6GzuCr+FN8+TJk2BCIBAoaAnXN954gy/8+q+DCbq+OGE0N+/5/Be+wJtvvlmwMW1lbW1tNDU1FXsYBRMOhznz/plNexRoq9rVtQtFVZmenl6y90dTUxP79u0D4NXXXlt9xSlF2bAk9MVPo9DS0oKmaQwNDW348wkhJAARYtuKxWIMXh0kGAiuudHgQuFwmMGr2bK7d99zd0FX/f7bf/tv2G6RKGpTVf77f//vBRrR1reTVm1zO3VSCSu/3G43ba2tAFxYpuLVkSNHKCkpwdB1XnjhhU1b+tnlctHY2Mj0zLSU5hWiACQAEWKLW+5YSTqdxuf1LSi3uz4nT54CE+rq66mprln3461UIpHgBz/4wQ07H9fTdYPvf//7i5qjiRuFw2HOX7iwoybj13qB7JyvuVD27t0LwMDgALFY7IbrbTYbx48/gqKqzM3NrTwfpAin5YLBIB3tHfh8vhXdXsrwCrF2hTvALYQoCNM0URSFQCBAeXn5rYOPFZyLn50Nc3V+9+NIgRPPI5HIitNUTDN7+52W3wDXvu+QXek3TRPDMKzcB5fLhc1mIxaLoWkZotHsZNHExOV04vP50DSN2dlZ6z65CVYu4AyFQosCF9M0CQQCeDwe5ubmmJubWzSmuHJj9/GR0RGS7mw+Un19PaqqEgqFrMpckN2dKS0txefzEY/Hs487/2Oc6+sRDAQwTZPp6WlQFBRFsY4llpaWYLPZSCQSaJpmPW4ymUDTfNjtduv1UXL33UE7QvlUUVFBdXU1ExMTdHd3L1mYory8jHvuvps33niDS5cubYreQUvJ/dxB9u+I3++/5c/Fwp87IcTKSQAixBa11BujaZoMDg5is9lobGzM26Tq7bffAuY7CFdW5uUxV6qkpARFWVmuvKJkb7/Z5Ca7uQTX3Ip8OBzGMEwMQ8cwDAzToCJYgd1uZ2p6mlg0mr18PpAoLy+noqKCaDTKwOAg5vzlhmngcDjZN78afenyZXR9cb5De1s7JSUlzM1Fsj8nV68lBQcDQXw+H5lMhpHRERTmJ+SKgqqqVgASDodJzffTyE26/H4/Ho+HjKbdsAKesd+445BIJIjpsRsvi8UX7ea53G58Ph+pVJqp6elr15kmXq+XYCAAwNDwjWf29+zeg81mY2JigtnwrHX5+MQ4KFBbU8vc3Bz9A/3WdYqi4HK62L07m1jd3d2NYRioqmp91NXV4Xa7mZmZJZGIL7rO4/Hg8/nQdZ1EIoGqqthsNuv67VwGeM+ePUxMTHDx4kUOHjy45Ne6a9curg4NMTw0xGuvvcY/+2f/bEVFLMwizO2TySRXeq5QX1dPTU3hdnuF2EkkABFii1t4DGBycpLpmWmam5pvfccVJnhOTU8zOjoKUJSmgx6Phw996EM8++yztzyG9dhjj+V998M0TXRdR9O0a/83DMrLylBVlanpaZKJBLquo+vZQCIQDBIMBJidDTN4dWDRxNrtcluT3IHBa9cpioKq2igtKcVut5PJpEmlUosmsMp8HozD4aAiGERRs6uvqqqiLpj0Nc8nmCvzAcTCnh+KAmWlZTQ0NFgr/7lGbB6Ph0MHDy37WnR0dCx7XUUwSEUwuOiyUCx042O0d1DpWxzE3iwhPhAoJxAoX/I6RVGs8Vq7NqZpTYDr67MTSNM0SSZTqKpi/Xx4PB6ampqzr/98gLjwNfT7/db3M/eRC+hT6STh8ByGaWAaBrqhU1VZhc/nI5FI0NPbs2icNpudA/v3A9nARtcNbLZrAUpNTQ0ej4doNJoNXmw2VEXFbrfhdDpxuVyLfk42m1xJ3kQiQV9fH52dnUve7oH77+cf//EfSSQSvPfee0VvYroct9tNdVU1o2OjlJSUSHNTITaABCBCbBNzc3MMjwxTXVVNRUVF3h73nXeyZ7arq6upqqrK2+Ouxq/8yq/wTz/4wS1vNzY2hqZpS66sLhVIuN1uXC4XsViM6elp6zpd13G73bS0tGCaJufOn7vh8XzePbhcLpKJBJFI1JpQ2u12VCU3oXdTV1tnTShVVVk0tr179loBxvUTy9qaWmprapf8Ol0uF7W1S18H3FjxbMFrkE6nCQQCOByOZe+/lSw8tnU9h8NhfZ3XB6ZOp5Pg/E7UUm52RGip700uQPB6vezq2mUFLdcHzaVlpWgZzQpudF237huNRZmcmMQwr90nGAjS1NREMpnkcvdlbDY7NtWGzaZit9ut5ptTU1MYhoHNbsc+/3OYO3a30XIled879R4XL16ko6Njye+H0+nk3nvv5aWXXuL8+fM0NTcVNJ9sNerq6ohEIgwMDLB79+4buqVLSWch1kcCECG2qIXnjlOpFP39/ZSWlFJfX7+6B7rJG+n0zAzjY+NAcXY/co4ePcqnPvlJnnrqm6iqgmEsPeb33z/Ll770JX71V3+VTCaDpmm0tbVhs9no6+sjEl3c7biuto7q6mo0TSORSGC323E4HFZgAtnJVUtz66IAI7dyDdDQ0LDsuF0u102DtmIEAZ2dnQXt37JZzMzMEotFN6whYW7CnTuOtZybTbhzgc3CYFldsOvVUN+Abujomr4ocIFsye1EMrHostaWVsrKypiYmCA0NYVNVa1mpD6/n4pgEMMwiEaj1uV2u31Nuyy7unZx+vQZpqenCYVCy/7cNzY2Uldfz+jICD965Ud84hOfWDpIKvIEX1VVWlpauHT5EuMT49TVLh+QbsZdKSE2u533LiTENuRwOKiqqqKqqiqvb4bvnXoPyB6xKGTuh2EYZDIZMpkM6UyGWDTK/v37+dznPsvp06d59dVXMc3scSKHw7GoutH/+1d/xZ49e7jvvvtwOBzWhKyyspJAIIjdbrMmWrmJeFlZGWVlZcuOp7x8+eu2EkVRdmSCPkA6k2J2dnZLdERXFGXRzydkSwnf7Hewq6vLyjXSNA1N06wg2uPxECgvR9d1MpkMqVTKykNKpVL09S/uZG63O9i3dy+KojA+MY5pmPPjceB0OpbcWXG73bQ0N9Pf309vb+9NA+8H7r+fb3/nOyQSCd59913uvvvuVb9GheDxeOjs6JQjWEJsAAlAhNjCFEUhnU5bCbKrvPNNrw6FQgwNXQXg0OHDax3iDXLHgNLpNOlMBk3LkElnqKurw2az0d/fT3guvOAO0N/fD8Dx48f5xV/8RTRNI5VOU15WxpUrV/jpn/7pa0ddTPjd3/1dXn755UW7QcsdS9pJZmfDxOOx1e+SbQN2uwN9Ptn/+uM024WiKNhsNmw2mxV8QLYww3LFGdxuN3t275nfMdTRtMyifJd4LE48kUDTrgX5uZ2VUCjE9PQ0TqcTp9NJRWXlfADSxx133JHNW1ri74zb7ebuu+7ixz/+MRcvZY9sLXtstMi7C36/H8AK2mS3Q4j8kABEiC0sEokwODBInbcu76t0uXr9tXW1VsWhlcodabICjXTaqsxlmiYXL120bmtTbTgcDnRdx2azEQgEKCktxTF/HGpsbIxwOIxqs3HnnXfe8HXW19fz5S9/mS996cvWZVNT0/zSL/0STz/99LbJdciHWCzK3FxkZwYg8yv2mqZZq/8Cq0DBwoBloba2NiC7cJDblczd1m534PF4SKfThMNzaFoGh8NJJpOmr6+PRDKBw+7E6XRYyfS5pqhtbW1cuXKFyclJXn31VT72sY9t2sAwnU5z4eIFGuobrJ2dhcU/pAyvEKsnAYgQW5SmaQwPD+P3+vN+rCYcDjM5OQnAHXcsnfuRSqVIJJKk0kky6eyxjmtlYmMMDPYD2UmKy+m0AgFVVWlva7cShK8/yrHwKJRhGLz33nsA7N+3b9kg6zOf+Qyvv/5jnnnmGeuyt956m69+9at8+ctfXvI+O1EymcTtXnqiud3lfv4ymYwEIGugKIq105FTXl626HiiaZqkU2kuXLjA4NWrHDp4MHuMMp0mkUgQj8etAOTS5cvU1tYSmppibm6ON954gzvuuAOXy5XdgTGNTTOtdzqdBANBRkdHKS8vl0UNIfJAAhAhtqBcvw+A+ob69R0LWCLZ8/Tp00C2M7DT4SAUCpFOp0kmkzQ0NOByuZiYmGB6ZhpVUa3VTVXNBhMlJX5279qN0+lcclVzpb06uru7iUQiOJ1O9s+XMV2Koih8/etf55FHjnP16rW+EF//+p9x9NhRHv/g4yt6vu0ulU4TKC8v9jCKwul0UltbK5PHDaQoCh2dnVy4cIGRkWHuu/de3G73kretr6snnUmRTqe5dOkSPb09dHZ2Ul1dzcjICHP9A3jTKeyxGHbTtBpTFkt9fT2zs7OMjIzQ0tJStHEIsV1IACLEFjQ5Ocnc3ByNjY1rr2i0IGjJZDIkk0nrY2A+uAkEAvT29QLgdLhwu7OrkwA1NTXU1tYuWTUndw59PTKZjLX7cejw4VuuWgcC5Xzzm9/kQx/6EJqmW5d/9lc/y8svv7wlko83UjaxP71jV//tdvumLfm6nQQDAQKBADMzM/T3D7Bnz+4lb5fr7VJdVZ3tXzQ9zRtvvMFHP/pRysvLcVfH0UIhkrrObCiEqqr4fD7C4TBDQ0N4PB6rWp3X693w4gp2u536+nquDl0lGAzi9UliuhDrIQGIEFtQeXk5TU1NxO1xTH3l5SqzDdmSmKaJ1+EglUoxcOUK8fnytIqiMD01jWkYeL1eDh06hMORrXpzfZCx0RPZ8xfOk0ql8Pl87N61a0X3OXLkCF/5ylf4jd/4j9ZlMzOzfOpTn+J73/vejp18Q/Z7X1tbW9RV5GKbm5vDbrdLVaMN1tbezsy779Lb27NsAJKjKAoPPvggT3/3aWZnZzl3/jwH9u/HX1WF4nRCRQXMN5OE7N+d8vJykskk09PTZLQMfp/fqgI2MDCA2+PG68kGJfnc8aqoqCCdvjGIl8R0IVZPAhAhtpBc7X+n00lVZRUDswO3vE88Hmd6epp4PE4ikcAwDUr8JXS2tOBwOAiWlVPZ1ILH48bhcPD0008DcODAwRUflcq3ZDLJ2bPZ5n9HjhxZ1W7KL/3SL/H666/zve/9b+uyd989yW//9m/zO7/zO3kf61Zhs9l2/A7AyMgoJSV+CUA2WHtbGydPvksoFCIcDt+0xDVkK9QdOniI06dPc+rUKdpaW7k+TM5N8j0ez6LeO7l+KZDNi8tkMoTDYauZo8PuYN++faiqSiwWw7kgH221FEWxCjhouramxxBCZEkAIsQWMjQ0RDQaZd++fTdcp2kasViMeDxOLBajvLycyspK0uk0kUgEj8dDWVnZteMKpomqqlRWVWLOH4fo7+8nGo1is9vp6Ggv8Fd3zZkzZ9A1jWAwaFXhWSlFUfiTP/kT3n//ffr7rwVof/EXf8m9997LT/zET+R7uFtCLBbDMIyiBZWbgcNhJ5PJ3PqGYl28Xi91ddlmg319fdx22223vM/Bgwfp7e0lEonw4zfe4LEjR1b0XAuPezocDmsnJJ1OE4/HSaVTVh5af38/6Uwap8OJz+fD6/USCARWHZDE43F6+npQK1Q87p3ZV0eI9dqcNe+EEDeYmZlhamqKmpoaq/9HbkdkeHiY98++T29fL6H589K53JDy8nL27t1La2srNTU1lJSUZK9b4tjAmTNnAGid3x0phrm5OS5dvgTA7bffvqbjDWVlZTz1zadwOhd/DZ/97GcZGLj1rtF2NDU1xdjYWLGHUVQOh8NaLRcbq6M9u4DR09OzqDv7clRV5b777gNgZHiYqVBozc+dKy0cCASoram1Lu/q6qK1pZXy8nLS6TQjoyPWz8Pk5CSjo6PMzc1ZeW7Lcblc6LrOxPjEmscoxE4nOyBCbAHpdJqBgQG8Xi/RaJTx8XHC8TC2gI0SXwllZWV4PB58Pt+am2VNTU0xOzsLwOE8Nh5crffeew/TMKmtq11Xv4rDhw7z1a9+lc9//gvWZXNzET75qU/xT9///rJ9D7arbAnepSsS7RR2u51YLF7sYewIzc3N2Ox2YrEY4xPjiwKB5VRXV9Pe3k5vby/vvnuSDx69J6/5FbkywoH5vkYLGy5mMhlCoRBj42MoioLP66O2tnbJHUObzUZDQwODFweJzEVgmR6KQojlyQ6IEJuUaZrE43EMw6C/v9/6dzwep6SkhLbWNiuh2O/3EwwGl0wWX6n35kvv1tTUWN1/C212Nmx1Pb/j9jvW/Xi/8Au/wD/7Zx9fdNnp907vyN4g6XQap2vnJuED8w33dvZrUCh2u52W5mYABgcGV3y/22+/HUVV56to9W/Q6LJUVbX+XtbX13Pw4EH27N5DfV39oup+k5OT9PX1MTU1ZR3hKy8vx+/zMz4+vqIdHiHEYrIDIsQmYpomkUiEmZkZwuEwmqbR1dVFfX09qVSK0tJS62hUUksSngljaDc/LrCCJyWZTDIyMgwUd/fj7Nn3AWhobKSiYv3Lioqi8Md//MecOXOGnp5e6/JvfOMpjh07xpNPPrnu59gKdF1HN3Sczp2163O9ioqKvPxciZVpbm6mt7eXwcFB7rrrrhUtjni9Xvbt3cuVN9/k7NmzNB05UrCJiqIoeDyeG0r6qqpKJpNh8Go2kPJ6vAQrg1RXVzM1OUU6nd5xO6pCrJfsgAhRZAtXz7q7u7ly5QrRaJRgMEh7ezs+nw+/309FRcWSeRkm6199u9x9GdMwKS8vp6amOJWSIpGI1XPk0MGDeXvckpISnvrmN29Y+f61X/s1ent7l7nX9qLrOj6vD7dMkjBNU1asC6S+vh5FVa1KfCt1eL7vj5bROHXq1AaOcGUqKirYtWsXB/YfoLmp2Trm6na7qampYXZ2lnQ6XexhCrGlSAAiRJFkMhlGR0c5d+4ciUQCgNraWnbv3s2+fftoaGggFApt3DEERUFRFAzD4NLFbNL3vn37ilbT/ty5c2BCbV0tVVVVeX3sA/v38/t/8AeLLotGY3zqU58imUzm9bk2I6fTSWdn544vPxuNRjnz/hlSqVSxh7Ij5Jr3QbaC32rud/vttwPQ3XOFSCSyIeNbLYfDQUVFBW1tbVZp4VQqxfDwMGfPnqW7u5uZmRkJcIVYAQlAhCiwaDRKX18fZ8+eZWxsjJKSEqtMZGlpKT6fD0VRmJmZYW5ujmAwuOTjKCh5CRYmJydJJBKoNtuqS97mSzwep/vKFQAOHTy0Ic/xcz/7s/zzf/7Tiy57//2z/OZ/+uKGPN9mkquWttPlyrVKJazCaW5qAmBwcOV5IJA9vlVaXgYmvPXWWxsxtLyoqqqioqICVVXRdd3KFRFC3JwEIEIUSG4CmGsK2NDQwMGDB2lpabnh/LCmaQwNDVFeXk55efmGjuvKlR4AGuobVtXwL5/Onz+PaRhUVVVt2BEwRVH4wz/8Q3bt6lp0+d/8j7/h29/+9oY852YxOjpKd3d3sYdRdLnS1JqmF3kkO0djYyMo2TLiq9nJUBSFO+64AxQYGBhgdHR0A0e5eguPvtbX12OaJqWlpezZs8eqsjU0NMTQ0JD0nhFiCRKACLHB4vE43d3dTE5OAtk35H379lFdXW1NiK43PDyMaZo0za8e3sx6Vra1jMZkaBJMk7379qz5cdYjmUxy6fJlINuMbCOPgPl8Pp566pt4PIvL0f67f/fvtvUEPZVK4XRK9afc75suXawLxuPxUF1VDcDVVRzDwjQpLyujs6MTgFdfffWW/TmKQUHB4XBQXV3NxMQEDofDWsix2+2EQiHOnTvH8PAwui6BrxA5EoAIsUEMw2BkZISLFy+SyWSsXY6FpR+X4/V6aWxs3NhmgIrCwOAAmNnypDXVxUk+v3jxIrqmEQgEaGho2PDn27t3D1/72h8uuiwWi/OpT32KeHx79ohISZUeILuqblNtaBKAFFTj/ELK0NDVVd/30KFDqKpKNBrN5oltUrkGsQubfdbW1nLgwAGqqqqYnJzkwoULEoQIMU8CECE2QDqd5tKlS4yNjVFXV8eePXuspMWbye1m5M4V30w+dgoG+rNdwdvb24uSfJ5Op7lw4SKw8bsfC/3Lf/kv+Nmf/T8WXXb+/AX+43/8jwV5/kIyTZNMJi07IPO6urqorKgs9jB2lKbGRgDGxsZWXQDA7fFw+LZsafBTp05tmmpT1+882+12WltbbzhCarfbaWhoYO/evdTU1Fi7I5KTJXY6CUCE2AAOh4OSkhL27NlDXV2dlWR+K6Ojo1y9uvpVwrWIRqPMzMwAsGdPcY5fXbp0iUwmTUlJCc3zTcsK5fd+7/fYu3fx1/3//X/f4u///u8LOo6Nlpuwbehu2hbicrmKluu0U5WVlWUXYMzVVcPKOXzoMB6PB03TePvttzdghPlRVlaG0+lcMrhwuVxWdb/x8XH6+vo25ZEyIQpFAhAh8iiZTBKJRFAUhcbGxlWVPU0kEoyNja16crTWPiCX5/MuKiorKClC53NN0zh//jwABw4cWHGQli9er5ennnoKr3dx07HPf/7zXJwvS7wduFwuDuw/ULTu9pvN5OQkY+Njt76hyKtcPttaFlhUVeWee+4Bsj2LNlPp7Ot3bROJBGfPnrVKqy/F5XIRDofp6+uTnRCxY0kAIkSemKbJ4ODgmlb4cvd1uVzU1tZuwOhufL5c4nch8i6W0t19hVQqhdfrpaOjoyhj2LVrF3/8x3+86LJEIsmnPvVJYrFYUca0EWw2W8EDvM0qkUgQmdscfSV2klwAMjwysrI8iOsm5m1tbZSXl2MaJu+///5GDDEvXC4XiqIwMjKy7G3Ky8tpa2sjHA6vqkGjENuJvCMJkSezs7NEo9E1TehDoRCxWIyWlpYVTxQV1p4vMTExkV2hU6Gp8daVtvLNMAzOnTsLwP79hd/9WOinfuqn+Plf+PlFl126dJlf//Vf3xarkxMTEwU71rcV2O12dF2OvhRaZWUlLpcLXZuvvLdKiqJw1113AdmmpcUuGGFiLpmzpqoqdXV1hMPhm46xvLycQCDA8PCwHMUSO5IEIELkSTQaxeVyUVpauur7ptNpKisr13RMZi2T5Fw1marKKhyOpUsBb6TBwUHi8ThOp5Ours6CP//1fvd3focDB/Yvuuzv//5/8a3/+T+LNKL8icfjmyZxdzNQbSq6IZWICk1RFCtBe3xsfDV3tD5tbGykrKwMwzA2TS7IUgtBwWAQh8PBxMTETe9bW1tLMBiUAETsSBKACJEnyWQSt9t96xsuoaGhYUU9P/JB13VrRbyra74pX4FX+i9dyuZY7N69e9leKIXk8Xh46qmn8Pt9iy7/97/+65ybz1PZqtJpqYC1kE21SR+QIqmrqwNYVKp2NRRF4e677wagp7dn0x6TVBSF6upqUqnUTReIPB4PjY2Nm+JvoBCFJgGIEHmylq7liUSCyclJTHPp7fybWWvJ2lxDLIfTuWFdx29manqa8fFxULI5GJtFR0cHf/qnf7roslQqzac++clVdXDebNKZDA6nVMDK8fl81NTUbIvjdVtNLr9tYnICTbtFELjM9ye3C4LJptkFWUp1dTW7du266d/pdDrN3Nyc/CyKHUkCECHyZCW9O643PDzM+Ph4Qd+ABgayvT86OzuLkntx6WK270dzUzM+n+8Wty6sJ598kk9+8pOLLrtypYfPf/7zW3KSYBgGuq7hcMgOSI7X66WmuqYofW92utLSUjweD6Zh3vJ4ErDo+NW1ixSOHj0KQG9fL9FoNN/DXJHc34Plfo4URUFRFGKx2LJJ9+Pj4/T29m7Jvy1CrJcEIELkUTKZZGBgYEVneiORCHNzczQ0NKwrEFhNGV7TNK0ApNB9NwBSqRQ9vb0A7NlbnN4jt/KVr/y21fgs59vf/g5/+7d/W6QRrU9TUzP+TRboFZOmaczOhm+9Ai/yTlEUaxdkxcewlpjg19fXEwgEwITTp0/nc4h5lclkuHTp0pKVriKRCJOTk9TX10uFOrEjyU+9EHlkGAbT09P09PTctNSkaZoMDQ3h8/lWfWxrPcbGx0in06iqurjcb4FW4LqvXME0DMrLy6mpLvzxr5VwuVw89Y1vUFpasujy3/iN3+DM+2eKNKq1UVWVYCCAy+Uq9lA2jXQ6zcBg/6o7cov8yOWBjI6OrvkxFu6CXO6+vGmPSDocDgKBABMTE4t2OaLRKL29vfj9fqs5oRA7jQQgQuSR1+uls7OTWCxGd3f3stWHwuEwiUSChoaGNR8FUVBWfd+eKz0AVNdUX2t4WKCjKIZhWMev9uzZs6mPwLS2tvL1r3990WXpdIZPffJTzM3NFWlUqxeLxQiFQsUexqaSS/hdUS8KkXe5hY+p6ambV2e7xaJIXV0dtbW1mIbJm2++mc8hrshKd55zyejhcNi6bGxsDI/HQ0dHx6b+OyjERpIARIg8KykpYdeuXWQyGS5evLjkcayysjK6uroK3p06V/2qs2O+9G0B3/yGh4eJxWI4HE7a29sL9rxr9eEPf5hf/uV/s+iyvr5+/u2//bdb5sx2JBJhfCVn7XeQXOAtvUCKw+/3Z//umdkciPU4cuQIkC3rXayFgVv1Y/L5fPh8PsbGxqyqXW1tbXR2dl5bBBJiB5IARIgN4PV62bt3L62traiqiqZp1ptPJpNBURRKSkpu8Sj5ldt1QYGWlpaCPjfAxfndj66uzi1TdvLLX/6yNcnJ+e53v8c3v/nNIo1oddLpNE6HVMBaKHfe3pBeIEWz6jyQZdTV1VmFP9544411j2sjGIaBx+MhkUgwMDCAaZrYbDbJ+xA7nvwGCLFB7Ha71ZRwenqaS5cucfnyZc6dO8fU1FRen2slK/L9/f0ABMoLnxMwOxu2znxvptK7t+J0OvnmN5+ivLxs0eVf/OIXee+994ozqFWQHiA3UhQFj9tT0N0/sdiq+oHc4vt0z9F7ABgaGtpUuSCmaTI5Ocm5c+cIhUIEAgG6urrkyJUQ8yQAEaIAqqqqaGtrI5FIYBgGoVBo3eUjV/tGNjw8DGTL795gg48UXbqU3f2ob2hYU6f4YmpqauLP//zPF12WyWh88pOfZHY2vMy9Nod0JiMByBJ27dpFRTBY7GHsWLn+QzMzMySTyXU9Vm1Ntps4wKlTp9Y9tpVabtFnYXW1yclJ/H4/+/bto6mpiVAoJMUPhJgnAYgQBaAoCh6PB13Xs+UjufYGFo/H1/0mfCvJZJKx8exqY2tr64Y+1/XS6TRXerLJ7/v27i3oc+fL448/zmc/+6uLLhscvMr/+X9+blPng5T4/Xg83mIPQ4hFvF5vtpkgLN8PZBW/V7fffjuQ3eW9aWL7BlAUBdM0CYfD9PT0cObMGRKJBIqisGfPHtra2nC73UD2a52cnCzo+ITYrCQAEaJAhoeHcTqdtLS0sHv3bisHZGRkhPPnz3Px4kXGx8c3ZIWsv78fzGxC5KLckwIcB+jp6UXXNEpKSqyjF1vRb/7mb3LXXXcuuuyf/ukH/OVf/mWRRnRrTU1NNxwfE9DT02MVZBDFkcvdyMdx1KamJsrKytA0zco1KwQFhfHxcc6ePUtPTw/pdJqmpiZr13FhnofNZqOiooLp6ekV9YkSYruTAESIAjBNE5fLtWTTqfb2dlpbW3E4HIyMjHDu3DmrZOPN3qgWVl+5VUnInvkdiKampuUGuJIvY02uXOkGYPcmL717Kw6Hg6eeeopgMLDo8i9/+cu8++67RRrV8nRdJ5VKbeodmmJRFEXK8BZZRUUlwK3LRK/gb4aiKOzbtw+AM2fObNgE3zRNIpEIQ0NDpDPXdlrKy8vZvXs3e/bsoaqqatnqVhUVFWiatqVKeQuxUSQAEaIAFEWhsbHROqu8kKqqBINBOjo6OHToEK2trVZ53oGBAc6dO8fVq1cJh8NrmjTpus7EZPaYQ1dX1/q+kFWamp5mZmYGRVVob2sr6HNvhPr6ev78v/23RZfpusEnP/lJpmdmijSqpc3NRbh46aJMtJegqqq8LkVWVZULQKbyEiR3dXVhs9lIp9P09vau+/EWmpqaore3lzNnznCl5wqzs7PWTnVNTQ1NTU34fL5bLrB4PB68Xm/ei5AIsRVJACLEBovH44yNja1oVc5msxEMBq0VtIqKCkpKShadL56dnQWyyY4reczx8XFMw8Rut1NZWbn4yg3ekeid33lpbGiyzkFvdR947DH+7b/9tUWXDQ+P8NnPfnZTHa3QtGy5Z+k1cCObzbapvlc7USAQQFEVMpl0XqpX2e12du/eDbCuCnWZTIaZmRmGhoasn5G5uTk0TaO6pppdXbvYv3+/tUh0qz4g16uvr6e6unrN4xNiu9gaxfiF2MLGx8eJxWJW5ZfVKC0tpbS0FNM0SaVSzM3N4fVmk4rHxsa42H8RxabgSXooKy3D5/PdcMQrV/2qsqqyoEegDMOwViI7OzsK9ryF8B/+w3/gzTff5Mc/vtZ74Llnn+PP//zP+dznPlfEkV2TyWRw2J1b+tjbRsnugEgAUkw2m41gIMjU1BShUOiG6njKGjZFDh06xPkL55mbm2N0bJS62pXlnJmmyfDwMJFIhGQqWxDE6XBSUVGBx+OhtbX1ht+jte7abLUqgEJsFNkBEWIDJZNJZmZmqKmpWddEUFEU3G431dXVVoJjZWUl1dXV2Gw2JkOTXOm5wvjEuPW8U1NTJBIJq+pKS3Nhmw8ODw+TSqVwOp00NDQU9Lk3mt1u56/+6q+orKxYdPlXvvIV3nzzzSKNarFMJoPDIWtMS8mWxW4t9jB2vBUloq/i76bX66WpMZvndvq90zdcr+s6kUiE8fFx+vr6uHDhAqZpoigKmqbh9/tpaW5h/7797N+/H4/HMz+E/AbxkUiEgYGBvD6mEFuNBCBCbKDx8XHsdrv1RptPHo+HyspKmhqbOHjgIHt276EimH2eaDTK4NVBLly4YJXfzb2ZmqZ54+rdBiQqX7mSPX7V3t6+Lbv+1tbW8hd/8RcsPIFhGCaf+qVf2hRnvHVdxyFd0JfkdDoL3oxT3Ch3JDSfvy9HjhwBYGR0hLHxMSvhO5PJcOb9bA7H2NgYmqZRWlpqHbNqbW2lqamJYDC4qt45awlOdF1namqKeDy+6vsKsV1sv1mBEJtEOp1menqampqaDZ+A5/qMLNwdOXTwULbWvpldsc/lYKRSKU6fOc2lS5cYGRlhemaGaCyW12pJyWSSoeFsmdOOju11/Gqhhx9+mC98/vOLLhsbHeNXfuVXip5j0N7eTnNzc1HHsFlFo1Epw7sJWJWwpqbW/PtimqZ133g8TiQSsf7uvf3W29YRVIfDQXNTM3t27+HQoUN0dXXR0NBQlBypsrIy7HY709PTBX9uITYLCUCE2CAOh4OOjo4bE7/zTFGUJcvw2mw2q8RlZWUl9fX11uV1tXW43W4SySQTkxMMDg5aK3lXr15lZGSEqakpotHoos6+K9XfP4BpmJSXl2/I7s9m8vnPf54HHrh/0WUvvvgSf/Inf1qkEV0j+R9LS6XTTM9IP4ZiKysrxWa3Y+g6M/PFNSymueTxq3g8zvj4OIODg1y+fJn333+fsbEx63pN02hvbwcgNBWibUH1vVxORz5+L25V+vxmFEUhGAwyPT0tZbLFjiUBiBAbIHeuuLS0tKhViEZGRgAW5WA4HA5qampoaWmho6ODXZ1ddMy/YZumiaZphMNzDA0P0dPbw7nz56yjAjMzs0xOThIOh0kmk8tO4Hp7549fbePdjxybzcZf/OVfUFVdtejy3/u9r3LixImijCnbkO0S0Wi0KM+/2dnU7O+kBCDFpaoqlbk8kAX9QOLxODPhWUKTkwwODnLx4kXrZzkcDjM2NkYikcDlclFdU211Vfd6vXR1dXHbbbfh9XoxDZPz589v6New2ipYOcFgcP5vbTjPIxJia5AMRSE2wOjoKIlEgvb29g1dhb7Zm5+u68yGZ4GbNCAEVJsN1/zRLUVRrBVDwzBIJpMkUynr+FYsFmV6ZvGqXX1dPVVVVSQSCSKRCOl0OrvzorAten+sRE11Df/vX/4ln/jEJ6x0GtOEf/NvfpmXX36p4GU30+k0qXRSdkCWoarZ10XXdex2eRssNMMwSCQSJFMpKxenr6+Prq4uFEXh6tWr6CMjOA1QfD68ZWXWMdaamhpqa2tv+rOtKAoHDx7kzTff5Pz589x2222bLg/N6/XS3t5OSUlJsYciRFHIX14h8kzXdSYnJ6moqCjqBHAyNIlpmNhsNgKBwK3vcB1VVfF6vVbZX4DGxkYaGhrIZDKkUinS6bSV3J5IJhkfH7fOXJf4S+jt68PpcOB0OikpLaUiGMQwDKs61nbqUfHAAw/w7//Df+D3f+/3rcvGx8f5zGc+w//6X/+roF9rJpMBkCT0ZeQmo7IDsnHS6TTRWIxMJk0mnSGdTuN2u6mvr0fXda70XAGwfi+i0ai1c9za2ord68VumlBfDwtK1640kNi9ezfvvPMO6XSaoaGhTZkPVV5eXuwhCFE0EoAIkWeTk5MYhlHQVe+lzhHnzkXX19cvHwitIUBSFAWn03lDpZhgIEBZaSkXLlwAsp2JKysrrMlHJpMGsgnq3Ve6gexRGLvdgcvltHZeZmfDKEq2UpHD4cBms22Zlfx/93/9X7z5xhu8/PIPrcteeeVH/Jf/54/59c9/oWDjyOXtSACyNKfTSXVV9bYKgAvBNM358s4OFEVhZmaWZDIx//udIZPRqKmtIRgIEIlEGBoewqbacMwvQuR2m+x2O12dXbhcLqLRKH19fcQTCet5XC4Xis0OWmbNY7Xb7bS0tNDb28uFCxfyHoDkI3fDNE0GBwfx+XwbnisoxGYjAYgQeWQYBhMTE1RUVKyqlONGGB0dBbCSzwthfHycZDKJw+Fk7969S07w3G43He0dpDMZMpk0WmZxR/fhkWG0BRMPVVFpa2vD7/czMzNLIhHHZs8GLg67HZfLtWlKqqqqyn//7/+dhx5+mPGxcevyr/3B17jnrrt56KGHCjKOTCaDzWbfMoFboTmdTurqVtakbicwDINMJoOmaWQyGoqSrdRkGAYDAwPZ4ELTrN/LfXv34XA4mJsLE4vHcTocOBwOvF6vdZyzvLyc8vLyJf8GKIpi7ayWlJSgqCqmYRCNRq816svDBP/QoUP09vYyPDJMIpGwdmvzab39nXKd1yUAETuNBCBC5FE8Hsc0zTV1PV+L5d78DMOwdkAKOdG6ciV7rKKtrXXZ1WVVVfH7/cs+xt49e+ZXU7MrqplM2gowMpk0c3MRNC2DbugAVFZU0tDQQDwep7evD4fdjn3+Y+FEc25uDlVVsdlsG7qzUllZyTf+6q948sknMYxcQgj88qc/zQ9/+DK1NbV5f87rlZeXLzo6JxYzDINYLIbb7d6Wu0SGYaBpmrVTMTc3RyqVQtd1NE1D0zQCgQBlZWVMTU8zNLS4JLHX46WsrCxbYc808Xg8lDoc2O1263cHoKVl+eamK91dUlWVstJSZmdnCYfDee0UHgwGqaysJBQKceHCBW6//fa8PTbAGvPPFykrK8vmvOi67MiJHUUCECHyyO/3c/DgwYInPF5fEnJycpX5H3lYbdR1natDQwC0ta89+VxV1WV3Naqrq62jbblJVi6IsNvtVFZWoGW0+ZXczKISwoNXr6Lri0sKd7R34Pf7mZqaYm5uDpvNlv2w2/B6vJSWlqLrOslk0rrObr/1zsKxY8f4zd/8Tb7yld+xLgtNhvjlf/PLfPvb397wxGe3220VDhA3MgyD3r5emptaCATKiz2cJS1sGKqqKul0mng8gW7o6JpmNZqsrKzEMAyuXLmCpmevM8zsjmJup2JqaopINILNZsc+/zOc+5X3+3w0NjbhmA8ucsE7ZBc4ciVtN1LpggDkhoIZ61wkaGtrIxQKcenSJY4cOZK3RYf1lOFdKBeAhMNhgsFgXh5TiK1AAhAh8iSVSlkT1GLL7X4EAoGbv+HmcQdgdHQUXdNwu91UV218/ouqqouOuTmdzpvuLuzZvdta/dU0HV3XrgU58yu92VViA03XCAYMSktLSSaTVsJsjt3uYP++fQD09/dbq5e5j2AwyOc+9zlOnDjBSy+9bN3vxInX+f3f/32++MUvWpPLjdiFmZycxOVy5XU1eTuxktDN/Cehm6aJrusYhmH9X1VVPB4PhmEwPT2NbugY+rXrGxsbUVWVoaEh5iIRDMPAMHRM06ShvoHKykoi0ai1U6EqKja7Hb/PB1xrRGq32+cD6GygsXCnQlGUJX/WNsMRxkAgwODgILPX9wLJg927d/POu++QSCQYnxjP+w7kWsvw5jidTjwejwQgYscp/kxJiG1ieHiYVCrF3r17C/acy7355QKQQp4rHhgYAKC5uXlT5h4sXNm9XkUwSMUyb/4ej4ddXbvQNA1dN7JHvxbsGDmdTtLptHWOXtezgYvb7ea3/vN/5v2zZ5mcmLRu/yd/+qfce+993HvvMS5dvoSiKKiqLXs8TFXZtWsXiqIwMjJCOp1GVVXrI3e0Kh6PE4/Hs5NKVUVVVJzO7Bl80zQZn5igrLQUp9NpTTxzx3E2MvDZbLITecPaTTAMA4fDYQUgqWSSubm5+etMHA47fr8fTdOYmp7CNEzr/oZhWKvzw8PZnIJskGFgmAb1dfUEAuWEQiFGRkcWjaPEX0J7ezumaTI8MoxNtaHabNjmjwTmvidutxubzYZqU63b+OaP0pWXlVFaUrLkDpyiKDcvtb3JStBeL9fHY25uLu+P7XQ6qautY2RkhLPvny3IEcjVam5u3hQLV0IUkvzEC5EHmUyG2dlZGhsbiz0UAGslccX5H+s8gmUYBoOD2dXZ1tbWdT3WZpNbvV7OzZL89+7ZwzefeoqPf/zj6Pr8arsJn/nMp3nhhRdobGjMTpJNA0M3rDKkcG0lPZPJzE+CsXJnYrEYo2OjiyrxlJaU0tbWNh8EaUzPTDM9M21df2D/AWw2G729vURj2aZuqqJaX0NFRQUzM7OMjmWLFygo88nCHpqbmzFN08rxWTgBbmlpweFwMD4xTjQSXXS94blxh2FgcIA51xwOh8OaNPf19aHr+qLbNTQ04PF4mJiYYGZmZv41yb4ugWA5tTW1xONx+vr7s6/DfJCh2mzW7tSlS5dJZ1KLHre1pdXKb5gMTTIZuhYclpeV4/f7MQyDyYlJK7jLBomK9f1RVdXKhcgFhy5XdjeupKSEZnsLNtu1wDE3uVRVlUMHDy0b/N1swcC2YEdjuymdD0BmZmev/Q7ksUP4oUOHGBkZYWhoyKritZn45neyhNhJJAARIg+mpqZQFKVoW+gLJ6K6rhOLx4DC7YCMj4+TyaRxOJwFb7q3mSmKwrFjx/jSl77El7/8W9blU1PTfPrTn+bpp59eduVzYff661VVVVFVVWWtzBuGYU1qc/+vra3F5/VZK/i5VfCqqirKy8utXYFckjGAy+UkGAgsyj9YOFlzu92LftYWfq4q6qIJsmmaS+7Q5QKbhavydrt90b8XXm93OPD5fIu+PrfLY92voiJ47ToWP259fR2GYVoBRO6oEoDT4aI8UEagPGA9X+6+TqeTAwcOLPv63yywv1n+zU7YdVqLstJSUEDXNOLxeN4n5HV1dXg8HhKJBH19fezatWvdj5mPMrwL5Xata2s33w6NEBtBAhAh1sk0TUKhEIFAYFNso8/MzICZnUTdrNpUVn4mRNeOXzVt+uMexfArv/Ir/PjHb/DMM89Yl7355lt89atf5Utf+tKaH1dRlBtWxnOJ9z6vb8nv/83yQq5vPHn9c93smE8uKFooFAvdcLvm5mYqfYsD45s9bjAQILhMIYVb5f3kjvYsZc+e3cteJwrLZrNR4i8hEokQDocXByB5CNoURWHvvr2cfPck3d3deQlAFj52PqTTaebm5qipqZFAVewIMlMQYp10Xcftdt8w+SqEpd6oxsez/Sdyx0w2Wq6ZFty8LOdOpigKX//612lqWnxE77/+16/z3PPP5f25AuWBovehEWI1ysrKAZgNhzfk8bs6u0DJ/n3ciGT39SorKyOdTpNMJos9FCEKQgIQIdbJbrfT2dm5ac7x5rbyb7b6m08TkxPZMrV2uzR3u4lAoJxvfvOb2O2Lz/H/6q/8KkPz5Yvzwe1209zcLAHILfT29jIyMnLrG4qCKC/P/r0K54KDPB9x8vl8VFZkd97+/+ydd3hkZ3m371OmN2nUu7b39brgNTbY2BTbuNADIQZCTPLRA3HokJgYHAidUEMNHUIooZmSkIANthfb611vX21V76Ppp35/nDkjaVe7qzLSjLTvfV1zSTozc84r6cw57+99nuf3PPHEEwveX6lseF0ikQiyLJNYJAEmEFQaQoAIBAtA0zTGC4WT5UKSpGk3Q7dgd065xAsY/+lC8Xlba+uKLZItFZdeein/9E//NG3b2Ng4d955J5qmleQYuq6Tz+cv/MKLHLcpn6AyWEwnLJctW7YAjvi0rNJbMC8EWZaJRqNCgAguGoQAEQgWwPDwMCdOnKiYm5llWSRTSYAlKQa3bbtY/yHSr2bHX//1X3PrrbdM2/bII49yzz33lGT/Q0NDHDt2vCT7WsnIslzWhQPBdKqqqoDJBZQiJUwj7ezsRFVVDMPg9OnTF37DLFhoH5CpNDY2VoyTokCw2AgBIhDME9u2GRkZIR6Pl23l/8ybXyKRwLZsJFmaXQrWAm/uo6OjpNNpJFk+rx2tYBJJkvjEJz5BR0f7tO2f/ezn+MUvfrHg/RuGcVaal+BsJEmqmIUDgZOCBE5UWdf1RTmGoii0tzufuwMHDizKMRZCMBismFRegWCxEQJEIJgniUQCXdeXtNnfhRgZGQGcfgazLkBfgAhxi89bmlsqzlu/konFYnz5K1/G45numvb617++GFGaL5XY56ASmdqUUVB+vF4vquqct6lU2kkLXQQTjQ0bHPezwcHBs3rPzIXFOneGh4eLdXwCwUpGCBCBYJ4MDw+f17Z0KXFvhq4AmbOX/DxvppPpV+0XeKXgTC7Zfgn33nvvtG2JxAR3vupVC6oHMQxDCJBZ0NjYKEwTKoxw2Fn9zxT6GC0GjY2NBAIBDMNYsAmBJEkldxrM5XIMD59tXy0QrDSEABEI5oFt20Sj0bI3jTrz5uda8NbU1Cz6scfHE0xMTCDJ5+8PITg3f/mXf8lzn/ucadt2P7abf/zHf5z3Pi3LRhEpWBckEAict8O9YOkJFtKPUqnUoh1DkqRivVolpmGFw2E0TSuZKYVAUKkIASIQzANJkqivry8WTlYKroPKrMe1gNW77h7HOraxoVFYvs4TSZL46Ec/yurVq6Zt/8IXvshPfvKTee1z06aNNNQ3lGJ4K5qxsXGGhobKPQzBFMIhNwKSmdy4CGlYnZ2dAPT29s47DavUNrwuoSUQYQJBJSAEiEAwDwYGBshms+UexjR0XS8Wby5FD5C+QvpCc0vLoh9rJRONRvnyl7+MzzddxL3xjW/k+PH5uVmJTsoXJp1OMTo6Wu5hCKawVJPvxsZGVFXFsqyK6wXj8Xjw+XxCgAhWPEKACARzJJ/P09PTU1Eda23son++oij4fL457mBuq3mGYdBfSPdqbhLuVwtl69atfOCDH5i2LZlM8Vd33jmn8yyXy3Hw4KHpK8iCGXFseMs9CsFUQtMiIIv3z5FlmZbCwsnBgwcXtK9S2vC6NDc3U11dXfL9CgSVhBAgAsEcGRsbKzaNKjdTb35u+tVSFMUPDg5iWxaBQKDYwViwMO74izt40YteOG3b3j17efd73jPrfei6Tl7LIcvi0n4hJEnCsoUNbyURCi9d+tHGjRsBJw2r0uyYq6uri7bEAsFKRdylBII5MjY2RjQarbiu364AmdONa56pOm7aQnNzs0j3KRGSJPGhD32IdevWTtv+1a98lR/+8Iez2odhOPnsqqpe4JUCYcNbeYSChQhINjP5v1mk60tTUxMejwfTNOdle7uY545t2wwNDZFOL54bmEBQboQAEQjmQC6XI5vNVmR43L1ZLUUH9J6eHgDRfLDEhMNhvvTlL+P3T0+he9Ob3sTRo0cv+H7TNAAqThxXIoFAgHgFfo4vZoLBIEhgWzbZ7OKmuMqyzKpVjvnDfGutYPHqrfr7+8/uCi8QrCCEABEI5oAsyzQ0NCxJkfdcsG27GAGZV2rYHFbz0ul08Viij0Lp2bxpE//yLx+ati2dznDnnXde0PjAMA0URRVRqVkQi8XE+VthyLJMMOCkkC5FHZMrQI4dO1ZRaViSJBEOh0UERLCiEQJEIJgDXq+XlpaWismxnzrRdFfLFjt32E2/qqmpwe/3L+qxLlZe+tI/56Uv/fNp2/bt28873/nO876vKlZFu+jJMisMwxDF+hVIOBwGILuIzQhdmpqaUBQFXdfp6+tb9OPNBVeAVJIwEghKSWXMogSCZUAul6O/v3/evvGLhYSEYRjFxlVzis7MY6V8av2HYPH4wAc+wKZNG6dt+/rXv8H3vve9c77H7/dXhDnCcmB8fJwjR4+UexiCM3BNNDJutG8Ro3myLBejYIcOHZrTexerD4iLK8REFESwUhECRCCYJWNjY/T391dkestE0rHglWV57ha8c8C27eJKYVOzSF9ZTILBIF/60pcIBqd3677rrrvOOVkaGRlhfDyxFMNb9rifY1GIXlm4AkTL55fkeK4bVnd397zOhcWw4QVnMaGmpkbUcwlWLEKACASzZGxsjKqqqopJv5qK2wMkGAwuqkAaGRlB0zQUVaW+bvGL3S921q9fz0c+8pFp27LZHHfeeeeMK6PDw8OkUsmlGt7ypgIXEgQUF1DySyRA3JRawzAYHh5ekmPOBkmS6OjoWBJbdYGgHFTeTEogqECy2Sy5XK7i3K/c1bfx8XFgMmw/Z2a58tfb56RfNTY2VqQQW4m86EUv4uUvf9m0bQcPHuJtb3vbWa81TFNY8M4REQGpLJZagCiKUnQO7O7pnvX7luK80XW9aPghEKw0xAxCIJgFY2NjKIpSsc2h3GLaOVvwznEVuK/XSb8S3c+Xlve///1s3bpl2rbvfOe7fPNb35q2zTQNkbIxS2RJRpZkIUAqDFeAuDVtS4HrhuVe32aLJEmLGnFOJpN0dXVVXN2hQFAKhAARCGZBJBKpKPerM0kXHGPmJZBmeQPVNI3BoUEAWlqEAFlKAoEAX/ziFwkXOkW7vO2tb2X/gQMAmKaJbdsoIgIyK6qrq9i2bZsQbBWGr9ADR3cFyBKkyrW0tADQP9CPruuLfrzZ4roMXsh+WyBYjlTmbEogqDAikQi1tbXlHsY5ccP0i5kvPDg4iG3ZhEIh4bRUBtauXcvHP/7xadtyuTx3/tVfkUqlsG2b6qpq/ItoQiAQLDY+rzPpzufzS1anE41GnciLPenydyEW2wULhAARrGyEABEILkAymWRkZKTcw5gRN/yv5Z3Vwnn35ZjFvXRw0Il+NDQ0zO8YggXz3Oc+l1e+8pXTth05cpS77roLRVFob28XRauzJJlMcvDgIQzDKPdQBFPw+bwA6LqxpD0wGhsbAacpYaUgyzJ+v59cbnG7wgsE5UAIEIHgAgwNDTE0NFTuYZwTG7uYNhAIBC7w6jPeO4cFRvdvUFdXN6djCErL+953D9sv2T5t23/+5w/493//d3K5nKhpmCWWZZHXcqLRW4VRXESx7SVNh1q9ejXAnBsSLpYNr0s4HK5I63eBYKEIASIQnAfbtkkmkxWdcqRpWjEdYK4CZLZYlsVgQYDU14sISDnx+Xx86YtfJBKZ7nj2zne+k5/97GeiYHWWiEldZSLLMqrqAZbOCQsm60ByuRzJZOVYWbe3t9Pa2lruYQgEJUcIEIHgPGQyGUzTrGgB4uYHK4qyaAW1IyMj2JaFx+OlqmoOndYFi8KqVav413/912nbNE3nve99r+icPEtEI8LKxU3D0jRtyepAvF4vVVVVAPT09Fzw9Ut53liWJc5TwYpDCBCB4Dwkk0lkWSYUCl34xWVAQiquEi4o+nGBm5sb/airrxMrxxXCrbfeyt/8zV9P29bb28ff/d3fnXOyommQTEoMj0j09Mj09Uuc7pbp73e2JSYkMhm4mMoixMSu8nDTsPT80lnxwqQd72wEyFKhaRq7d++uqKiMQFAKhF+jQHAeAoEAjY2NFT3pdgsU592EcBYMDjgF6PX1ov6jkrj77rvZtetPPPbYY8VtP/7xf3H11V/hjjv+ilxeIp8HTXO+mqaNZYFlg21ZGDqoHts5vyWQJbe3AciyhMcDHtV5jdcLHtV2tnmWfyPxQCBAR3snHo+n3EMRnIHX50NnaXuBADQ3N/PYY4/R09ODZVmzsl1f7HuDx+NBlmWy2WxFR+IFgrkiBIhAcB5isRixWGWnHLlNCOfVAXsWN0/bthkq9P+or5tjo0PBouL1evnCF77IDTfcTCKRB/yAj3e+6yvU1V/D+vUbi2LDsgAJfF7we238flAUG9sGw5DQdTB0CU0HwwRsm1zOOUUk2Sm1lWVHnEiShKpSECN2Uai43y+H1hqqqop0wgrF5/WSBvLa0tWAgGOwIcsyhmEwNDRUEY5/kiTh9/uFFa9gxSEEiEBwDrLZLPl8nlgsVtERkFQqBbBoK7nJZNKJskhUdC+UiwHThFwO8pqElne+6kYn73zXv/GWt74NkAAJTZd4+9vfwze+8UVqayN4veD32eeJXNjTvjqiBHTDFSc2uiahG6DpYFl2IVoyGTFxoyaSJKEojjhJagp2pgZT05EVHdta2hXt86HrOqNjo8Sr4yIKUmEUU7C0pW0KKMsydXV1DAwMcOLEiYoQIOBE64QAEaw0hAARCM7B8PAw4+PjFR0BkSSpmIK1sDqVc+fBu/a7NfGa+UVZBPNC1yGfh1xeQstL5DVHFFiWk0Zl205xqmXD1Vdfw8vueCHf+MaXAA3IM9DfxYc//Ca+8G9fmLOAliSKqVZnihNwhJBuOKldhmFj6KC7URTTLkRLYDwnYWXq0DMWEmApNsePe0hH5bKndmmaRn9/P5FwRAiQCsO9zhimseS5fp2dnQwMDNDd3c3OnTsv+PrFtuEFR5CNjo5i23ZFL4YJBHNBzCYEgnPg2u9W+gXfLUKPRCKLsn+3AWF9vUi/Wgxs2ykOzxdEhpaXyJ1Rr4FtO8LDBq/HiWZ4feDz2fi8TsrTq171bPY+8Sv27N5T3Pcv7/sVX/7yl7nzzjtLOmZFcR5+31Th6nxvWY540g2wEyaSmkSSPGB5wfSQy9kkJeu8qV1ejyNOlmNql2DhOG5+dlkspdvb23nooYdIJBLoul4R4rS2tpba2tqKvxcJBHNBCBCBYAY0TSOXyxW741YybqHmvCIgs7ihiQaEpcO2nahGXpPI5SaLw92oxpn1Gl4PBP02Ph94vY7YOFddrGGY3Pu+9/Oyl7+MsdHx4vb3ve99XH755ezYsWMpfkVkGXw+55GXLKTQMJ58IV2rClpadKJeC8OQ0DQbQz87tStzgdQuj2qjFiIm3oI4mWtwTkzmKhfXTrwcAiQSieDz+cjn8wwPD9PU1DTj62zbXpLoB7Bo9uoCQTkRAkQgmAHX8rDSXUckJAzDQEWd7CBcQjRNY3x8HBARkLlimpNiQ3NTqTRn4nKm2JBkpzg84HXEhs/rpCbNZY5sGgbNzc18/OOf4BUvf0Vxu2GYvPrVr+YX991HdaHPQblwU7uCAVhIatfF6Np1MSGXUYAANDU1ceLECQYGB84pQJYSy7Lo6uqioaGh4u9JAsFsEQJEIJgBRVGoqVkeNQ+maaKi4vP55r+Tc/RCcKMfoVCIYDA4//2vcAzj7HoNXZ+5XkNRwO8Fr8+ZJLtiYyHYto1lWyiKwg3XX8/rXvdaPv3pzxSf7+np5c13vZmvfPHLFb3yP9vULte1yy2Mn61r19TULstS8fuqkCSxulxpqFMFSBnO17q6Ok6cOEFvby87Ltlx3tcuxedJkiTS6bSw4hWsKCp/diUQlIGqqqpiV9xKxradPGkbe1HEkki/Opup9Rr5nFscbhdEhhvhcOo1PKoT2fD57WIK1WJoWnelWFGcnf/93/89u3bt4uGHdxVf89+/+m8+//nP8+pXv7r0A1gCpqZ2Xci1a3apXT5kuZPuntKmdgkWjnstsyyrLMd3o71Dg0MVUfgtSRIejwddX1pXMIFgMRGXVoHgDEzTJJfLEQgEZtWIqpyYpul0cpbmacN7gRvr0PAwAHUXYf8Ptzj8Qs38LMuZBvu8EPA7xeFer43fd+56jVIjyzLtbR0EndwmVFXl05/+NDfdfBMjw6PF1/3zP/8zV1xxBVdcccXSDGyJmI9rl6ZDJmuApKJI0qxSuzxeuyhURGrX4qEoCpJdvhSs2tpakJzjT0xMzOiEaJ/HOXAx8Hq9S96YUSBYTIQAEQjOIJVK0dXVxZYtWxaW1rQETL1BL0YEZGzUmbzGa6pLvu9KwrIm6zXybp8N7dzF4VOb+bmRjXJORGVZJhabnprR2NjIJz7xSe64447iXNyybF7zmtfwy1/+kng8XoaRloeZUrsy2QxjXV10dq7G6wnNmNqlGyDhpHbJsiNOZuva5T2PYYDg/JSzCN09fjQSZWJigv7+/vNasS9VIbrH4yk6HgoEKwEhQASCM8hkMiiKgnehiflLgHuDliRpYdGaGWpAstlsscdIddXKESBnNvPL5aWz6jVs2xEbsgI+z2S9xvmb+ZWPXD7HxMQENfGaaY451117LW/627/l4x//RHFbf/8Ab37zm/nKV75S8RG+xcRNq5lbahcLcu3yTukcL1K7zo27mFIuAQJO2unExATd3d1s2LChbONwqa2tLevfQyAoNeISKBCcQTqdJhQKlT3vdzYYhgE4RbelZmxsDIBwOLwsxNhMzKWZn6qcXa9RAS0AZkUum2dgYIB49dlRjTe96U08/PDD/OEPfyxu+5//+S2f/synecPr37CUw6xI7HMYMMDsUrs0HXR9umuXpjuperN17RKpXdNxRbRl22X7Q7S2ttLV1cXo6OiMz7upr0tFOBxeuoMJBEuAECACwRRs2yaTyTg5wMsAV4Ao83XyOc/N3b3xVs8wqa00zmzml8+fXa8xm2Z+yxXLdop1FUUpGhMYpoFpmliWxb3/fC8veOELGRkaKb7nQ//yIVavWs2OHTscEWZZmJbpvMecnGTb2FimiWVb2LaNbdnTCnMty8IwjLMm8qqqMq4lzhrrY7sfI+6PI0nSZA0Tk1E8WZZRVMU9eGHi7kRqJFl2HJIKp23x9bIy+b2iIMkSsuT8LBWel+TJ16uK6qwmLzCNX1EgoDi1P5PM7No1NXoiUrvOj2vD617fykFDQwMAyVSyIhoS6rrO2NgY8Xh8WbgzCgQXQpzFAsEUTNNEVdX5NfUrA5bpTDx9/tLXqoxWaP3HYjbzW9xx2xiGgW7oGLqBYZoYho5pmJPbDQNDN9A0DV3X0Q0dXZ+c3JumQT6Xd8SCaWJaZkE8OKLjiSeewLZmnlU//7nP4wtf/GJx0m3b8Na3vpU3vOENi2btmTSTZ23r6upiUBlclOPNhyf2PeGIElVFkZ2JrytkFMURNl6fD1UtiBxJxuPx4PF4UD0eVNVJ11QVFY/H47xPVVFVBY/HQ8DvmZIWd3Zql64X+pyI1K4iaplrQMCJOASDQTKZzHkbEi5VpNwwDLq7uwkGgyIaIlgRrIBLlUBQOlRVZfPmzeUexqzRDceWcVEK0AspWDOl9SwV52rmZ1kF29sSN/M7F5Zloes6eS2PrulomkZey5PPaeiGhpbX0DQNwzSKr81lc+i6jmEaGIZRFItLjSTLyLLExk2buPHGZ/HL+35VfG5iIskPf/RD/vaNf1uMQBS/yhKqoiLJElZB1EgAhQmxqqqoiupEXCyzGKVwXiKhqioJPQHD08ezunM11YHqYgTEtVp1IyyS5EQvLNsqii/3AaAU1KOu68XIjfuQZbkYkZkqzmByH2cKNNtyxm8aizfZldzIi6rgUT1FAePxevH7fM7fUlXxeL14PCoejx9J8iFJfiRJRZZ9WJaKbkgXRWqX+z82rfLWPESjUTKZDN3d3WVvSOhGYIQVr2ClIASIQDAF0zSLk7DlgJuisGC//DPSZwzDIDHhpM9UVy9NBGQpmvnZtl0UDnktRz6XJ5vLOl+zWXL5HIZuYNkWWl4jk80siniYOiFVZAVVdTrZqx5PQQA4E/ipk1XVoxZX5VXF+V5WnHSidDpNLp+jubm5uJLvrt5P5QXPfz4vf/nL+d3vfl/ctn/fAQ4fOcyb/vZNJf0dAUYyI/DH6dsuu/wyaoI1JT/WbHH6tFjT09RMV4QYk9GlwvPO/995Xtc08vl8IVpVeL3t+DDruk4unyu+17KsotixLQvTsjANgzzzdDKSnD4vzsOP1xtCln1ge5FlH4rqQ1WD+Hze4sPv9xVef/7ULm9BqFRKalfxvLUoq2JqbGykv7+f/v7+s55bahte9/MsrHgFKwUhQASCKXR1deH1euns7Cz3UGaFruuFlc/S3qTHx8fBBo/HuyjpaKVq5mfbNpqmkcnkGBvLkclmyKQzZLNZdEN3REQmQy6fQ9O0Ba9yS7KM1+vB551ctVY9HjweFa/Hi8/nK6breD1eJzVHVfF4vHi8jqBQVbXk/6+amtlN6BVF4ROf+AQ33nwTg/2TaVAf/chHueKKK3jKNU8p6bgqESeFyRFoXhbXXMGNhmm6hmGY6LqGoRvFSJphGMW+Q7l8Dl03MHQnwuam5Om67mRu2WAaBqZhADmymfGzjud8fmRMU8IwFUxTxrIVZHxIsg+v14vX5yUUDOEPePB6vAQCfoLBAH6/j1DIj9+vVE5qV5nXgZpbmtm9ezdjY2PnbEi4VDa8bjNCIUAEKwUhQASCAm4B+mLlwy8GuuaE44tFu3PlHBPhqfUfC5ksz7eZn+qxMM0Mlpkhl8swNp4lnUqRzmTQ8vnihM0wjHPWPJwPRVXw+/z4fL6i5bLP58Pv9+P1+QgE/EUB4fX68HhVfF7fNIvbSsIVorNJxautreXT//op/uzP/qwY+LJteMMb38gv77uP+ouk6WQ2l+XkyVO0t7cRDAQX5RiyLOPz+RbUT8itHcpreTRNR9e0YgqgpunkslknipfX0PJ58vk8hmmgaTp2MTKaBsA0JbScTDYjY5qFh+UIFdtyPueqx/lsOOe887kIhQIEgwGi0QCRiJ9YzE8o5C0IlNKndp3PmWwpqa1xGhIahkEymSz7vSEWiy1bR0KB4EyEABEICuTzTnFvMLg4k5HFwM0HLnUNyHzqP2bbzC+v6WSzWSwzi2GksawMhpEmn58gk06TzeUKq7yzRykW/Abw+f34/T7CoTB+v3+asPD5vBUtJOZLd083kiTR2dE5q9dfddVVvPVtb+WDH/iX4rbhwWHe8Po38K1vfWvF/X1mwrZtdL3yV5PdlW+PxwNzCEa6wiWXz6HlndQxN91Q0zSyuSzpVLoo5vN5HcOQnKiJmSKbUUil5MLPBRcyCSSpUA+kSHg9HoIB5zMXjfioqgoRifiJRgNEI36qqoL4fPKcU7uKwqnMERBVVYmEIySTSYaGhqYJENu2F8X+/Hy0trYu6fEEgsVECBCBoEA67awSLkcBsuAJ4xkrjuPj48C56z/O1czPNG2y2RzpdJZMJk0ylSKbzWDZOUwtRTY3gSzlURTrwiumEvh8PiLhCD6/H49HJRQMEQgECAaD+P1+/AE/AX/gopgwnw/TNPF557bK/trXvJZdu3bxP//92+K2P/zhj3z84x/nrrvuKvUQBUvMNOEyC9MkR5DpZLM5cvks2WyWTCZLJp0mk82STuVJZw0yqTzZnIlpymiaSTargz1Bn+Qe1y5+tiUJvF4voZAjTmKxIJGwn+rqINFYiOqqIIHAue1tJaQZQysDAwM8+tijPPrIozzyyCPs27ePj3/i49x8083z+VOdl/r6epLJJInE2ZbSS41rWy1seAUrAXEWCwQFstksvoIjzXJBVZyxej2lC8vbts3wiNMvojoeP6uZXzpjkJjIkJxIMpFMMpFIFyYreXJaClU2UFUDVTXxqBaKMlnA7S3MNWRFxu/zEwwGCYVDRMIR/H7n52AwSCAYwO/zLxszgHJjmdacRZgsy3zsox/jxhtvpL9/oLj945/4BFdccQXXXXddqYdZUVRKmk+lIElSIeXQS4zzpxqZpkkm69RapdNpJhJZJpIZshmdZCrPRCJDOmdgGjKZjE4mozM8nJqMnkiTD0VViEUDxGLB4teAX8YwFWQbEokEj+3ezcmTJ3nxi1/My17+Mn7+s58DEI/Hufzyy7njjjvYeeXORfm7xONxurq6ilHhM1nKa1R3dzfZbJaNGzcu2TEFgsVi+cy0BIJFpqWlpdh8arngiqUz3Y5mzZSbp1uvMTycYnzcg2EG2L07zcTEABMTKXK5HKl0Gi2vY9ugqBaqbDpCw2MQDFiEQ84Ew+P1EAyECASDRMJhotEY4XCIYChEKBgUecwlxrLteUWB4vE4n/3sZ3nhC1+I6Tp92fC3b/pb7vvFfTQ2NpZ4pIKVgKIoRMIRIuEI1M38Gtu2yeaypJIZxsdTTEzkSUxkGBtPkZrIk8pq6JqNrlvkc2kGupNYeRs0sHM2gUScQIfMxz72I/r6T5PLJamr3c0Lnv+XPPc5L2bnzstYs2bVoguAeNxJQx0cLH/vGkVRFu54KBBUCEKACAQF3JSF5YR7M9LmmMtu25DNWoz2pBk/MspAepAB4xTZbJ6xsQS67sO2JR56aHfB/tPEozqPgM/E54dwKEgoHCMaiRCNRYlFYwSCAULB0EWfErXUWAX76PlwxRVX8Pa3v533v//e4raR4VFe97rX8d3vfndZRQTngt/np6OjY86pa4LZIUkSwUCQYCBIfX3ttOf0rE5qJMO+Rw5wYG8X3SeHGR1NEw5H6Fy9gZFMAkWTkXMyaixKW+sWJAl27+4t7Fvm9OndhEIHqamJEq+OUFUdorY2Sk1NlEjEXzLXrqqqKsCJkBuGUfw82NhL5oDlIstyWZszCgSlZGXeWQSCOWKaJkeOHKG1tbVsXWY1TSORSFBbWzvrVT33ZmScp2jbMGyGhiYYGBhncHCCkZEUo6MpJiaSeFIZfMk0msdDLhgCCVTVwOc18fgsaqrDVFUFqaqKEY1FiUaihMPhBbn6CErPpk2bFvT+//f//h8P7nqI//7Vfxe3PfzwLj784Q/z9re/faHDq0gURSEaWT6Od8sVI2+QGctydP8xDjx+kFggTigU4e5/+Efyho6MTWtLK6vXrubSJ23mhpuuxLCzPPTj70IwyCXPv5mx8RTj42mGhyZIJrNMJHNYGoxreRLjgxyXnOiEm9bl8aqEQyFqaqLU1ceorY1RV1dFOOybs2tXMBgsNrhMJBKztrxeDEQERLCSEAJEIMBxwMpkMmWtOXj1q1/NV77yFaqqqli3bh3r1q1j/fr1vPjFL2bjxo1ks1kCgcC097ir3m4++8REhv7+cQYHEgwMOoJjYiKDZTo9NpyHhG07xaJ+1aCqWiJU6ye2qpHauhinT3fT19vLtm3b2LZt25L/HQRzZ6HnrSRJfOwjH+Pmm26ip6e3uP3Tn/4MV155JTfccMNCh1hx5PN5xsfHicfjyy7yWamYmkk+pZFP6vQc6+XH3/8pXUeOcbzrODktB8C1117HK17xMu589V/Svq6FLZduIVobxheZXNSYGAfFIyEpNqtWN7HqjOPYtk0ymWZ0JMnIaILR0RRDQ2NMJHJkszrZjEk2M8Hw8ASHD58GCsLE4yESDVNdXUVdXRW1tY448fsVPB7wejmrIaMkSUQiERKJBCMjI2cJkKWMgrgRkHP1JBEIlhNCgAgEQC7n3BzLubL/oQ99iFtuuYXDhw9z5MgRjhw5wm9+8xt0Xeeyyy7jBS94AXV1dUVhsmbNJqqaGhgZ8zMymOXIEz/EMkw8inyW2JBVm6oqPzU1YZqa4tTVxYjHo4R1DXloGDsQgDonmfvE8RMAhCPliQQJ5oZhGJw4eYLGxkbCofn/z6qrqvjc5z7H8573PIwpDRvf9KY3cd9999Hc3FyK4VYMuqEzODRIrCqGByFA5oplWOSTGv0n+9n76H4O7z3C0aMnON51jGc/+xaqqmI89IeH6ejo4DkvupWNWzew+bJN1LfU4Iv42PysNefct7ugcq5JtiRJRKNhotEwnauapj2n6zqJRILhoQQjo0lGhhMMDydIpzV03WJoSGdocJwjhwFsJBkCgQBVVTFqa+PU1tZSE68iGPSgeuyCKKlB01L09Q2xfv36Uv0J50xNTU1ZIzACQSkRAkQgwFkNdTtbl4uamhpe8IIXnLXdsmz6+kb43Oe+zehoGsNQ0HUZy/Jx+lSa0USQVFLGK+tISMhSDp/HoK42xKXb19LeGqe+LkYk5MfrOaM2Y2z0rOMlJhy7yUg4sii/p6C0mKbp9FUpQWrGjh07ePe7383dd7+3uG1sbJzXvOY1fP/7319RkQLhgjV7bMsmn8wz0j/Gvkf3c/zwKa64ZCc//dlP+MV99wEQCYZZvXY1T3/W9Vz/7KfQvqaVP3vdc/BFvMjq/OqT5hNd8Hg81NbWUls7ve5E0zTGx8cYHRllcGiM8bEko2Mpshmn23x/f4renj5s2xlrJBKkqqqaSCxMPhdlbDTCsS5oaZHwemAgo+D1S8QAK7g4DRnPZN5mIwJBBSIEiECAI0Aqoa7BsiCdNujpGaa7e5je3hF6e4fRNKMQzQgXW3YYhoQv4MGf0/D7ITU6wunuU3T3dNPX34eRz/PRj36cT/7bFzja1UVzcxMtzU20tzaxurOVpzz5SqotA39GI+TxoeCsHuZzeQAiESFAlgOW7QiPUhX+/9Vf/RUPPvQg9/3il8Vtjz76GB/4wAd4z3veU5JjCCobLa2RS+TJpwz+99e/4+Hf7+LI0aP0DwwgIeHzeOl4eyfXXX8tmy5dx5ZLN9O5vh1/xIfiXfh5aC9CnYPX66W+voH6+gY2FkqmbNsmm80yMjLC0NAQQ8ODjA6Pk8nqmGaakdERBocKzRgtme6eQX73fw9R31CH4deIxCIEdImE1y7Un0hFIeI+3LSuM1O75kM2m6W7u5uOjg7hJChY9ggBIhAAdXV1S17c5zbzGxlJcfr0IKdPD9HfP8LERArLmqzZAGdVLR4PUlcXo6WllpaWGhoaqnloz8P89qHjrG5p4jnP/CssyyaT18nkNEbHUliSgqnfwgMP/Ymenn727t3Hr37z39i6wR2veDlxWeWBH/+YWEMD4Y422lsbCfgUgj4PY2mdoAlBnwdVEStvlYp73pZqdVSSJD78oY+w74l9nD7dXdz+b//2Ba666iqe+cxnluQ45aaY5lPudttlxnWkOrjnEAceP8TRg8foOnyMsdFR7v3gP/Obn/0PqWSKbZds4wWbnsumHRtZv2U1wXgQ1be8pxCSJBV7D7W1tRW3Z7NZRkdHGR4ZYnBgkJGRUTQtj21DJjtBV9chhvMJZNVHR/Ua6uItxOMNVFfH8fm8U/qcSEiSIzwkSUJRzhYl7mM2wXen9iWJYRhCgAiWPcv76iEQlIhQKLSo+y8288vB+HiWkyf76e7uZ3h4lGQyNa1mQ5YtQiGF5uYaWlvraG6uobGx5rzpYTbOZEqWJcIBL+GAl/pqpx5g86pn8ZcvehaWZZPKamRyGie7+wiHqzi2Zz+pri2cGh7l0d27OXgoxPXXP43ewTF++/BhPveZzxKritHS1EBHexOdrS1s2riapoZagn4PQa8HWb64J3DlxnVCk6XSicRYLMrnP/95nvOc56Drkw5rb37zm/nFL34xbbK2XPF4PFTFqi4qy2jXkarrwHEOPH4AMwfbt1/KW958FxOZNFLBkWrN2tXc+oKb6djSwoe//H78MR+e83QsLzVW4ZxW1PL8bwKBAC0tLbS0tBS3ffOb38A0TdasaSebzZAeGMImj26cYmioj6EhsCyZ6up66uqaqalpJBarxbZVdN1ZcHLEiHO9dL+f+nUmYeL1OuLEeZ3zGRdWvIKVgBAggose0zQZHBwkHo8vOA3LbeaXz08KjomJPL29/fT09DI4OEw6nSmKDUUx8XgsampCNDXV0N7eQHNzA+FwaFYuJ6bl3Ihy2ewFXyvLEtGQj2jIR2ONk161Je7htk2NGB4f6VgVj+zew+N7D7KmYxVNdVVs3LCOk6e7+eNDu/jxT4fAlvB4FP7t85/nS1/5KrqWp6W5gfbWRta0t7JmbTstjfUEfKoQJ0uE3+enpaW15PVL27Zt4+677+Zd73p3cVsiMcFrXvtafvCf/7nsV2AD/sCKEFLnwtRMcsk8+aTOaP8Y//HNH3L08FGOHT1GVsshAZs2buLJV13Dna//K+qb42y5bAux2sg0R6pyoBs6AEoF9aAJhyMkEuM0NjayYcMG1o2sJ5VK4s14GRkaZWhoiHw+RyLRTyLRz9GjTr+Smpo4zc3NNDe3Ul1dj2HI6LqzKGUYdnFxSpIgl5OmRU+cyMlkahcojIyoxON2wdWrNKldAkE5qJxPt0BQJnK5HH19fcRisTm9z7YnRYYrOPJ5ME2L0dExTp3qpq9vgLGxMWwbVNXC4zEJhUzi8RBtbQ10dLTS2Ng478lcqVa9FRmiQR9+2aA+orBtQwvbtq3maZe/FU03yWo64xM5jp88zXgqS01VmKbGWg4ePMz//t8DjI6OAhJg8453vpOxkWH2PrGXluZ6OlqaWL2qnXVrOmiorXbEiW/lFDOXG6/XS3yRxMDLXvYyHnzwQX7yk58Wtz2++3He//738973vvc876x8TNNEN3R8Xt+ytzQ9lyPVsaNdbLtkOzc980Z2PbiL5uZmnvOCW9mwfT1bLttcdKRa+7TWcv8K0zAKUbdKaoIZi8VIJMYZGhpiw4YNKLJCTU0tHWva8am+QnpUir6+Pvr6+uju7kbT8gwPDzM8PMyePXtQVQ+tra20tbXR2tpKIOAHnHuJI0rsaeJE05wFLedeI2EYFuPjMv39NtmsXbLULoGgHIhTU3DRMxsLXtOcHtXI550bg1urkc9r9PUN0N19moGBASwrh6qaeDwm1dUmtbVR6usbaWtzBIff7y/J2OXCxKlUjj7pVBqYbsHr9Sh4PQqxkJ+Opqri9ive+0Y03SSd0xlLpOk6eYpTPf2sW7+B+x8YZ2h4lH379jM+nsAVJ899znN48tVX86tf/oKGujid7S2s7mxl3ZpO4lURQn4Pfq+4LM2FbC5LNpMlHo+XfN+SJPGBD36AJ554guMFe2aAL3/5K1x11VXcfPPNJT/mUpFMpjjdfYrNmzYvqzSsMx2pDu/vYuuG7Rw6fJivfOUrAIQDIdasXc0zbryBa5/xFDZuW89Tnv/lBTlSLSVGIQJSSQKkvr6OU6dOMj4+PuPzjjVwhGg0woYN67Ftm0Rigp6eHk6fPs3g4CCGoXPixHFOnDgOOF3W29vb6ejopLa2Bq93ZiFsGI44yedlJKkBn8+DLFuzSu2S5bNFyZmpXQJBOaicT7dAUCZcC153EmIY06MauZyzzbJsLGu66BgY6KWv7wSjo33Iso7HY1BVZSPLCvX19XR2dtLe3k44vDg1JpK8QAFyxt1nrha8rjipjvhZ3TrpT3/tjnb+7q+fRzqnMzKW4EjXSY6f6Ka5YxWpZI6TJ0/z4MO7CoLHESebN2/kLW99Gz/9yY8J+b10djSzZlU7azraqY6FCPk9Z9sIC0glU8UUwsUgGony2c9+lttvvx1N04vb77rrLjZt3kRnR+eiHHexceumKj36oaU1cuM58mmTXfc/wm9/9b9nOFJ5qLqziic96TJqmmJsumQDHevaCMT8JXGkKgd6oQ+NXEHmF/G4c33LFtJd3fPnXEiSRFVVjKqqGFu2bMayLIaHR+juPs3x4ydIJMYZH3cee/bsIRAIsnr1KlatWk1dXe2081JVnUcgIFNVNf1zbllOxETT7HOmdrnF8OdK7ZrJsUukdgkWGyFABBc1mgYjIxqZTIjubueCbRiOwJgqNizLLlyQdUZHuzl9uovh4R4kyblRBoMQiURpbGxk1apOmpqalmRV1etxUm8Mw7jAKy9MqS14/V4Vv1elJhpgfUcjsLP43AtvfhLZvEH/0CiHjp7g5MluZDWAaers23+QE8ePk8vlccVJY2MD73rnuzjWdZSJ8WE6OptZ29HOqo42qqJ+At6LV5xYtoW0yDOFLVu2cM/77uFtb317cVsymeI1r30tP/zBD/D7ShPRW0ou1OyuHJzLkaq3r5e3vPUt7N69m56eXrZt38rzNz+HzTs2TXOkuoyt5f4VSoJpuClYlZOqGQwGAcjnc9MWfGZ7/siyTH19HfX1dVx22WVkMllOnTrF8ePHGRgYIJvNsG/fPvbt24ffH6Czs5O1a9dOEyOmaTI+niASCRfTdmUZfD7ncSYzpXa532sahd9nujgppWuXQHA+xCkkuChw6zWmRjU0DUzTJpFwemuMj1tFweHzgd/vXthtEolBDh8+xPHjx7EKhd+SBMFgiFWrOlm3bj3V1VVLPpnxFu46UgmKvZOpFACqx7PoPVGCPg9Bn4eaaAtb1kw6zViWzbXf/ASZnE5P/yDHuk7Tdaqb0dEkwVCA3Xv2cP/99xecmSSQberr6vnLV7yC5qYGDuzfQ2d7M2s72+lsbyES8q14G2HbspekQdmfv+TPefCPD/LDH/6ouO2JPU/wT/90D/e+//2LfvySU+ZGhEbeIJvI0XXgOPsf289w3zg3Pesm3vnOd9Hd2zvNkerG25/BlddfyvXPv3rJHanKQVGAKJUzRXGdEi3LKkZBFkIwGGDjxg1s3LgBwzDo6enh+PETnDhxglwuy8GDBzh48ACBQJANG9azYcNGPB6VU6dOsWbNmlnVDbrOWud6qZva5QoSXbcL2+aX2uUKFZHaJZgNlfPpFghKhGWdXRzu1mucGdUAqKurLgoNdyXJcSTJcejQYQ4ePEg6nSruPxAI0tnZwbp166mpiZd1BdXtTG0aC7NllGxITkwAEItGFzyu+SLLEmG/l7DfS33VKi7duKr4nGXZPPXSd5DK5DnR3c/x46c5drqHnp5B4lXV7H3iAF/9929gGoXGfKpMfX09T3vqddxy603sefRPNNRVs2p1O52tjQQLx1nuTl2WZS3J7yBJEvf+873s3buXo0e7itu//rWvc9XOndx+++2LPoZS46z4Lv7fzjIssokcuQmNzFiO737juxzYd3iaI1VbaxtPv+Hp/PVr/wpvSGXzpZuoqo/iDXlLssCwnDD0Qg2Ip3KmKIqi4FE96IZOOp3CVksnYFVVpaOjg46ODgzjGk6dOs2RI0fo7e0lm82we/dudu9+nObmZvx+f8l6Vk2mdp39nEjtEiw2lfPpFgjmgWGcHdnQ9bPFhm3bxVC11zsZ3fB4bLLZHD6ft5gyNTg4xOOPP87p06ehmCcus2bNGjZs2EB9fV3FpG14CwIkp+Xnt4Mpv0eqEAEJLVK9ykKZKk4a4xGu2r6u+JxhWmTyl/Hql9/OyVO9HD15iuMnejjV3U84FqW7u5+PfupzGLoj1DwelYaGRtavX8tfv+qv6D15HI9iF22El1OPE6/XS5jwhV9YAsKhMJ/93Oe47dZbCylyDm9729vYsnULa1avWZJxlIJ4PL4odTO2ZZNL5Ok/OcATj+7n0L7DHD18gmNHuohVx3jHO9/FIw8/Rk1N7YyOVFvktSUf03JDr8AidAB/IICe1Eml0lC1OMdQVZXVq1exevUqdF3n2LHjHDlymMHBQXp7ewDo6elhw4b1bN26tWSGJmdSjtQurxeWkR+EYIFU1qdbIDgPun625e1MxeGWZaOqjsjweifTqWa6lxmGyaFDh+jo6CCfz/H443uKF3mAaDTGpk2bWLdubUX2PXAjIO4NeyGk044D1mwL0CsJVZGJBn1Egz5a6qJcffnG4nOGaZHOaVx35fc5caqboydOcfJkL6e6+9EMHd2wuPcjn2BkeAyw8ft9NDY00tLawsv+4iVEgj7GRgdZv7aThro4Ib+nomyEa2trl/R4Gzds4H3vfx9/f9dbittSqTSvfc1r+NGPf0zAP8Ny6grFtmy0tMZw7yj7Ht3Pwb1HaGvuRJZk/vkD/wxMcaS66QZ2PvVJrN7ezJd/8rll40hVDtyatkrqAwIQDAVIJidIJBJEq5xIscTiLVJ4PJ5C+tV6xsacYvXjx4+Tz+fYs2cPTzyxj40bN7B9+yUEg0v3uStlapeb1iVSuy4+KuvTLRAwczM/p7/GmVEN5/upIsNdsZntKoquGyQSCX7729+SSIwXtkp0dnaydetW6uvrFuvXLAlqQYBgOwWKCyl8d/OaAzPF45cxqiITC/mLNsLX7Zws1HVthP/r21+g6+RJuo6f5uTJPk719jE8NMJ4Is23vvMf/O539wM2oXCIxoYGmpoauflZz2DH9s0MDvawqq2ZmupYWWyETdMspD8s3WT2xX/2Yh568CH+4z++X9y2f/9B3nv33XzgAx9csnEshNGxMcbHx1i9avWs36OlNdKjOYysyf49B/nZ93/Oka6j9PX3AxJ+j4fbb7+dZ9/+bN72D3/Pus2r6VzfvqwdqcqB64JVrk7o5yIUDAMDJBIJIvbSLtRUV1fx5CdfRUNDA4ZhcODAAZLJCfbv38/Bg4dYs2YNO3bsIBJZmmjo+ZhbapcjTtx7vkjtungQAkRQVizLufCcGdk4V73GVKHhRjjme9EZGRnl97//XaGJnpNmtXbtWi655BKi0eURBXBdsMBxsZqXAJEksO1iP5SVJkDOx1Qb4VUtcZ5x9aXF53KaQTqn89QrNnDgyK0cP9HDiVM9dPcO0Nc3QNfJ0/QMDPGZT38OsInFojQ0NtHc3MDl27fyrGfeQDadIF4VoabQ42QxnLpOnjqJqqi0t7eXfN/n45733cOePXs4dOhwcds3v/ltrty5k+c/7/lLOpb5YBj6tDSyM9GzOumRLAf3HmL/7oNFR6ru7lO8/C//Eo/HQ29vH1u3b+X5L34Om3ZsnOZItfGGVefct+D8FGtAKqgIHSAWc6Ie2WymLMf3er1s3LgBgC1bNnP69Gn27NnD4OAgR44c5siRI2zZspnLLrusGB2vNBY7tWsmxy6R2lWZVNanW7CiuVAzv6lfJcm5QAUCk4LD6y1N+DWfz/Poo49y4MBBnBoPifXr13PZZZctaRi7FMju0pANmqYtKB84nXFSsC4mAXI+ptoIr2q5ctpzmbxONm+Qyups39DGseOnOdXTx+meAU6eOM3E+ARrN27lNa99Hdg21fFqmpsaaWpsYPWqDp57280EvAo+j0J1LLAgG2HLspDUpc9LCAVDfOazn+G2W28jk5l0BXrH29/Btm3bWLd23XneXX5s2y7Wcp3pSNVzop+n3/AsvvzlL/GnRx6d5kj1zFufzjOefQM1TVW87C0vWvGOVOXAMivPBQugqqoaoODC57CU9YBn2v+2t7fT1tZGf38/u3btYnh4mH379nH0aBdXXnkla9euqZh6xdlQitSubHZ2qV1ThYpI7SoPlfXpFqwYZtvMz7JsFOXseo3FWrw5ceIE99//AFqhaLuhoYH6+nquuOKKZXWhnorH48HKW+i6Nvc3T+mk7kZA/IHl19NhqZm0EQ7Q0fBk4MmAcz7ndCdyks4afOFTH2T/oaOc6u6np3eAw4e7eHT342zauoPPfurTHO46Sn1dHQ2NjbQ2NdLW2siNz7qe+po4Aa9EOHhhG2HHBas8uQfr163n3n++lzf97ZuL2zKZLK959Wv4r5/8V1nGdCFcR6qx4wnGB1P869e+yOOP7qbraBfZvONI1dDQwNVXP5WXvuIlvOCO2y9qR6pyYBQm+JXkggUUG8qmU6kLvHJxyGZzHDp0iPXr1xMKOX1JJEmiqamJ2267jRMnTvDHPz5ILpfl97//HUeOHOG6664rvna5c6HULleUzDW1S5YlVFWkdi01lfXpFixL3A/4VMFxvmZ+bvjVfSxFnaFlWTz00EMcOHAAgKqqKnbu3ElLS8u0ldDlhoSE1+sll8+hL6AZYV7Lu4ZfBAMr42ZVDmRZKoqTuhh0Nj6JW65/EuCc/xlNJ5PTyeRMat7+Rv702OOcOu2Ik8f3PsFv/ue3WIqXVCLF977/Perq62hpbKG5qYG2tkau2XkFqzraCAUU/F6VsN8LNmUTIAAveP4LePihh/nWt75d3Hbo0GHe8+738M573lm2ccEUR6pTgzzx6D4OPXGYrsMn6Tp6lGuvfSrXXPMU9u3Zh9/n5znPP9uRSoiN8pDL55CZ7HNUKYRCTn2FpmvohobPWznjkySJVatW0dbWxu7du3niiX309/fxox/9iOuuu5bW1tZyD3FRkWVn8XKmJIDZpHadKU4ulNrl/ixSu+aPECCCWTNTM79z1Wuc2czP/VqOeVI6neHXv/5VsdZjw4aNXHXVzmK9xHIVHy6y5PxRDX3+AiSXdaIfXp+3rJPZlcxUG2GAzsZtPOPqbYBrI6yTzmrkNJuegSGqYwFOdffR09vPrkcf5af3DfLwn/bwvOc9nw9+8ANEozGam5q47babscwcLY09bNm4nlBAJeBTl9RG+O733s3u3Y+xf//B4rbvfe8/2HrZ0nXmdh2pRvrGeOLR/Rzcc5iQJ8LWLVu56643Y2BPOlLdeAOX7ryEtZd08LHb/lk4UlUY2VyeEM71qJLwep3ro2VZZDM5wsHy1Aqe756lqipXXHEF69at53/+578ZGxvjV7/6Fdu2bVvWkf6FIFK7KhMhQAQzMtdmfm69xtTIRiV88DKZLD/5yU/IZNIoispTn/pUVq+eLA7t7u7GsqwlL+AtJbIkY2OTz8+zFwiQyzk5/CL6UR6m2ggDrGqK8pQdTk8N10Z4IpUnp1mkc3le+pLnc+JkD739A3z+377C0PAgpmXwxS98iXvuuQdTN2huaaKluZHOlkY6V7Vx+Y5tBP2q49TlUUsqTgL+AJ/57Ge55dm3kE5PFujee/e98CJgEVYJtbTGxHAaO2tz+lgP3/na96Y7UqkernnKNTztmdfx7nvfRevqZuFItQwwDAPLdFyw/N7KSwf1+fxksxky2YyzUr6INrxnYhb+LrP57MZiUW677Tbuv/8Bjh3rYu/evWiaztVXP/miFCHnYzFSuxy3LwnDgKYmaG5e+t+r0hECRLDgZn4V2B4DcIrNf/nL+8hk0vj9AW655Zaii4lLLpdHOU9+/XJALVhV5vO5ub+5cCPKFgSIXxSgVxxTbYRddrz5lYBjI5zVdMYSWcZTaVQ1wHOe/Sz27j9Ib98ABw8dZmx0DJB429veQldXF48++hhNzQ20NTfQ3trMmlVtbN24gWjEvyAb4TWr1/Av//IvvO51ry9uy+XySD8DbgYWcJ3QszqZ0SwH9hziwJ5DHN1/jKNHjtF9+iTXXX8D11xzNQODQ2zdtoXnvfh2Nl+ykfVb1xQdqdY85ez0k4mJCSzLpqoqNv+BCUpONpdFAmxZqrgaEIBgMEg2myGVTC75sV0BMlu3Q1VVedrTrqOuro6HHnqQQ4cO4vV6eNKTnrSYw1xRzDa1K52GVAomJpzvMxk3fUsiEhGCbyYq79MtWFQWo5lfJWLbNr/+9a8ZGxs7p/gAZ7XN51u+q/6OL7pTsT/ViWiu5ArRk4AoQF9WeD0Kvb2niVfH6Wx2JtlbX/NiwLERzuYNRsaTdPcMEK9rJOCTGRoapK9vgL17nmBiwimmffbNN3LZFZfzg+//gLr6WtqbG+hob2H1qlbWre4kHgsT8KkXFCe33347f3zoQb7xtW9MbhwFHgOuPNe7puM6Uh07eIL9j+3n2KHTXP3ka/jjH/7Af/30p0jYtDS3sHbtGp55yw1c+/RraOps4Jl3PBVvaPYqZ2xsDNMyhQCpMLS8k5Tv9/qQJAn7Aq9fakLBIMPDNhNlECDRaITNmzfNuUP8li2bMU2TP/1pF3v37iUajbFhw/pFGuXKx7KceZT7yGYdMSLLEtEoVFdLxfQsRYGqqnKPuDJZJtNJwVxZymZ+lcjhw0cYHBxEUVRuuummGcUHOAJEVZe3jWagkDaVWoAzS74gXkLBUEnGJFgabNsmmUwSjZx9frs2wtURP2vbnIaa29fcyN+85MZij5Ph0XEOd52kuraRweFR4jXVnO7uYdeuPxUErUR7Wyvv+cd385Uvf4VAwEdbUxOdnc2s6WxjdUc78argNBvhf/yHf+Cxxx5j3959k4PpBuqA+PQxFh2pBhJ4TC+/+MmvuP93D0xzpKqrrWfH9h3c9vxbuPoZT2LTjo0lcaSyWb7mEysZ143PWyl5vGdQVV3NyVMnsSwLWNoaQlmW8c2zMH/79m0Yhs7u3bvZtWsXnZ0d897XxYauOyLDFRz5/GQtiCxLhX5kEn6/k8bltg9YznOopUAIkBVAOZv5VSK6rrNr1y7AuejG49Uzvs62bXRdn/NqUqURCjsCJK/NIwWrQKbQWGshfUQES0+xL8AcJ0FTe5xs6GwqbO3kuddfSk43SGU1BoZGOXz0BJLqJejz4vV6OXrkOL+//4+FVWoJj1flIx/6MA8++CAjI4O0tzTR2dnEn//1a7nnPe8hl0yDpQE29mPgq/fTs6+PP+x9mEP7Jh2pJlJJ7r3n/Zw+0V10pFq/bR1bLttMQ2vtFEeqDSX92wkBUnm46aCV5DA1FX9h0m6a8zf9mC8jI6Nks5l5O1rt2LGD48dPkEiMs2vXn3jKU64p8QiXP7Z9dnTDsqYLjkDA6cjuCg53PiUuJ3Njec+8LkLm08wvGJyMapSqmV8lc/RoF5qWJxAIsn379vO+ds2aNfj9lXmjmy2hsGMNaZnzSFYonAxa3uk8LJoQLi/cVVjXCW2hTLURrq8KsW1dW/G56y69u2gjfLq3n6Nd3YyMJaiKh+jJd/P4yF5+OT4O3WCHwXtpA4FdXry2Dz8qChKx+wxec9970ZNZQkGVtavbefqzbmDzJRu49PqtXHX7pfijviVxpLIsC88yj36uRLS8BraNr8IcsFw8haLHTHr+Ka/zJZNJTzN5mCuyLHPllU/i17/+NYcPH+aqq3Yu+wW4hWIYZ0c3Jm14nf4giiIVjXZcwXGR/9lKgvgTVjBzaeanqpMCY7Gb+VU6fX19AKxa1XneYj1JkohGy2OjWCokJAJ+RzQsJAUrl81CwC8EyDKjKECWwG5XliV8HomTyRMcMh9nT+Bxdk88zsH7D0JEwbc6QjwXQc2GUIdDWD4PcoMHu0fGlsCUwDJUEqqOGfWw/bqrueUFt/K73/8GOztC5vFHWbOmjTapgVDAu+g2wqFgaNbFvIKlo5iCVaHuJn6/f8Gug/PFNM0Fn7Otra14vT40Lc/w8AiNjQ0lGl3l47YSmCo4THN6dMPnA49Hmhbd8PtX/sJtORACpEJYDs38lgtuv4/Gxsbzvs40TQYHB6murl7WqUeBwtizucy80kps2yabz0DAL7qgLzMURaGpsWlRcrkt2+LY2DEeH3icx/sf5/GBx9k3uA8jZ+HL+/FpPlTNR2O+E9tyzUglJPJYvjyqbKNdkUMfz2NpJrpqM7RR5q9uezXSmI+6phbS+RT/+/sH6O8fAFsCbLw+L+vXruOtb30rf9r1BxTZZnV7C2vWtNPcUEc44C2JjfCFrg+C8pDLV3YNiNfrrOwZlpOCtbQ2vNaCBYgkScTj1fT39zMwMLCiBYhpThcbBW1bKBB3Ggx6PGdHNy7WxdulRkxbl5i5NPOD6Xa35Wzmt5xw8+IvNCkzDIP+/gFCofCyFiA+n7Mih+1YD8/1d9ENvdgF3e9bvn+HixFFUaitrV3wfmzbpjfZWxQajw88zp6BPaSyGfx5P768DzXvp0ZrAVOeIjZsLJx5ou7Lofty5L15NF8efBYbazfRdkkzhz76K7ZcsYnvfuQr1Ecbiyljmm5y63VfZSyR5fip0xw9cZpTJ3vJ5k0UReYnP/slx4+fAMeYlUDAT3NzM6997WvA1Bjo62ZVZxvr1nTQUFvtNGD0zW72YBgGsiyLxpsVRi7nRBYqtUDaW6hNMY2lrwExDKMkToXu72AY+oL3VUm4cypXdOj6ZLNAN7qhqmdHN8QloDwIAbKIrJRmfsuNaDRKMjnB+HiCpqamc77OFSrLvRBVURQnl92m0PNkDjcoSUIvdFCXZOmizwdebhiGQTKVIhIOz+l/N5IZKUY2dhe+jmRG8ecKYkPzE87XEjNULGwkHAngig3Do6H5cujePHlfDs2rsaF2HZc0PJlLGi7hksZL2FS7CZ/qwzINnv/5S1nfuJ76cP20ehWvR8HrUYiF/HQ2V3P9VZM1W5pu8tPvfJbR8RRdJ0/Rdfw0J0/2MDiSQFU9/Oy+X/KrX/8GV5xEImEaGxq5/fbb2LF9C0cO76e9tYF1qzuprY6eZSPc1XWMaDRy3muEYOnJ5xz3s0qtAXGFkWVZxRTIpaK2trZou74Q0mknXTcej1/glZWLZZ0d3XCtcF3REQg4DlVToxsVmtl3USJmG4uEYcD994Mk2SgKqOrkVzeFajk081uOhAtF2adOnWLTpo3nfN2kgdDyFSDu2L2qF3TIZufuhGUUBIgQH8uPvJanu/s0a9euPef/byI/wZ6BPcXoxp6BPXRP9BbEhh9V9+LNh2jVq4tiA4pBMSyPPik2/E6Eo6OqjSsbdhbFxpa6LUR8566nms9nzBUn1RE/a9pq4SmXFZ/LaQY37FzPyN/dyZGukxw70c2J07109w4AEn969HE+8cl/xRUnVVVVNDY2cvmll/DCFzyXk8eOEAp5adRl/OEcIf+kjbCgvBRTsCrUBWtqbYqma0t6/6ipWbhgyGZzjI2NA1BVNbNDZCXiOn26okPTJms3FMURGopydnRDlHlVLmLGsUhIEuTzjhOVx2MXJ7tuqM+ynPxEXZ+Mcng8IuJRCtavX8+hQwfp6elmeHiE2tqaGV/nRkBWQgqG1+cBnXl15zVMA8kGr0eo4OXGmb0IsnqW/UP7i2lUj/c/ztHRY3g1L768H4/mw5v306atnVlsqAaaL4dRSKPK+XPUh+q4rHE7lzRcwo7GHWxv2E48UN6Jy1Qb4fUdjcDO4nOZvE46p3PrM3dy6OgJTp7s5kR3Hz29A4yNJ+jpHeaud97NW9/6Vr7+3Z+xb99+mpsb6Whr52UvezFmPgeWxurONmIRPyG/F1VZ/teI5YBt2+RyeWQqtwhdlmUnCmGCrmlLdlzbthkfTxAKBRf0t3n00UexLJPq6uqKbcJ5ZqO/XG66Fa6iTFrhTo1uVGjWnuAcCAGySMgyPOUpEoYBmiahaY5i13XnQuJ+wDIZtyGgMwXweJxoiPvVfayAOfKSUVdXS0tLKz093Tz44B959rOfPaPIUBSZ6uoqlBUwuYhEo6RSyeLq4VwwdCcPuFJv+IKZ0U2dA8MH+L/u/+NrPV9j7/BeDg4fRMor+HJ+vJoPT95Pq7YG22Za3YaNDYpF3pvD8OXI+/LkfDmiwbAT1ShENi5puITGyMKLtRVFRlqii5hrI1wXC7JlTUtxu2XZZDSdbN7gp//xZU5296M+5Upq4lX09g5w/MRJRscyfOiDH+TYyZMgQ31dPU0NjTQ3N/KC591Ka1MDqYkxOtqaiIR8BH0eIU5KSDaXxS6IaqfWoTJX5NzmtdoSChDLsjhx4gQdHR3E4/O7Vo+NjXP48GEALr/88oqJ/uv69OjGmY3+PJ7pjf7cryK6sbwRAmSRkCQIzdBU2ulQPilIpn7v1oQ4dSPTO5Wr6szCRGTNzMyVV17JD3/Yw+DgIA888Aee8pRrzrrY+nw+Ojs7yzPAEuE6sIRCQVIk55WCpRcKET1eYf1RqczfkapQJC7bThqVL4fmdSIbPp+HrQ1bpwmOzljnokxKXvXXr6KlueXCL1xEZFki7PcS9nupjbYj6xM85dKrec0dtxbFSSan89lPvo8n9h/m2KluTp/up7t3gD1797F5yzb+62e/5r/+6ycoqkx9fT3NTS20NNXz1Gt2ctmObRh6lrp4lHDQt+g2wiuRTKHHhT/gr2iLZKnwf9W0pSviNoyFpcpmMll+8YtfYNsWtbW1tLW1XfhNi8CZjf5mssJ1nKikaWJD1MSuPMT0dYlxmwPOFCo0jJmFidv7w4mm2KRSTIuazCRMLoaGg+ejurqKa6+9lt/97v84cuQw4XCYSy/dMe01pmmi6zo+n69iVoLmi1sYOT4+Nrc3ShJ6IQIimrJVBjM5Uu0d2Esym56zI5Xm0cj7c+Cz2FS3me0N29nReAmX1O9gXc1aVHlpbgG9vX2EQpXVc2fzps3Fz/1UceI0YJzsNG2YFpm8I07GJ67kyU/awvGTvZw+3U9vXz8P7nqEbE5nImNwzz3vw+NRaWhopKW5meaWerZu2sAN116DR4FwyEvQ7xHi5BykCsXR4UCwzCM5Px6PBwlpXhHn+eKahcynCF3TNH7+85+Ty2UJBII84xnPXLJ73oUa/SkKeL2TVriu4BCLqysf8S+uIFTVeQTPuPZa1lRBMj2dy3XUcprr2IXXO9GTc6VzVfDCUklZu3YN+Xyehx56kMcee5RkMsk111xdXFlLpzN0dXWxZcvmZZ1+JEkS/kIzwkxm7t15izc2EQEpC7NxpArla4gaDQt2pCoXP/mvn3Dd067jmtv/omxjmIokSbNeYVcVmWjQRzToozEeZmPnjcXnNN0kqzk1J5msQeC9b+fY8dOc7O6jf2CA3/3uj/zv7+5n9YatvOH1b8DQdZoam2hqbqSluYHV7a086+lPIxTyEfKrc7IRXomkU2kAggUjkUrFXfDJzyPiPF/cxofeOV6nx8bG+Z//+R8mJhJ4PF6e/exnEwwuTsPZyQwOR3Tk8848RVGmN/pTVWla7YZo9HdxIgTIMkCWJz+kU7Ft0PVzpXM5QkTXnWL4qelcTvOds4XJSiyC37JlM4Zh8Mgjf+Lo0SMMDw/xrGfdSDgcOquAdznj3lCy2cyc32vqBmCLIvQlYCI/wd6BvdOKxBfqSNUea+VJjVcWU6m21m89ryOVAHRd53T3aRobGwkuYLV9qo0wwNoXTRcn6ZxOVtPJ5Cz+6V1/z+N7D3C6r5+e3n72HzjIeGIcTyjGA/f/gYd37aKpoZGm5kZamxtY1dbM1VdfSX1NFQGfSsjvmWYjvBJJpx0BEj5zFa7CcEVAbgm7oUuSRCgUmlNqWlfXMe6//35M0yAQCPLMZz6TWCxasjGZ5vTajTMb/blWuGdGN0SjPwEIAbKskaRJ8XAmpnnuqMnFVgR/ySXbqa6u4re//V/Gx8f5wQ9+wFVXXVVs4LacBYg79lBhxdA0TfL5/JyaeOmiCH1RyBk5x5FqSirVkZGuBTlS1YVqudRNo2rcQbuvjcxIhq1bti7r83ipMS2TdDqNaZqLdoyijTAFcdJyHS+5/TrAsRFO53SSqTyaCS31VTQ31HC6Z4C+vn52736cZDLF7bfdxuo1q/na175ObV0dzc0NtDc30tHezI7tm+lobSTg9awYG+FUQYAE3ALKCj2nfYWGrUtZhB6PVxOPz859LpfL8dBDD9PVdRSAhoYGrr/+hgVHPs6MbrhWuFMb/TkOVaLRn+DCCAGyQlGUSXu6qcy1CN7dttyL4Nvb23nuc5/Lr3/9ayYmEtx//++pqamhrq5+RUzcvKoXj+pBN3QmJhLU1dXP7o2SVCxCV8Wy1LwxLIPDI4enpVIdHD5QckeqhnDDtPN1dHSUDHOPel3suNHPcllwT7URBljf9iSe8/QnAY6NcDZvMDg8jqz46Bscpq/nqZzuGeTkidM89ODDZLM52lpbece73smHPvhBQuEQTQ0NtLU00tHZwqa1q1m9qpWQ30PAu3zEScaNgISCFSs+AIKFCM1S1s1ZlnXB89W2bQ4cOMif/vSnYpfzTZs2sXPnzjmf6+4i5dToxvka/bnRDbGOJZgty2T6KCgVpS6Cd/qcLI8i+FgsyvOe91wef/xx9uzZy8jICCMjIxiGwZOe9KSC7ePyxMYmEo0yOjrCxERy9gIEp5kWgMcjLgezwbItjo8fnxbZ2DewDz1n4sv78epePHn/kjhSOZ9BaUWI6KWk3ALkfLg2wq442dAR52lPWj/NqatvYBjNsLEkD0++6gqOnejm0OGj/O/v70fXnOZSn/jEx/ivH/8XQ0NDtDQ10tbaSGdHM+tWdbC6s5VQwFtRNsK2bReL0IOBIGhLl940V1wXrKXshH7gwEHi8WqamppmfL6/f4CHH36I4eFhAMLhCE95yjU0NzfPav9TG/3l89OtcM9s9DfVDvdiqSkVlB4x4xAUuRiK4BVF4bLLLmP9+g384Q9/oLv7NEePHqGrq4t169axY8cOwuEZ/JOXAfF4nNHREZJzbEZoGCaIRoQzcqYj1Z6BPewZ2HOWI1Vcay6LI5Vt20Ur5krmyp1Xsn79+nIPo0hRgEiVMfmeDWc6dbns/IfXF8VJOqtxqqef4dEJGhubWbOmk0QiweN7n+BX//3fmIbze7/61f8Pr9fL/fc/QHNjPe3tTaxpb6Gzs41V7U0EC8dZSqeuvJbHMp3xBYOhihYgbupeNjd304/5YNs2mqYV+49M3d7b28sjjzxSFB6q6uGSSy5h27at5xTYrhXu1OjG+Rr9TY1uiLUOQakQAkRwQRajCP5MYeJGUZbq4hYOh7jyyivx+/0MDg4yMZHg8OFDHD58mDVr1rBjx46SFustFlMnn5GIUwcyPDw0p32YxvztHVcaZzpS7enfw3Bm5LyOVEVm6Ui1sXYjfrU00TY3AlLpPPPpzyBaQV2X/T4/zU3N8+6pUGlMFScN1WuL2y9d/zIM8y/I5HWS6TwnT/dx6lQfratW8fi+g1iWycOPPsJP7xtybNWAa699Ks97/vP4wX/+gJqaKjpaG+lsa2XtmlbamhsXzUbYdcDy+X2oamHiXKHntvuZc2snFxu31sSt07Ntm5MnT/Loo48yPj7ujop169Zx+eWXn1XrMbXRnxvdmGqFO7XRnys2RKM/wWKzMq6+grKwkCJ403RSu9Lp8hXBy7JMJBJh584rGRoa4pFHHmFkZISurqN0dXXR3NzMpk0baWtrq8hUjTOJRp0J3vh4YvZvmtoH5CITIOdypPJpPnw5t0g8SKteVbGOVNXV1USile949aGPfIjrrr2etTufWe6hAM5ErqamptzDWBKm2gi31EW5+rINADzlkg7+34ufSTqnMZHKc+xkN8dOnCQWr8dGZiIxwYEDB/nR8DBO1ZJNfX0dH/nIh/mP//xPvIpEZ2sjHe0trF/bSUNdnHDAi9+jzkucpFKFHiChyrbgBYpOVPYSpWC5DQ9t22bv3ic4dOgQExPOdV6SZNauXcull15KOByaMbpxZqM/n080+hOUHyFABIvCciiCd0WFbdu0trbS2tpKX18/e/bsoaenm97eHnp7e/D5/Kxfv45NmzZXbHqWbdtUxRwBks1l5rQy7nbYVVbIavBMlMqRyvTmnSLxGRypLmnYTjwQX9LfS1XVZbGKr+V1NL1yUmpy+RyZTJbqqqplEUFaLFRFJhbyEwv5aWuIcd2VW4rP3XbdR8lqOqPjGY6dPEXXidPkNAtFlhno6+fwkSOMjY7hipNIJMw73vEOxkdHOX3qGO2tzaxe1cr6NR3UxqsuaCOczjhmCsFQ0LlRVDCuwFqKCIht23R3d3P8+DEee+wx3KuSoqhs2LCeLVt2IEl+slkYHz/bCndqo7+p0Y1lcNkQrHDEKShYUs5XBH9mOpeuz64IfqowmSpQLjSvcAWIZU3eRJqaGmlqamR8PMG+ffvo6uoin8+xd+9e9u7dS3NzC2vXrqW9va3ibGvDEWcl3LZsMpkModAsxVLBlWmlTMQW4khlzdKRanvDdhrDjWX/m42PJ8jlsjQ2NpZ1HMuNVDJF/0A/8erZ2ZpejEztcbKqJc7Tr95RfO6qz7+fbN5gZDzJ0eMnOXa8m/7BUerra/nTI3/i17/6NclkClecRKMR/vwlL2HTlk08/qddtDTXs2Z1G2s626mpihDwqaQLEZBIuPIjesXFK2vxBMj4eIKjR49w9GgXmYyTnmbbEIvV0dGxkYaGDizLS3//uRv9TS0WXyGXd8EKQggQQcXg1oGcOW+eTRG829PEef3siuBVVaG2tgZlBheYqqoY11xzNVddtZPjx0+wf/8+hoeHi1ERSZJpbGxk3bp1ZRUjU28qiqLg9frQtDzJZHLWAsSyl19BrkslOVKVg1wuSyIxIQTIHLFsa1me75WCayNcHfGztq0Orr2i+NwNV6wm/Za/ZnB4nKPHT9J1/DSnu/tobWulp7uX7/7nj8hksrjipDpezc4nXcklO7aRTJiMPHqU8eEca6JBYmqAgG5WnI2wIjvjKXXUOJGYoKvrKKdOnWJ0dBTLktB1BdMM0tTUSXv7eqqr48iyhGVNb/Q3NbpxkWXTCpYpQoAIKp6FFMFr2vmK4L2Ew20YhnMMVT17lUhRFNauXcPatWuKN4eurmMkkxP09fXS19c7TYy0tbXOqQlgqYlGowwPD5EYH5/dpFSSimkEy2U+dnjkMD/Y/4OiK1WlOFKVg6Uqgl1p2JaNLCpsF4WpPU42rW4CrgKca29ON/iL5z2NgaFRDh89wfGTPZzq6ScajTORSJLL2/zgx98n2TtI3Lbx1tYQWb+Gv33j6+nvPY2hZVm7uoO1q9qJhPyEAt6y2AjLhWNOXZRwnbHm0qnctm3GxxMcP36MY8eOMzqaRNcVNE3FMCLE4w2sXduGz+clEglRWxsvNvqbGt1YBiWKAsFZLI+7rEAwA+crgnfStdw0rpmL4HXdZmQki6J4ijeN8xXBx2JRLrvsMi699FJGR8c4evQIx4+fIJNJF8UISNTUxGlra6Ojo5N4vHpJVs7tQl5wbW0tw8NDJAvpDLPBKry3Elf4z8QyLLpOHOMbv/lWxTlSCc5NKBQiFKyc+inTNJGXwfm+kpBlqdjjpL4qxLZ1bcXn8nmNb37ne+QNic98+J/o6TrOwIEjHB9L0m3ZmKbN57/4NY4eOlTYmURdQz2tza3cccef09RQQ1/3KdasaWdVWyvhoI9wYPFshKXCjF+f0gn93/7t33jf+97H5z73OW677bZzvlfXdXp7ezl9upfjx/sYG8ui6wq6riJJEeLxOBs2dNDR0UYg4MfrhePHDxCPq6xaJYlGf4IVgxAgghWJ29PkTKYWwedyNo8+2kVjYzuBQNUciuAlAoE4l1++kyuvvJKRkVG6uo7S3d1DIjFebHC4e/duvF4fzc3NrFrVSUtLy6KnasWijnXw2NjorN9jF8JDleb0ZVs2+WSebELjD//7Rw7tOczRwyc4euoI4WsdB6NKcqQqB24dVKXznve8G4+3fJHBM/F4PMVu1oLyk06n8HtkIiEPV126HtY2Ij1pA1K0CrOpiVRW44ff/DTHTnVz5MgJjp3q5tTpfvoHBslk8vzHf/6EH/7nD5ydeRSaG5pobmnm6ddfx3VPvZrTp47R1tJAe0tTsQHjQsSJe610DTwAhoeHGR8f5yUveQkve9nL+NCHPkwkEsa2bSYmknR1neTo0R76+xPk8xKGoSBJNrLsJx6vZvXqDjo7O6iq8k2LboDJ6GiW+vp6IT4EKwohQAQXFVOL4MNhibo6g5YWg9rac6dzmeb5iuAlvN4aOjpqWLcO8vkU/f2n6O09weDgIJqW58SJ45w4cRyQqKqK0dDQSFtbK42NjQsWJBLTu2BHC05Yo6Njs3q/Iz7cv035ZrK2ZaOlNUb7x9n32AEO7DlE18HjbNq8meqqGB/92McJBYKsWb2GG669nl/Gfs6QPFBRjlTlIBwOV5wZwkx88Ytf4sqdO+m8/GnlHgoAdXV15R6CYArjiXEAqqvONgWQZYloyEc05KOxZhNXX7qp+JxhWqSzGrc/80pe+sKb6Tp2yhEnp3rp6eunu6ePPz68m3ve+0+AjeLz0tTYRHNzE1u3bOTFL3geyeQosXCQ5sZawgEffu+FbYRn6gPyta99vfj9fff9kuHhNLfe+iJyOZtEQsO2nUJxSVLw+32sXdtCR0cz7e31RKOeczb6S6WcZodCMAtWGkKACC5anEZMUrEr8rmK4J10rbOL4DXNuQFNL4KPEIlsZv36zWzYYJBIDDEwcJrh4T4ymXFGRxOMj49z6NBBAGKxKlpammlpaaGhoWHBk8loIQKSz+cwDOOCFq1TKwiWMgKipTUmhlMc2nuEhupGHn34cb777e/SU0hj8yoqnatXEYmGeOoNV7PjqVtp7mwkEPOjeBX8D0rkjXwxlaoSHKnKgfv/rnSOHj1KS2tLuYdRxLKs4udfUH4mEhMARCJnRCgv8P9RFZlY2E8s7Ke5bjtPu2p78TlNN8nmddI5na3rP8fhrhMcP9HNqdN99Pb38+BDf+LpT7+Rl73ir7E0A28wQFNjE60tzazqaOVFL3we0ZAf2TZpqK8m4PMQ9DvV3ZMW7s49YGBglNWrt3Prra+kvr4d8CFJMDCgFTqLy9TUVLFqVRPr1rXR2BgjEJBmZYWbyWSQJAn/mUWQAsEyRwgQwUWNoihFAXLu1ziPuRfBy9TUtBCPN2PbkEqlGRgYZGion/HxQTQtTTqdYXDwMHv3HkBRbMLhCHV1dTQ1NdHQ0EBVVWxWkyS3BiQYDKKqKoZhMDo6Qn19wznfY5omRqEJISyeC5aRN8gl8vQe7+OP//cwh/cfpevIMU6fOoUJvOJld9DS3MrmrZu4/YW3sGnHRjZsXUuoJojqcy5RTUxfsX7TVW9alLEuN3L5HKZpVlR9xXLg+InjeD1e2traLvxiwaIznnCa6sWqqkq2z6KNcNhPc+0ObphiI5zTDLI5R5x8998/x979hzh5qoeT3X309PRx6PARtu24nO9+97s8uutPBKMRmpuaaW5qpK2libXr19E3HEBLwyc/+ROyWY0bbnhJIcIBYJNOj7N37y4kKUcqNcRnPvMxtm7dcq7hnpNIJEJ7e7sQy4IVhxAggouahTRxm2sRfCgUIR6PsHHjaixrqiAZZnBwiFQqxciIRU9PH3v39qAoFoGAQmNjnPr6Wurq6qivbyAQ8E8Zw/SbkiRJxGJVjIwMMzAwcE4BsmvXLl7xipfzgttu54ra2hn3NR9MzSSbyHHs4An2P7afQ0900dfTz8te/nK++pWv8sS+vTQ3NbNm7WpuuPlpbN6+gW2XbSFQ7ef21z9rwce/2BgeGiaby7Ju7bpyD2VZYZomsq+yap4uZiYKAsRtpsoim7sVbYSjAVrrt/G0q7YVn8tpBumsRjZvsGFVA3/446P09CZIZSU8agRN87J3bwZDCVLV4EFDQ5ZNMplRjh8/wOOPP8jx4wcwjGxxn4qicNlll/KhD32IN7zhDXOKNgcCAQJndvQVCFYAQoAILmo2b968KPs9VxG8ZU2NmoRpbQ2jaavRNEeQDA+P0N8/wOjoGOPjCZJJi4GBNLKcRFW7UBSTcNhLbW2UxsY4tQ3VpJU0HnXS+L2mpoaRkWGGh4ZnHNu3v/Ut3vTmN2OZJg888ABXPOc582pEaBkW2USOnmO9DPaM0NbYzic/+il2795NOut0NW6orWft+jVE42H+4YPvwBNSqG6I4Q15kRbJoeZiQ6yMzh3bmptdqmDxME2TVLrQhDBaPpMIy7IYGxujv3+Unp5RhoYmGB7OIOtB2uNBbNvCtG10CwzZIkOecFTHTI7x85//kEce2XXOfZumiWmavOlNb+JHP/oRX//612ltbb3gmGzbpr+/n3g8XlZ7d4FgMRACRCBYQmT5fJ3gQ2haCE1rL7h0WQwOjjM0NEp//wAjI6Ok0xlGRmB4eIKDBycw7aNMMIKqWqxr6KK+rgrVIzspX+n0WccwTZOPfuxjWAXP+lOnTk0Z27lX5VxHqvyEzkP37+KJR/Zx9PAJjnV1MT6RwKd4+MznPktDfQO3POcmNmxbz5bLNtPYVocv4hNiY5FYLn1AJIkL5vMvJaZlinOyQphIJsF2mvoFA0tTaK3rOqNjIwz0D9PXN8bIcJrh0TSGphSKxW1kuRDl9kk0NlTT0BijpSVOa2stg2Pd/PA3P6Q+Xs/r3/J33Hrr03nmM5/JxMTEBY/9v//7v1x99dWcPHnygosHuVyOvr4+IpGIECCCFYcQIIKLmu7ubgzDoLOzs9xDmaEIXqajI45pxtH1tWgaJJN5BgbG6OsbYXg4wfDoKBOj4+TyNj3dabpPp7FtCahidETna1/7NZGIn0BA4Vvf/CqnTh8tOHI5XLlzZ/H7orNLwZFqbCDBE4/uLzpSVceqecYzn8E/vPUegv4Aa9es5WlPv47129ay/bItNK9q4u+f8XpkVaS2LCXLIQJyxx2voKOzcuotbEt0Qq8UEkUHrKqzz+UFntuGYTA+PsbY2DgTExMMDY0zMDBBMqmj6yqWqRTqNmwkScHrU4jFwtTVRWhpidPSEqexsQr1jGta75BRGJ4zvomJifOKD0VRME2Tq6++mm984xsMDg7O6nObyTiRZJGCJViJCAEiuKixLItsNnvhF5aRqUXw0aiPlpZGoBHbhkxOZ3/vUfr7R/GkQwwMjDE0mGBiIoVty4yOpBkZTmPbsGPHLVxyCdx2q8nQcC/Dw71E/QrZnApJk/t/8iBVwTj9pwf53Oc+R0/vdEeqTVs2smZTB9/56deobY4XHakE5UNRFFSr8i/jup7HMMxyD6PIunXrKq7vzcVK0QHrrPSr2YsPTdOYmEgwPp4gkUgwPDzE2NgEqZRebPJn6GohuiEhSV68Xg9V9VHq6mK0NNfQ1FxFbW0Yv//Cx3X7fyiyc/17+ctfftZrXDMQv9/Prbfeyote9CJuueUWQqEQq1atmtXvlc1m8Xq9Il1QsCKp/DuXQLCIeDwe9ClOUMsJtwg+GpPxB6Ksia8pPvef//ljhoYS5LIWD/xhF62tq4lFa/H5woBMY0MrDfWtSJbJeP8Y2e4Ix8aHUKRBIhEfO695NpEqldUbW9h62TrqW+N4/J5zD0ZQFpqbm8s9hFnxne98h+uedh1PuulF5R4KwLLonXKx4PYAicWqJjfOkFloGAbJ5AQTE0nGE2OMjYyRTKVIp1JouoZpymiagmGo6JqKafqQJB+KKhONRIjXVFFdHaOuLkJDQ5Tqaj9+v7O4M1fce4asyGSzWfr6+gBHdKxZs4a3ve1tPPDAA9x0003cfPPNhM70dp8l2Wx2Ufp/HDhwgO9+97s0NDTwmte8puT7FwhmgxAggosaj8eDYRjFpoLLlTNrAerr4yQSIwwN9fDzn391yjMytbVN1Ne3Ul/fys7Ln0w4bENYxq4CySeheXX8dTE0W+JAX4IDP/sTsgqRkJdolZ94LEQ8HqG6OkQsFiYcDokVOsGyQdd1ent7qW+oJ+AXqS3lxo2AxKJRcvkcmXSGdF8f2b5exi2bYY+HVCpFPp8rvsexQHfFhgdd96OoHqqrqohGI0QiYWpqqonXRIjFfMWu4j5faUqRXAGiKipjY07T10AgwHOe8xze/OY3c+WVV/LKV75ywccJh8Mlr/0wDIM77riDRx99FICmpiae+9znlvQYAsFsEAJEcFHj8Tir+rqur5hV0d7eXv74xz9SW1tLY2PjGc9aDA/3MDzcw/79D/HIQz/nM393F3URg6f+5XMZH88wPJxkZGSCRDLPRCLLRDKNbUEqlSeZzNNzOoFtS9g2IIGqmvh9CpGIl2g0QLw6RHU8TCwaJRAMEA6FRbrLItHd3Y1lWbS3t5d7KMsGwzSYSE5QU1tT7qFcdOi6TiqdJpVMks5kGB0dKdZO/O73v8cu9GRSMxkC2Sz5YJBsLIppSui6B9v2EQhU4/NGqK4OEotFiUUjRGMR/H4vPi/4AzZ+PwQCMzsRlgK3d5TX66W5uZl9+/axevXqkjcLbGpqKun+AD7wgQ/w6KOP8v73v58vfelLvPrVr+baa68lHo+X/FgCwfkQAkRwURMKhVi7du2C+oGUk5miNn/605/41Kc+xd13342iKEiSdE63JDeXGSAWC1JTE2XNmumiRdctxsbTjI4kGR5JMjKcJJXWSSZzJFNpLFMmm7XJZPL092vYtuPpr6gWimyhqCYBv0Ik4iMc9hGvjhIIBgkGA4SCIQLBAMFAUIiUeWCaJpZ9/kaagumYBQc4EbUrLbquk8lkyWYzpNIpstks6VSaZDJJJpNxmmaepw6oKD48HqLROnxeiVCsAaVxFcFQhGjUcYJSFAlZBlWVCPgnBYffby+p0ZokScXi8MWwc9c0DcMwCAQCJYvOP/HEE9xzzz288IUv5J3vfCc33ngj11xzDW94wxv45je/WZJjCASzZXnOugSCEqGqKtFotNzDKCm33347T37yk/nJT38CNuzYsYPHHnuMtrY2xsbGSKVSxde6qQSS7UzMZhJiHo9MfV2E+rrpRaK2DZpmM5HMMz6WZmwsw9h4mkQiSyaTJ5lMk8mmMXIKuazE2JiJbWeQ5DSKYqIqFqpiOt97bPx+hUg4QiAYJOD3EwgECIaCBANB/IEAgYAfn9e3rFPlBOXHMp2JrltALDg/pmmSzWXJZXNks1kymSyZTJpcPkc2myOdSpHJZs4rLqaiqM7nPBQOo+XzDAwMEw7Xsf2SK1GUMIapwkQSNZ1EqoohN9Qhy1IxuuGmU3k85bOg1nTN+WYRL0UjIyMMDg6yffv2kuzPNE1e+cpX0trayhe/+EUALr/8cj784Q/zhje8gRe/+MXcfvvtJTmWQDAbhAARXPT09fURDoeJRMrXBGuh2GdUbdbV1dHY0Eh/fz9f/vKX8Xq9RKNRnnjiCV784hczMTFRjIxYtoXM5MrwbJEk8Pkk6nx+6mr9wGRKi9MJHvIaJBJZJiZyJBJZksksuVyedDpDMpkim8uRzurYFiCBomiocg5FNR1xUoiiFIMjEvh8PrweL4FAAJ/fRzAQJBgKEQoG8Qf8+Lx+fH6vECsVxMbNm+lo7yz3MAAwCyvtF3MExDRNcvkc+bxGPpcjm8uSTqfJpDNkczly2SzZXBZdNzDmYNIhyTJ+v49QMEQ4EiYcCuPz+QmHQ8XPqG17yWsSuSw88IfHGB7RiNd0ICvVzjXFC2pAIqDY+Oss/G1OdKOSAqSuc6IrZheDVCpFKBQq2TVMURR27Tq7WeLrX/96Xv/615fkGALBXBACRHDRMzIygm3by1qAzEQsFqO/v5+enh6uv/56AK699lp6enrYs3cPv/2f3/I/v/41hmmhMncBcj7cTvDBIFRXBYAAUF3oBA+aJqHpoGuQy9skk3nS6ayTtpHOkkplSGcz5HN50hkN3cwhoaHKJhnVQlUyKEoKRTnPKqgEiqLi83oJBoP4/H68Xo8jXoJBAgE/fp+/uN3n9aGqqhAti8Bf/PmfEwzOzwmo1Pj9Purr61dMyp9lWWi6hpbX0DSNXEFQ5HI5spksuqGjaTq5bJZMNoOu63OfOEtOvZzf5y8KfyeKESqkUQYJBYN4PJ5pnx/LgmwO8nmJbEZibNzpQi/LIMsSiUQCj8emtaWKmjhOSpXfxps2kBI6VFmwNL0J54Qb7Vms1F3btkmn0zPU8AkEKwchQAQXPcvaihfpnBPmpqYmDh06xMDAwLTtsiyz45Id7LhkB29+4xv58Uc/ip3NYS7iat7ksd1O8GcKBx+67kPTqtB0CU0DvfDVNMGybEzTIpvNkcvlyebypFMZNC2HrqcxrSzYGoaRQdfTSBhIgGkYZAyj2NDrghREi8ej4vV48Xq9BIKBojjx+rz4fD78Pj9erxeP14uqKs73qmfJV9XrG+qX9Hjz5d577+VpT3sar7riaeUeCgF/oKLcr2zbxjAMdENH1wx0XUPX9WKEQsvnyefzmKZJPp8nm82iaRqa7tQIzHsVXgJV9RAMBPAH/CiKStBNewwGCQVD+Pz+OaU+ahrk8hK5HORyziKDLDliQ5bB6wFFkfD7QFU1PJ4+6mpNtm0LEwpNuSak3TFW5mKAYTq1cx51cazJM5kMlmWtuEUxgWAqQoAILno8Hg+appV7GCXHXT3LZDLkcrlzOrQoioIBmFZ5G8UVO8EX08mcr6bpTGw0XUbTguhaCL2Q4mXbNpbl1KM4D+dn07KwrRyWpWHbeUwzi2nlMLQ0ec2JrOQLEztN1zFNA9uywXZEi2kY5LK5cw/2HEiyhCwrjigppInJBSOAqaLG4/Hg9XlRVRVVUVFVFUVVUFUPqqKgqAoe1YOqquddqa+kifT5yBZW3yuBTDaDaZpEwnOf3Nm2jWmaGKaBYRiYhoVh6BimgWmY6LrzvaGbaHoeXdPRNI28pmEWDB8Mw3BEhK45JgIlEv6yIuPxePCoHvx+P16fD7/PRygUwuf3EfA7kYtSpShaFuTyTnQjl5XIaWCZziKDJEsoMgT8Eh4PBPw2/gD4fXZx8WFgcASf12nUN98+GeXCFSCqZ3GmUG4Dw8XoASIQVApCgAguejweD7nc3CeblU4wGCQQCJDNZunv76ezs3PG17kTXGuKI1YloSiOpWYgMF2YOL0AXHEioRdFCliWjGWFsCxHztiWjW2DZTv783qcIlav1/nqUW0kySCv5dF1Ay2fd9JZ8jl03UDXNNKZNPm8hq5pxRVoy7KmrULblo1pOQImn8uTTCYX/geQnP+RK2w8qgePx4m26LqOLMt4vV5kRUGWJfw+fzESI8tyUcSoqgdFlQv7kpGQit8Xt8lScbsky8iS7HSOlp19uRPWqV+L30+Jxk39apkGsuz8bBgGckEous5sxa9M/jz1uWkPCyzbwrYsLMsq1jDZlj35c+E5y3a+mqaJaVpYpolpmownxjF0g2g0imEY5DWt8B5HDJimiSzLxYiDYRrO+y2r6NS0KBSib6qqoMhOVM3r8+LxePH7fARDQTwebzFd0Ov14vX68PqctMLFjr7p+vToRl6bjG5IEnhUkL1S0ZHK77MJBOxzNvobHh4BoKa2doZny1dgPhtsyxmfqizOFCoWixGLxRa0j4GBgeIi1H333ceNN954zte+/vWv59Of/jRPfvKTeeCBB0QaqmBJEAJEcNETiURWREHqTM0U6+rqOHXqFCdPnpxZgEhS0Q1oudm5up3gnfYt08WJWwRfTOfSZDTd2e6sYoNuSGQyTnqX09NEwevx4fXYeLwQDOF87+GCBbCWZaHrupNGoztpNIZuoOu6I2oKK+GucNF1A0mSME1HqOi6jmmZGIZZmEhb034ly7SwTAtD18mxvMSyZRrc/pznIEnwve99D3mRJm1zpb+/f0Hvd6JdjnBTFAVVUfF4PPh8PuTC9WRa1Ms7KR48HkdEqqoHj1ctRrsqZeJn22dEN/JOJNKNbsgS+H3g8UgE/DY+vxPl8Plmb4U7MjwMQO0y7MciK84FwecvbZNAcK5PpehL1dDQwOrVqzl27BgPPfTQOQXI448/zuc+9zlkWeZf//VfK+YcFKx8KuNOIBCUkaqqKqqqqso9jHlxoZtFe3s7p06dKnbrnQn3ZrqYji5LTbEI/gxhMlMR/GTUxC5MvCSyeQqr6hI2oLpRE+9k1MTrmWx0JssyPp+vZF2L3ZV83dCLqT6maRRTfczCav7g4CC6oVNVVY1pOpEYR9g4LkemaTqvL6zwu+eLaZhO5GZKJAEKEYvCcS3LBtzoA8Xvl3RxunB6O+N2VtqlQlRGliVUxYnuWJZV2CYXIzVerxdZlouRFUVxJvi6riFLMvF4vBj9UxQFRVVRlEkxoSjK5EN1IhNTU+ZWShE7OMI8m5PI5yejGxKT0Q1FAa9XwudzoxtORFJV538yjI6OAlATP48AqdDJsBsxL3XjQXBSZg8dOsSGDRsWnJp2zTXXFAXIuXjDG96AaZr8zd/8DZdffvmCjicQzAUhQAQXPbZtk8lk8Pl8y7Yh4bloaWkBYHRsFE3TZlxVcyMgpXTBqlRmLoJ3vp+azuUUwcvTiuANE7SMRDrt/GzZFAtr3aiJK0w8noXNnSRJKk5+uYCmMS2T1atWz/9gC+CsNKoZUqtMU+evn/sMrrnmKfzla1+Iokx3SpqWxnXG18Wg61gXXo+Xtra2RTtGJWPbjj22E91wBLdugDIluuHzntHoz2eXtNGfpmnFDug1NcsvApJJO/VMiyFAUqkUsiyXpP7j6quv5utf//o5Bcg3vvENfv/731NdXc373//+BR9PIJgLK2u2JRDMA9M0OXToEJ2dncTj8XIPp6SEQiGCwSCZTIb+/n7a29vPeo0bATErtAZkqbhwEbybziU5NSf6ZNF7NieRyU4piscVJk7UxOMBr9fGo3LOnPj5UO50idkIBkWWuOuuvyMUieD1eMueguVRHQOAiwXTdNKpcjnJeeQB23GjkiRHRAf8Z0c3FrPRnxv9cOvUlhNuhBAg4Cv92JPJZMn6f1xzzTWAYzV/9OhR1q5dO+04b33rWwG45557qJ2xFkcgWDyEABFc9KiqumwL0aUprXht7Gk/u8TjcTKZDCdPnjxbgEjSpAC5CCIg82E+RfCmaRdXmnOaVCiCl85ZBO9GTeZKOBxeFv+3H/34v7j8sstY86Snl3soM4rwlUQ+T7HRXy4/xQpXmYxuKMrZ0Y2lzCgbHnEK0OPnSr+yK7cIfep9olQply62bZNKpUrW/2PLli3EYjESiQQPPfTQNAHy3ve+l76+PrZv386rX/3qkhxPIJgLQoAIBDihdLe77Uqjvb2d7u7us/qBuCjSxZOCVUpKXwR/ZjrXhYvgl0vE7vHdu6mqWpirT6mYyaxhueJa4eZyk1a4Uxv9udENr7cQ3SgUi3u95Z3gDw8NAVBTuzzO36m4AkRRlJLXAeXzecBZWCgFsiyzc+dOfvWrX/Hggw/yF3/xFwAcOHCAT37ykwB86lOfWhEmLILlhxAgAgGOAHFzklcabh3IRHICXdfxnLHU7v6cX4G9UMrF+YrgNW2yCN7Qz1EEn3PTuc5fBO/0ObFLvhK7UrFtm33799HS0kr1MjSemNroL5+fboV7ZqM/n992+m/4z22FWw5s22ZwcBCAhvqG87+4AoWiK0DOvI6WAr/fzyWXXFLSfV5zzTX86le/mlYH8sY3vhFd13npS1/KU5/61JIeTyCYLUKACAQ4ucjJZHJZr47ats0MGVhEIhG8Xi+aptHf339W8a23MHnVC6tvgsVDlin2SZhk/kXw/f1jSJLGujXtJS2CX6kYhoFt28hS5TtYuVa4U6Mb52v055sS3ajk//3ExAS5XA5JlpZl3YEbKQ+GgiW/VyzG/efqq68GHLvdfD7PT3/6U37zm98QDof50Ic+VNJjCQRzQQgQgQDHiWU5urHM9mZVX19Pd3f32QJEkvB6CxEQIUDKynyK4L0e0DSZbE6eVgRPoTHcYhfBLzdMy0kzVNTKEyBTG/3l806x+Lka/fl8TnTjfI3+KhU3FbSutu7croPLoAYkFCxt93bbttm7dy8tLS0lvRddddVVKIqCpmk88MAD3HXXXQC8ZSOyCwAAk55JREFU+93vprm5uWTHEQjmihAgAsEUlnME5Hx0dHTQ3d1dTH2YimvNmxMCpCI5XxG8JBmkUxoNDZSlCH65YRSc3sqd81783+QWr9FfpeIKkIaGC6RfVSgTExPY2EX78lKRTCYxDKPkrmDhcJht27axe/du7rzzTk6ePMm6det485vfXNLjCARzRQgQgaDAgQMHiMViK3JVyHVVGRgcOKsfiPu9pgkBspyQCo5GdtAiXr14RfBe78LTuZ73/Oexds26he2kBLjNNtUltgI2jMl0Kje6MdUKdzEa/VUqxfqP2QiQClRbqVQKcGpAZnIdnC+JRAKv17sotsTXXHMNu3fv5sSJEwB84hOfWHCndYFgoQgBIhAUUFV1WVrxutjnaVEdjUbx+/3kcjl6enpYtWpV8bmiAMkJAbLccLt+n8lsi+CnpnOdrwh+ajqX1wuqOr0T/IWoro4TCJS/UD4UCrF27dpFbThq21OKxWfR6G9qsXgFzrdLSiqVIp1OgwR1dXXlHs68cO8RgWDphIJt24yPj1NVVbUoEfirr76aT3/60wDcdttt3HzzzSU/hkAwV4QAEQgKLGcnrAvdtCRJorm5mWPHjnHkyJEZBYioAVl+uA5ns+XsIvjJdK6zoiZnFMHrBuR1CVJz7wT/1a98mac+7TouefrzSvSbzw9FUQgopV1hntroL5+TyBaiG2da4fp8bu3G4jf6q1Tc9KuaeM2iuEgtBfl8Hhu7JJ3Kp+5T13WqFsmZzY2q+Hw+Pvaxjy3KMQSCuSIEiEBQIBAIMDQ0hGVZJfd3X0xmmwawdu1ajh07xsDAwLRaF9cFS9jwXrxIUmk7wU8tglcVCc0IYWgqlgUlTp2fE+PjCXK57IIavZ0Z3Thfo7+p0Y1ldElZNGZd/1HBReha4TpZylQpv9/P9u3bF6U2yTRN7r77bgDe8pa3sGbNmpIfQyCYD0KACAQF/H4/4KxGLUYebrlpampCkiV0XWd4eLiYAuFGQEzDwDTNc94EDx06xI9//GPq6up45StfuWTjFpybwcFB0un0tIhWqTlfEbybzqUb5y6Cz1gKulXDRCbOsZMKHo9ctiL4TCY9p07TUxv9udENt9HfVCtcrxeno3igMhr9VSrLvQDdtm10XQecaEKp0qVs2160tMBPfvKT7Nmzh87OTt7xjncsyjEEgvkgBIhAUCAYDLJly5ZlW5xnX2DVUFEUGuob6O/v5/Tp02cJEHDE10ypBYZh8JrXvpY9j+8BnAnEs5/97BKOXjAfDMMgV6baHUmimFY0ydlF8PkseOQUXtUg4HdqVpa6CN7FMAwU9dyrzLruRHPO1+hPls+Obiw3K9xykMlkSCaTgGMLPisqrCgmn89jmo6Vc6kWqfL5PAcPHmTt2rWEQqW19v32t7/N2972NiRJ4gtf+EJJ08YEgoUiBIhAUECW5RXfUXrNmjX09/fT3d3NZZddBjj1IcVu6HltxpvUxz/xCfY8vod3vvOdfPOb3+Cuv/97rnryk4lXVy/p+AXTqVTL6KlF8FbYwqf2Uh0dYM0qE8OUlrwI3sW0JiN8Uxv9udEN6wwrXLfR35nRjQr9s1c0bvSjurp62V5n3RrBgD9QsojF+Pg4lmUVI/AL5Wc/+xmve93rGBsbK473Pe95D894xjNKsn+BoFQIASIQTGFkZIRkMklnZ2e5hzJr5jIJdZsQDg8Pk8lkimLDU6wDOdsFbP+BA3zkwx/mtttu5e/+7s08/ek3cPPNN/OOt7+dz3/+8yX4DQTzRZKk87qfVQqdHZ00NTY5RfCehRXB28nJniazLYIHZ/8TCQtJDtHdI5PXQOL8jf78fnvOIkcwM3NKv6rQGpBEIgGA1+dEjUthw5tIJIhEIiWr/3jggQc4efIkwWCQSy+9lNe97nXceeedJdm3QFBKxKVVIJiCZVmMjo7S3t6+rArR4fw2vC7BYJBwOEwqleLEiRNs3rzZ6YbucS4FWn56IbppmrzhDW+gubmZj3/84wBccskl/NM//RNvf/s7eN7znsdNN91U8t9FMHsulHpXCbz5796Mx3Pu1Ma5FcE7PU1mWwSv6U4kxTTBtOrwqh4sS8LnXZmN/iqV5V7/Ac4CFTjN/UqBYRikUina29tLsj+Ae++9l3vvvbdk+xMIFgshQASCKbg3lnQ6TSQSKfNoFof29nb279/P8ePHHQECeD1eMI2z+qAoisJ//+Y3Z+3jVa96Fa961auWZLyCcxOLxZaFYcJ73vMenv70Z3Dn5U+b83tnUwTvpHNNFsG76Vx5zYkSKYojNqqq4kUrXL//4rTCLQeZTKYYPZh1/UcFMj4+DlCye4Pb1DAWi5VkfwLBckIIEIFgCn6/H0VRSKVSy0aAzDUNYM2aNezfv5/BoUFM00QFfH4fpHRy+eXbiPFiJBAILAsBMjExwXhivKT7nG0RvKrYhU7jFqnUBMFgcNn2oFiu9PT0AFBTUzO387XCwlGuYIjH4yWpv6qqqmLr1q3ifBRclCyvHBOBYJGRJIlQKOR0612h1NbWoqoqtmXT19cHQKBQC5JOrdzfeyWSTqcZGhoq9zAqDlWFYBCqYjbhsBNBMU2dEydPkMlkyj28i47ubkeAzLpxZoWmFbrnTjQWBRZmAmHbNrZtL1vXRYFgoQgBIhCcQWNjI01NTeUexpyZbS2AJEnF3+/UqVMgSQQLq5KpFSy8ViLpdJr+/v5yD2NZYBgGwKL1WxDMjGVZxYWOWQuQCkTTtOI5FA4tvAZkbGyM/fv3F219BYKLDSFABIIzCIfDJfdjrzTWrVsHQHd3N7ZtF92wMuk0Dz30ELW1ddTW1vGjH/1oxvc/8sgjtLe3U1tbxz/+4z8u1bAFZ7BcXLAqASFAysPg0CCGoePxeKmpqZn9Gyss/cq1tPX5fHi8C0+ZGh0dRVXVRel+LhAsB4QAEQhmoL+/v1g0WenMJw2gpaUFWZZJpVKMjIzgDwTAtkml01x55ZXceNONAHzwgx88a4XuyJEj/Pmf/zmZTJaXvOTF3H333aX4NQTzQJblYipHJePxePCo5c1zNwrnsRAgS0tvTy8ALS3Nc3cWrCARMlWAuMzXhlfTNCYmJuYmyASCFYYQIALBDIyPjzM6OlruYSwaHo+n6EZzrOsYoYATATENA03TeM+734MsSxw5cpTvfe8/iu/r7+/nRS96EaOjYzzrxmfx8Y9/vGKb4V0ULJO//Vv+/i3ceOONZR2DhITX41t29trLHbcAfTmnXwHF+0EovPDo+OjoKJIkUS0auQouYsSVWCCYgXA4vKwK0eeTirNp0yYAevp6kZXJLvCpdJqNGzfw0pe+FIAPfehf0HWd8fEEf/Znf0Z3dw87d17Jl774RbGaXGa8Hg+xaKziIyD3P/AAJ04cL+sYqqur2LRpoxDMS0g6nWZsbAyA5ubm2b+xAs9n9/eoilUt+POWTCapqqoS6VeCixohQASCGQiFQmiahqZpF37xMsVttmgYBsPDw4QLdS+ZgvB629veht/v49Sp03zpS1/iZS+7g/37D7B58ya++c1vLQv715VOJBKhs7Oz4lf1f/e7/+OJffvKPQzBEjNv+90KJJlMAo4F70JZu3YtbW1tC96PQLCcqey7lkBQJqY2JKx05puHrChK0Q3r2LFjxUL0VMGKt6mpib/5m78B4N3vfg9//OODtLW18r3/+B5VVaJxViVgWRaaplV8BKQSOHnyJCdOnCj3MC4qeor1H8s7/QomLXirqqqK2+YTTTMMA0mSRPRYcNEjBIhAMAMej4empqZpBYcrEbcT+uDQECHXCSszKbr+5m/+plhmUF1dxfe//30aGxqXfJyCmUmlUhw4eGBFR+pKha7rIv1qCbEsi96+BQqQCvl/5fP54mdsqgCZK5ZlsW/fPoaHh0s0MoFg+SIEiEBwDpqamopRgeXAfFbBW1pa8Hp9GIZZdLtyu/0ahsHf3XVXMR07k8ks+zSKlYY7oRYRkAtjGKZYdV5CBocGMQ0Dr3eO9rsViFuAHg6H8fl887a+Hh8fxzTNYoRdILiYEQJEIDgHpmkyNDREPp8v91DOy0JWdWVZpqXVWZ10b7KZTAbbtnnTm97Er375K2pra2hvbyOf1/jgBz9YkjELSoNb+yEEyIUxTANFFUW/S4Vrv9vcPA/73Qo7n91GitFodEH7GR0dJRQK4ff7SzEsgWBZIwSIQHAOJEmiu7u76H6yUmlvbwdgLDEOOBGQu+++m+9857uEQkG+/e1v8653vQuAb3/72xw8eKhcQxWcgSs+Lcta8mO7/Ucsy8I0nQiaK4RM08QwjOLjlltv5dIdlxbfN/U5wzCm9ZpZjL4mtm1jmkbZe5FcTJw6dQpYGfUf/QP9wNkF6HOpvxO9PwSC6Yh4tEBwDmRZJhqNMjExQWPjyq17qKurw6Oq2KYFCvzsZz/jpz/9Gaqq8NWv/juXXnopO3bs4JOf/CT79u3nnvfdwze/8Y1yD/uixbIsLMtCluWiAMlkMhiGgWXZWLaFqijEYjEsy2JwcLD4HsuysG2blpYWVFWlf6CfVDI1RUzY1NXVUlNTQyKR4HR3NxSes7HxeX1s2LABgCeeeALLni581q1dRzAYpK+vj5HREQBs02TL5s1Os0scY4euY13T3qcoKlu3bAHgwMGD6PpkTYskSXR2dBKNRhkYHGBoaBhJkpwHElVVMZqamtA0jVOnThX/Lu7DFdgN9Q3k83kGBgeQJRlZlospNa7jnSzLxYeiKMImdZ6MjY0zMTGBJEsLc3uqkBqQxLjTlNa9D8xHIGezWVRVFb0/BIICQoAIBOchFotx6tQpDMOo+Pzx+eYlS7JMU3MTY4kEu3bt4qc/+xlI8KlPfYrrr3+a8xpJ4h3veAd33PEyfnnfL3nooYfYuXNnycZ+MeCswpvTHrIsEwqFiul+U5+zLItVq1YhyzInT54kmUxi2VZx8tPa0ko8Hqe5qblY7OsSCoaIxWJIksTo2BgSErIsFSfn7j4UWcHj8UybtHs8TpTA5/NRV1dbXOWVJAllymegubCy7YogCQmv1ws4K8XhcAQAyzL49w//Ixs2bODKZ78Ev99PR3vntL/L1DTCpsYmLMssPmfbdjFlJRQMYdfaYE8+551iFOHxeIpRGTcq5O47m82SyWaxLav4d2xra8fn85FIJM76G0bCEVavXo1hGBw8dAhFVpBlCUVRkGWZjo4OFEVhZHQUXddQFRVZUVBkmUAggNfrnTaGi6kA/tSpkwA0NTUXz4nliq7rZLNZAGpra4vb5/r/jMVibNu27aI6DwSC81HZMyqBoMzEYo7dbCKRqNjQ+XxteKeyevUafvDtb/Gd73wHbPj7v7+LF77whdNec9NNN3HZZZfy6KOP8d73vpef//znCz7ucsWyrGnpQ5GIM9keHh4mn88XtxuGQUNDA7FYjKGhIfr6+6btx53k2rbNyOgoiqygKJOr765QCEci+AN+FFlBkmVkSSYYDCBJEvF4nGg0WhQRUyMjkiSxudBwcibq6urO+Zzf7z9vrnrNefohBINBXP8GyzQ4dOggzS1OIzpVVc9r41xdXXXO58Lh8DkLeL1eLx0dHTM+l8lkUFWVjRs2FKMaU1ex4/E4kUikKFxM0yy+TpIkamtrsC27KAxN0yz+jVPJJMlUCtM0ivtrbWmlpqaGsfFxurtPF/4vCoqsEImEaW1txbZt+vv7kRUZVVFRFBVVVQgGgxXf1+VCuHbHnef4fywn3Eiex+M5y5RktmJC0zQRURMIzkAIEIHgPHg8HhoaGpb9Kt6FOHXqJN/6xjewbbjhhuu55ZZbZnzdu971Ll7wghfy8MO7+MUvfsHNN9+8xCNdfDRNI5PJYpoGuqFjGiY+n4/a2lo0TePw4cOYljntPdu2buP/t/dfwZHl+Z7Y9z0+LRKJhPe2UFUo09W+p72Z6Zm5ZnWDu5T2gVIs4zLE0OWDQowNLhW6K62WyxW5sRFLiss3UXpQBFcKPdw7uzM707572tdMV3dZmIL3NjOR7pyTx+jhIA+ArkIVTCKRQH0/ERXTA5PnnyhU5v93/j8jiiKy2Sx03YAse5uNYDDon5zV1NRAUVRIkghZlndtSGRZxtBWS+SH2Wuzb9s2pqam0NTUxM46j1DQdWwkN3bVI+zcPD5qcyhJ0iNbT5eCntKJjGVZ/mNFwmF0dHTCsW1YtgXHdvzfB8dxkEqlYdvWrt+nixcuQhRFTE1NIZvLQZFlyLIMRVEQj8cRjUZhmiZ0Xfc/Lsty1dxZT6XSSKfTgIBDp18JVVSDvrbqtcw9yg2o2dlZFItFnD9/vlzLIjr1GIAQPcZZKKJ8nKtXr+Jv//ZvcWPEKzDfq/D+9ddfx9raaiWXdmSl1Kdisei3EV5bW0OhUECxWPT/tLW1Ix6vRSqV8k8qJEn2Umu27kjLsoyGxgbIsgJZkiBvbQ5Lm7/u7u491/G4E4XDyuayiBePPp35LLOs4lYK1fGdLJTSrHberNA0bc9ZQpIk4cIFb0O6szC/FKDU1sYRCAZgFb2PeydrXqCSyWQwNz+36/FqojXo6emB67pYXFyEJEtQFBXKVpCiaVpFgpTpmSkAXvrVkecoVUFQVeoOuLMO8CDproZhIJ1O+7VIRORhAEL0GK7rIpVKIRAIVPUcjMN3DvLe5Ht6ex8bgFQj13X9ImJBEBCJRFAsFjEzMwPTLKJobU8K33lSYZomFEVBOByGrMgIBLzNUl1dHeLx+EPvKouiiKbGpoo/x72wDe/+WEULchV3wCrV3pTqbwBspak9PFUtHo8jEonAsiwUixYsqwhx69TFcRxsbmZQLJq7mgRcvHARiqJgYWEBhmFAVdWta6oIh0NlO+Wdmfa6X3WdkQ338vIygIefgOwn/XVlZQWSJD3QQYvoSccAhGgf5ubmUFtbe7SOLsekXHc1I+Ewamu9E4D0ZvqB4uCTUjrBMAwDhmkiFAwiEAhgI5nE4uIiLKvof20k7NUIlFJqYrHgVoqKAlVV9nVSUe3NBnYq3XV3T6AN70HE43HU1Z1c9x/vZOHs5N+Lorjn6YokSTh/3utUVjr5KxaL/u+1JEtwdReZTNYPUtrbO5Coq8P6xgZWV1ahqt6JiaqqCAaD+07vS6fT3s0LAWfijr9lWchkMgAOl4JlWRbW19fR2Nh46ut6iMrt9LzTEp0QQRAQi8WQTqfR3t5eFZvyHytHIToAXLlyBZ999hngAslUCnUVbBlpWRZ0XYdhmojX1kIURczNzXnTg3fkyLe2tCIQCEBTVdTF4/6dXFVV/bu4oig+Msg4S0RBPJE5IAfxz//5/+1E02miNTVP5ClRKRDfmfrX1NgENHr/XQruS69pmqoiGo3ANE1kMlmYRQM10Rr/VHF0bAyaqnrBiaZCVTTU1sb8758udb9qbjlauqHrVlX6lSRJCIfDB/7+0tTzRzV7IHpSMQAh2odYLIa1tTXoul7VaVhH4rreXUsBgAuMjozgxRdfLPMlvHQp27YRCoXgui7Gx8ehG8auLkLhUMhLeQuFoKgKVEWDpnkbn1KBbzgcPtSm4KxpaW1FsMonK//1X/+f8Mabb+B/89SrJ3L9SgbSp4kgCLtO/H7cZazU0rikLh6HYRjI5/NIpVIA4Hc0m5qawtjoGACvu1oul0MwGDzVd/5XVlYAwG9pXbLfYFbTNPT39x/L2ohOOwYgRPsQjUYhCALS6XTVBiCHnQOykyiKiEaiyGQymJ6ePlIAUkrh0nUdKysrKBQKME0v5UNRVFy8cAGCICAQCCASjUBVNQQ0DYFAwN+0PKrVK3lOw89odXUVa2vrJ3b90r/bs97NrtwEQfADfkVR0NLS4n/ux6cntm0jl8v5/31//D56e3oRjUaxkUxCLxSgBQIIbjVj2FdgcsKnIIuLXjOKnfM/dnrUaXgmk4HjOH4rdyLajQEI0T6IoojGxsajd3U5BkdOv/rRm2hHRwfu3r0LwzCQSqUfObOhxDAMZHM5GLqOQqGAgq4jXluLtrY2uK4LXdcRCoUQj8ehbQUZJe3t7Udb/xMulUpDliW24d2D4ziYmp7y6xyoPH58epLP5wEAzS3NuHbtGnRd918vrWIR6fQmzB0d9Jqbm9HU2OS3vQ6FvHqtakpxLaVgHeY1amFhwU/fJaIHMQAh2qcz3Y53x5v+znzlsbFRPPfcc/7/d13XCzC2/sTjcYTDYaTSKSwtLUFRVAQDAdQnEn56VDAYxLlz5yr3XJ4wKyvLByoUftIUi16TAuUUNRc4jWZmvO5XnR1dEEVx19C+xsZGNDY2wrZt6LoOXdf9mxCZbBZzc7MAvLbXoWAQsXwe9TU1lX8SO+RyOf9EZ+fJz0G+t7e39ziWRnQm8BWZ6ADy+TxM00Rtbe1JL+UBRy6y3fr+WKzW/9DwyAieeuopKIqC2dlZJFNJ/zqaGvAngNcn6lGfqOek3xMgitVfhH6S/ABEqd42vKddKpXG+vr6VvervTsFloq5d9Zu1cXjiEYiyOcL0PUC8vk8ioYBwGtMMXz7NoLBIELhEMIh73sr8TozPz/vra+ubs+T771On5eXl6FpGk8/iB6BAQjRAaytrSGdTj9QlHgWuK6LfC4Hw9T9QnTXcTA6NoahixcRCoehaZq3GQiFdm0CGHicnNMQgJQmv5+EYtFrbsAA5PhMTIwD8IYP7jz52I/S8EavPsfbsAvzC4BtwXVd1NXVIZ/PY3VlFUvOEkRBxJUrVyAIAjY3N/12weV+PZ6e9jp6xQ/YwMBLXU2ho6PjzL1HEJUTAxCiA0gkElhbW0Mmk0HNCacIlBz2Tc5xHORyOZgb60hs5V5PTU/Dti0EA0EUCgUAwNjoKIYuXmT+fJUSRRG2bT/+C0/QX/1nf4WWltYTu76mBhgkHxPHcTA+7gUgA2Xu+KSoKlq35m+UaskMw/Bm37guJicnvaYWsjdQNBKJoK6urix/16urXr3Kw9p5u6675+mHLMtoa2vj4EGix2AAQnQAoVAImqZhfX29agKQg7BtG6trq8hmssjmsnBdF8HVNdQ2NUEE0NfbC1VVkdxI+ncANzc3912MTpUXCAZgW9UdgNy/Pw5FPpkOVPF4LeLx2hO59pNgaWkJhUIBiqIea0MJQRAQDAb9LoSCIGBoaAjZbBb5fB7ZbBbzC/Oora2FJElYW1uDIAiIRqMH7n6WzWah6zqAg9d/SJKEpqamA30P0ZOIAQjRAQiCgEQigcXFRdi2XVV3VR/WhrdYLCKdTqNoFdHS3AJBELC6sopQKISW5hZEo1GEEvXA5iZc1/ULQxP19ZienoYsK7CsIm7e/AGvvfZapZ8S7UNzU/NJL+Gxfv3v/h3y+Tze+Hv/ccWvXWoHTcfj/v37AICenu5dXbGOZJ/1bLIso7a21q/J2/manE6nsZnZBABoqoaamho0NDTsq5Nhqf7jccHLj3+vFhcX4bouWltP7rSP6LRgAEJ0QHV1dbBtu2omK/84FcCyLKyurWIzvYl8wWuNGQlH4Da5EEURly5d2vXGKaxvPBC6NDTs7ns/MzsLwzCqsg3xk851Xbiue6oHvh2n8fFxBAIBtns+BoZhYHqr+1U1DNzbeUOor68PxWIR2WwW2WwWqVTKn+exsbHhz+h4WG3Q3NwcAK9V8H4Vi0UsLy9z6jnRPjEAITogVVWrqiWv67rI5rOQDAk1zV5a2OrKKmpqalBfX49YLLbrzuQDd4Mfcnc4UZcABMCyiohGvcGEwyPDuHrl6rE+Fzq45eVlrG9sYOjixZNeSlUqFi2EQgzOjsPU1BTcrY18YqtWo5ooioJ4PI54PL4rAM1kMthIbmB2bhahYAix2hgSdQk/GFlf94ZmPqz+A3j4afPy8jIAMP2KaJ/4qkx0CLZtY2lpCcZWu8hKc10X2WwWs7OzuDd8DzPTM1hbXYPrupBlGZcvX0Z3dzcSicSh0iJkWfaCEGznQN+5fbfqi52fRKIowuHfy0O5rouiZbID1jGZmJgA4J02HEuaWxkfUxAEf41dXV24fOkyOjs6oarqrtfylZUVZLNZQNh/MGGaJlZXV9HU1FS+NDSiM47/UogOQRAELC0twXGciub7lnKcDcPA6OgoFEVBbW0tYg0xtMfb/TfYQ20GfpRSlkgksL6+vjXx2KsFGRkdxcULF8rxVKhMJEmC4zqsdXiIUqqkLDMAKbdUKu11ihJQ/oF7FUhvlWUZiUQCiUQCtm37KYwjIyMAgHAojHQ6/ciuWqX013Q6DVEU0djYeOzrJjoreAJCdAiiKCIej2NjY+PYa0Ecx8H6+jpGRkYwPDzsF4ufP38ely5dQltrG0LBUNk3nzvzpS9e9IKO27duVU3tC3mErY1TNc8CeeWVVzE0VPkUse0hhLzXVm6l2R+trW0Hnv1RbSRJ8l8/s7ksAKC2thZz83O4ffu2dyLyCA0NDbh48WJVNSUhqnYMQIgOKZFIwDTNx745HZZt25iZmcGtW7cwPT0NURR3nbaEQjuCjqPEHnsELvX1XjHl2vo6BgcHIYgidF332/NSdZBOQQDy5htvoKe7zHfJ90HTNAyeGzz1G+Rqs3P2R39f3wmvpnxc18X6mlf/cfHiRQxdHEJTc5P/+7O4uIiVlRVYluV/Tz6fh+u6TPMjOiAGIESHFA6HoaqqX7BYLqX+86IoolAooL6+HkNDQxgYGEA8Hq9Ymk0sVgNFUeFuDSzs7ekBANy6dasi16f9iUajuHD+QlXnnv83/+1/g/fee6/i1xVFEYFAgB3Cymzn7I+Ojo7ju1CFUwpTqRRM0wQErwOWqqpobmqGKIpwXRemaWJ+YR6jY6NYXllGLpfD8PAwNjY2KrpOorOAr8pEhyQIAtrb2/1UpaNwXRepVAojIyO4e/cudF2HIAgYHBxEW1vbvtrfPqwzy1EIgoD6rXa8q6treOqppyCIApLJpD8lmE6eKIpQVbWq6z9M04RZNCt+3Y1kEgsLCxW/7lk3OjoKAOjt7TlTaUeTk5MAsKsjVokgCOjq6sLQxSHEa7302/v370OWZcTj8ZNYLtGpxgCE6Ahqa2sRiUSO9BjZbBajo6N+R5ne3t4Dzdv48RyQQ3tIbUfDVnC1traKcDiMnm7vFOT7H34ozzXpyIrFIqamppDP5096KVUntzUDgsonn89jZvaYZ3+4bsVPP4Dt+R/nzp3b82tUVUVTcxM6OzoBbHcJXFxc3JWaRUSPxgCE6Ijy+Tzu379/6Ba1paFY/f39GBwcRG1tbdXcza73A5A1AMDFoSEAwOLCAjY3N09sXbRbejMN0yye9DKqjmmaj5xkTQc3NjYGuF7hdTXO/jisbDbrv851dXU99us3UhtQFAWJRAK6rmN5eRl37tzB8vJyVddjEVULBiBERyRJEjY3N/edB+y6LhYXF/03u7a2Npw/fx41NTVHWsehu1MJwiMK0b0AJJPJQNd11MXj/qbjxo0bh7selVUpBcZ2OAvkx0yzyACkjGzbxvDwMABgcHDwhFdTXqWi+lgstq+mBeFQGK2trRBFEaFQCENDQ4jH45ifn8fdu3d58kb0GAxAiI5I0zTE43GsrKw8NgjQdR0jIyNYXFz0T0x2toCsNoFAANFoFMD2Kci1a9cAADOzM37BPJ2c0u+OW8V3XSORKGI1sYpek0MIy296ehqGYSAQCOzrlODIKvi6WEqB7dlqtvE4iboE6uJ1/v9XFAWdnZ24ePEiVFX1W0AT0cMxACEqg8bGRhiGgXQ6vefXrK6u4t69e7BtG4ODg/uesvs4ZQte9oidSsO1lpaWAHg5z+FwGK7j8hSkCgiCAEmUqvoE5J/+0/8rfvrTn1b8us1NzQiHwxW/7llVGtI3ODh4porPdV1HMpkE8Pi6lmQyifmF+T1vNgUCAb9joeu6mJ+fR6FQKPuaiU47BiBEZRAOhxEOh/1Tgh9zXRcbGxtIJBK4cOFCVW2K3MfEL6Uiy1I3IUEQ8MwzzwAA7o+Ps/i5CjQ3NyMSPlozhOP03/93/z2++uqril5TEAQ0NjZyBkiZrK+vY3V1FYIoYGBg4JivVtlhp6XuV6FQ6JGpsLZtY35+HlbRgiAIe978KX3ccRyk02mMjo4yJYvoRxiAEJVJd3f3A8f3juPAMAwIgvem3dnZeWwzCcrdhrekFICkUik/2Ojq6kIikYDrOLh9+/axXJf2r76+vqqC2h+bnJrE/MJ8Ra9pGAZSqfTha6Nol3v37gEAOjs6z1xQNznlBSCPSytbWVmBZVtoat7f6bUkSRgcHEQwGMTY2BhSqdRRl0p0ZjAAISoTTdMgSZJf2+G6LqanpzE2NgbHcU7tMLRgMOj3uS+lYQmC4NeCDI8M8+7eCcuy3ewDNjc3MTM7fdLLOBN0Xcfk1BQA4MKFC5W7cAVqQCzLwsryCgA88mTHMAwsryyjsaHxQI0NJElCf38/YrEYJiYm+O+UaMvp3BERValMJoNbt27BMAysrq4imUz6nVKOy3HOASn5cRpW6WOxWAxwgevX/1CeNdChrK6uYmVl5aSXUVWKxSIUuboHNJ4WY2NjcB0HdXV1aGhoOOnllNXs7Cwcx0E4HH5kW+HNzU0osnKo2j1RFNHT04OOjo6qPqkkqiQGIERlFAqFIAgCFhYWMDc3h8bGRtTV1T3+G6tca2srAG/YVimlRRAEvPDCCwCA2bkZzgU5QTtP3sjjzQBhB6yjchxnV/H5WQvoSs+tpaXlkc+toaEB58+f31V8f5CbP4IgoKGhAYIgIJ/PMzWQnngMQIjKSJIk1NfXI5lMIhAIoK2trWLXPtIckMdobGyEIIooFApIpbY7fTU3N3sBlgt88+23h7s+HZksy7Dt6m3D+6iC3eNimmzBWw5zc3PI5/NQFHXfLWqPrEKbc8dxsLy8DGDv7leO42B9fR2u65al85dlWRgZGfG7bhE9qRiAEJVZY2MjBEFAJBKp2KbruK8jyzKamrx2vItLi7s+9/zzz3sfX1jYFZxQ5YiSCMu2TnoZe/rLv/xP8MYbb1T0mqqqIhgMVvSaZ9G9Ya/4fHDwHGRZruzFj/l1bW5uDrZtQ5IkNDc3P/RrVldXH5h5dJTTC1mWEY1Gsby8zFMQeqIxACEqM0VRUF9fX7E3l/IFH49eb0vzg3UggBdwlbrCfP8954KcBEVRoVXxxO90Jg3DMCp6ze7u7jNXr1Bpa2trWF5aBgTg3LlzJ72csit18Ovq6nponV6xWMTS0hLqE/UPDWYP+9rb2NiIQqHAFub0RGMAQlRmc3NzlZsUXEGlOpDl5WU4P5q6/eyzzwEAZmZm9pyFQscnUVdXgdkMh/f//Tf/H3z55ZcVu57jOA/8jtLB3brlbdB7unsQiVTvnJnD0HUdS8teV7+hoaGHfs3CwgIEQfCbcJRLqRB956kK0ZOGAQhRmSWTSRSLRX/4oGmaFbnuoeeA7PMuXl1dHVRVhW1ZWF1b3fW5RF0dWrfqXa5fv364ddCRuK7LlI4tmUwGt27fQrFYPOmlnFrJZAqzszMAgEuXLlf24hX4PR4fHwdc7NnZK5/PYyO5gZaWlgdSz446c0mSJHbDoiceAxCiY+C6LhzHwezsrD8747iUrQ3v464jCH6e9OLC4gOff/rppwF4OdPLK8sVWRN5crkcbt66yTuqW0zThCAIla9ZOEPu3PFOP9rbOxCP157sYo7B8PAwgL1nfwSDQXR3daO+vv5Yrj84OPjItr9EZx0DEKIyCwaDKBQKfmHj2tramdkYltKwflwHAgB18bh/CvL1V1/zbnwFlbrzsBWvhzNAjiaTyWBicgIAcPnypZNbyDH9/a2srCCdTgMC0NfX98DnDcOAIAiIx+N7/g4JgnDomz+lG1RETzIGIERlFgwGkcvl4DgOGhoaoCgKFhcfPDGoOvsIGEpthdfW1pDL5R74/IsvvABBFJBOp3H//v2yL5EerhSAWBYDEMDbQGpa9RblV7s7d+4ALtDc0nxyhfzHGDzevXsXANDc1IxAILDrc7lcDnfv3fUClGOSTCbx/fffV7wxA1E1YQBCVGb19fVob2+HIAgQRREtLS1IJpPH3vGkEicO4XDY35BMz8w88PlIJILzg+cBADdu3IBlVW9r2LPEPwFxqjMAufrUU+jrffBO83ExDBNqFXcFq2b5fB5jWzcPrly+csKrKT/btjE9PQ0AuHx5d22L4ziYmZlBMBBETU3Nno9xlNda13WxvLyMaDQKTdMO/ThEpx0DEKIy0zTNz+11HAeJRAJdXV0P3GkrlyOnmRzw+zs6OwEAsw8JQADg2rVrCIVC0HXdb3NJx0sURYiCCLtKA77/8O/9h7h8pXKFzAMD/XvOdaBHu3fvHlzHQX19PZqamk5mEcd4M2VychK2bUNRlAcGxS4tLcEwDXR1de3rdfUwr73JZBKFQqHsnbWIThsGIETHZG5uDhMTXh51IpGAKIrVXRexz7V1bQUgyyvLKBQKD3xelmU8++yzAIBbt28hk8mUb420p4GBgaotav2n/9U/xXu/e69i15MkiQXoh2AYBoZHRgB4pwNnsYZmdHQUgFf7sXP2Rz6fx/LKMpqamo5tgGWhUMDMzAxqa2vPXFtjooNiAEJ0TGKxGDY3NzE/Pw/Au7s2NjZW3UHIPkSjUdTV1QGuN/fjYbq6uhCLxeA6Lr78qnLzH55kgUDAT8WqNnqhgHyhMkPX8vk8xsfHK9b++iwZHhmGbVmIxWJob28/6eWUvQ4km83uOftD0zS0tLSguen4Ts5kWUY8Hj9zM6KIDoMBCNExqampQXt7O1ZWVjA/P49gMIhsNntsxY3HPQdkp9Ib6PTM9B4PKeDll18GACwvLZ+OIvxTju2PPbphIJvLPnSyNe2tWCzi3t17AM7u6cfw8DDgAk1NTYjFYv7Hbdv2uhY2Ne/reR/0tdY0Tei6DkVR0NXVVbU3Cogqia/QRMeooaEBbW1tWF5ehmmaiEQiWFhYKOspSKXmgOzUuZWGtbS0tGeL4fr6ev/rvvjiC7adPGaFQgGb6c2TXsaJM00DksgUrIMaHRuDaZoIh8Po7u4+2cUcwymx67p++lVvb6//8Vwuh9u3bz+0q9/j7Oe1N5/PY2RkZM/TYqInFQMQomMkCAKampowMDDgd8fSdR0rKysnvbQjicViqK2tBVxgdnZ2z6978cUXIYji1pvwaOUW+ASSZZlteAGY7IB1YKZp4tbNmwCAS5cuncnTo6mpKei6DlEU0d/fD2C761UgEEAoFCrr9VzXxcbGBkZHRyHL8skHdURV5uy9yhBVoWg0uutoP51Ol70W5MiPd8Dv307D2vvOXiAQwNWrXitP9r0/XpIswbarswtWMBhCKBSuyLUMwzi2jnNn1b179/wT2r0mg592N27cAOAVnyuKAmC761VnZ+eBUs7281o7OzuLqakpxGIxnDt3jkEx0Y8wACGqIE3TUF9fj2w2i7GxsbJMSBcE4UTytTs7vQBkcXHhkQW/l4YuIRaLoVg0cf369Uot74kjSzJsx67KJgd//dd/jXff/VlFrtXY2Og1SaB9KRQKuH3nDgCvhXZVnX6U6XVteXkZqVQKEICnn34agJd6tbyyjObm5kN3vfrx667rurBt7xQyFouhp6cHPT09rPkgeogqeqUhOvskSUJnZyf6+/tRKBRw9+5dJJPJk13UId/k4/Fa1NTUwHXcR6ZhiaKIZ555BgAwMTGB9fX1Q12PHi0UCqG5ubkqA5D/+d/8z/jh+x8qcq1YLMYWpwdw+/Zt2JaFeDxePWlCZf4dLs0jamttQzjsncTJsoz6RD2aGssz6ySTyWBkZMQfchiLxRCPx8vy2ERnEQMQohMQjUYRDochSZJ/9y2bzfp3z04LPw1r+tEFlu3t7WhsbAQAfPbZZyxIPwbBYBBNjU3VdQd7y62bNzExOXHs1zEMA6urq6fu39FJyWazGB4ZBgA888wzZ7LzVSaT8bv1Pfvss/4phaZp6OjoOPJzzufzuH//PsbGxgB4jUeI6PGq752K6AkgCAI6OjrgOA7W1tbgui4mJydx+/ZtLCwsoFgsHvgxD92G13+Ag39/51YAMr8w/9h0sldeeQWCKCKTyeDW7VuHWiLtzXEcpFLpJ3r+RS6fx8Liwkkv49T4/vvv4Toumpqbzuxk7j/+8Y+AC7S0tiCRSGBlZQUjIyNHClJLr7W2bWNkZASGYaCnpweDg4OIRqPlWjrRmcYAhOiElAZfraysQNd1DA4Ooq6uDisrK7h9+zamp6f3dVJwEm14S+riccTjcbiOg4nJyUd+bSQSwbWnngIA3Lx5E5ubbBlbTq7rYnpmCtlDtBM9K0zTgCTJzLnfh2Qy5Z9KPX3t6eo8/TjimgzDwOSU97p0aegSstksFhYXUFtbe6jfkVJnq+mZabiuC1mSMTAwgIsXLyIej1fnz5CoSjEAITpBjY2NCAQCWF1dhaqq6OjowKVLl9Da2grbtiEIAlzXRTqdPr60pSO8aQqCgL6tlpb39zHlfWhoaCtgcfH1N19XZb3CaSWKIgRBgG1VZyesSjB0Axq7De3LjRs3ABdob+84s2lDt27dguu4CIfDaG5uxtTUFMKh8IFPe0zTxNLyEu7eveunc1lb/84ikQgDD6JDYABCdIJKPek7Ojr8j8myjKamJvT29kIQBOi6jvHxcdy6dQuzs7PI5/MnuOIH9fb0QBBFpFKpxxaYC4KA1157DYIoYmlxCfeGhyu0yrNPEARIkvxE1z8YhgFN0056GVVvZWUFc3OzgOB1vqo6ZbgxYds27t3zJrtfvXoVMzMzcF0X3d3d+woYHMfxb5BMT09jaWkJkUgEg+cG0dXZxba6REfEUbFEJ6z0RpbNZqFpmt+jviQYDOLChQtYX1/HxsYGVldXUVNT4w/TKqn0HJCSQCCAzo4OTE9PY2xsDPX19Y/8+lgshqeuXsWNGzfwxz/+EV2dnX5nGjoaRZYPVT903P5Xf//vP/D7ehzC4TACh2yp+qRwXXd7JkZvH+Lx2pNd0DEZGRlBsViEoigYGBjwJ50/KnBwXRe5XA6pVAobGxvo6elBNBpFR0cHFEWBJEne62yhUs+C6OziCQhRFbBtG+Pj45ifn3/o54PBINrb23H58mX09fX5cw5M08T9+/extrZ2tOLjI6YQnDt3DgAwMTnppyY8ytDQECKRCFzHwe9//3umYpVJMBisyvqHcCgMVTn+O8ZtbW1IcAbIIy0sLGB5eRmCKOLq1asnvZxj4bouhrdOVwcHByGKImpqalBTU7Pn9ywvL+POnTsYuz+GVCqF+vp6P1gJBAIP/XfF1Cuiw2MAQlQFJElCW1sbNjY2kE6n9/w6QRAQi8X8AMS2bciyjNWVVYyOjWJkZAQrKysHu3gZ3kSbm5sRDodhWxampqYe+/WiKOL1118HBC8d5P79+0deAwEdHR1obW096WU84H/6n/4f+OTTT471GpZlwTAMBrOP4DgO/vCHPwAAzg8OVvW8FEEQDv3aNDs7i1QqBUmSoGoqlpaWdn3ecRxsbm5idnbW794nCAJqa2vR39ePoaEhtLa2Mp2P6BgxACGqEolEAjU1NZient53Gk0wGERPTw/ODZ5De3s7VFX131Bt2/bfiI+7LkAQBPQPeCk24+Pj+/qeRCKB84PnAQDfXr9elqnwVIZUvGPguu6xryuVSmF4ZLgqn3+1GB4ZQTqdhqKouHz58kkv51i4rouvv/4aANDU1ARJlPy00I2NDUxMTODWrVsYnxjH5uamf3Lc2NiI9vZ2RKNRnmwQVQADEKIqIQiCP9hvYeFgswwkSUJtrBY9PT3o7OwE4BXkbm5uYnJqErdu38L9+/cffTpyxI1bX28fIHipDKnU3qc4Oz3zzDMIhUKwLQvffvvtka5PwPrGBm7dvvVEbsINw4CqaFU5iLEa5PN5v/bj6aevIRAInPCKjsf4+Diy2SwEUUAikdh1ypPL5WDbNpqamzB4bhAXL158ZFrWw+yct3SSLdCJTju+UhNVEUVR0NfXh7a2tn1/z15vgqFQCBcvXsSF8xfQ2tIKQRCQyWQAeHcJp6am/Bkk5diwRiIRtLR46T/j4/tLqZIkyU/FmpqawszMoyeq06PJW0Wy1ViIftx0XUcgwJSZvXz33XewLQt1dXUYGBg46eXs7QivRY7j4JtvvgEANDU2QVZk5HI5GIYBAGhvb8fAwACam5oRCoV40kF0ghiAEFWZcDgMWZZhmuaR05IEQUAgEEBjYyP6+vrQ29sLACgWizBNEwuLCxi9P4axsTHMzsz6gchhA5JzWxub+/fv73tuSUNDg5+K9fvPP0ehwBYzh1XqoLafRgBnjW4YZ/au/lGtrq5iYsIbOvj888+fnlOiRwQItm0jnU5jYWEBo6OjsG0bd+/ehWEYkCQJg4ODGDw36De88B6OAQdRtWAbXqIqNTk5Ccdx/C4ujyJA2FfQUHoDVlUV586dg+M4yM/PQ8cUdFHwPz88PAJFkREOhxEMhhAOhx5oD/wwpToUwzAwNzfnp4M9ztNPP43p6WkUCgV89NFH+OUvf8nNwiGU/o5Ms4hQ6IQXs0Nfbx/a29qP7fFLMxtUFg0/YOepQG9vLxobG094RQfnui5M04SmaXBdFyMjIyjo3o0KWZIRjUZhGAZ++OEHAMCVK1fQ19d3bGshoqNjAEJUpTo6OjAyMoKFhQW0tx/P5k0URUQiEUQa6uFu3T12XReJRB3y+Tw2kklYq17dyOC5QQQCAWQyGQiC8NCWr5Ikob+/H3fv3sXwyPC+AxBZlvHWW2/h17/5NdbX13Hz5s0z2yL0OMmy95Ju29V1AvJX/9lfHWtwIIoiLg0NcXP4EGNjY9jY2IAky3j66adPejn7Yts28ulNZBYWkCsUkM/nIQgCLl++7HUCrI2hQWlAOByGpmkQBAE//PADDMOAoigYGhqqyDp5k4To8BiAEFWpUCiE1tZWzM/PP7KHfdneBLc2b4Ig7LpLapomcrm835JyaWkJ+YI3jV1VNASDATQ0eJsB13UxODiIu/fuYmlxCevr60gkEvu6fCKRwLWnruHGjRv44eYPaG1tRUNDQ3me2xNCEAQMnhvc12lVJf3jf/x/xttvv43/5Nm3jvU63BDupus6vvvOKzx/6qmnEKqmYzF4Nzt0XUe+UICh65BkCU31DXAcF3MLc7BVBeFoFM3NzbvW3tLcsutxdF3fUWD/NKeUE50CDECIqlhjYyM2NzcxMzODoaGhE9lgqaq66w29v78fhUIBBV2HXiigUCj4d56XV5axtraOhvoGrK6u4rsbN/DyT36CQCCwr7zzS5cuYX5+HisrK/j888/xp3/6p1W3ma521VgHkc1msJnZPLbHX1paQi6XO7a0m9Pq+++/R7FoIhaL4cL58ye6lmKxCF3XoSgKAoEAkskUZudm/NcORVFRG4sBAGRZwkD/AOQLF/Y1C+Tzzz+H4zgIBoO4cOHCsT6PnV2wiOjwGIAQVTFBENDd3Q3Lsh4bfBz6jfGAQY0gCAiFQg+9mxqNRAEXcBwbq6urWFxYwJ07d6BqKlRFQzgc8tOyCoUCNG1321RBEPDGG2/g3/7bf4tMJoOvv/4ar7766uGe1xNqbW0Nlm2huan5pJdSMWxc8KD19XWMjo0CAF544YWKFZ4Xi0VIkgRRFLG2toZUKgXdMPy0wKbGJjQ3NyMYDKCluQWBQADBYNBPH4TjQBAEKIqyr1e0TCaD2blZAJV7njxpIzo6BiBEVU5RFCiK4hWM5/NVPb04HA4jHA6jubkZS0tLWFpcgmma6O3t9VthAl7qxdj9Ma9wWNGgaSo0TUNjYyMCgQBefvllfPDBB5icnERTUxPOnTt3gs/qdNF1Hblc7okKQHTdQE1N9KSXUTVc1/Xm6rhAZ2cnmpvL+7vgOI6/0V9ZWYFhGNB1HYZpwrYt9Pf1+ymZiqIgEo1AUwMIBDT/hC4QCBz5tM51XfzhD3+A67ioqalBT0/PkZ/bfnEGCNHRMAAhOiWWl5extLSEwcHBXacP5XojFFyUNblg6OIQlhaXMDk1hWefffaBWpC+3j5v07K1ednczKCpqQmAt4luamrC8vIyvtkaUNjW1oZwOAxn6w4p70I+nKIqKKaenDkgjuPALBoIBFgvVDI6OorV1VWIkoRnn332UI/hui4EQUCxWEQymYRhGN4f04TrOLh06RIAIJ1Ow3VdaJqGaE0Umhrw68UOVcO1z0YChUIBo6OjmJyaBAC89NJLfE0gOkUYgBCdEk1NTUilUpiYmMDgYBkLjY/pTbu1tRW1tbVIpVIYGR3BlctXdlxS8E9LHqaxsRHhSBhffP4FstksfvjhByQSCYTDYWxsbGB+YR6yrEDbqk8Jh8NIJBJ+u05VVZ/YzYiiqLAdG7ZtP9Cl7KR4KXjHUxhcSr+qxtqXk5DNZvGHP/4RAHDt2rU9T0xt24YgCBBFEdlsFpubmzAMA6ZpolgsoqamBp2dnXAcB8vLy1BV75QyEolAUVU/QDmJoYbFYhETExOYnJwEXC/QOcjw1qNgpzWi8mAAQnRKiKKIvr4+DA8PY3JyEv39/bvynavtjVEQBFy8eBFffvkl7t29h6GLQ/veEEciEUQiEfz0pz/F3/zt3/p3O1966SVEIhG0t7XDNE2YpukPHgO8jcnwyDAAbyOuyDIURUFnZydEUfRbCJfS2k7NQLYDUP1ZICaCweAJr8bzX/zD/wLxurpjeexgMIj+vv6qea4nyXVdfPXVV7AtC4lEAm2t25vypeUl5HN5FItFFItF2I6Njo5O1MXjMAwD6fQmVFVBOByGoioIBryfp6qquHTp0skE9A+5puM4mJiYwPr6OjY2NgABePnllyu/NiI6EgYgRKeIqqro7e3F2NgY0uk04vH4SS/pkXp6enDjxg0UCgWMj48fuJYjGo3ipRdfxJdffomxsTF0dXWhtbV1z7vdsiyjp7vHn/ReLBZ3FfAvLCxAN7any0uSjI72dsRiMWQyGeRyOciyDEmSoSjyAx3AToNAIIDm5uaqOf0AgA8//gjXrj2Fc8ewTxRFcc+TtLPGtu3t32vbhlUsQlYU1MXjKBaL+Oqrr7C4uAgIQH19PaZnphCNXoIkSbAt2z95VFQFiqIisvVzSyQSe7bLrqaTRNd1MTk5iXw+j5mZGQBeqmfdMQW3j1JNPxei04gBCNEpE4lEcPHiRT/PuixvhIKw79zrg5AkCRcuXMB3332Hu3fvYmBg4MDr7e/vx8rKCu7fv49PPvkUv/zlL1FbG3vo14qiuOe8lNJjlTZwxWIRRavo/xwNw8D6xgYsa7t+ojZWi66uLpimifvj41BkGfLWqYosy2hqaoIgCMjlcgC8AEiWZYiieGIbFFmW0dTYdCLX3suXX3wBTdPwi2N47MXFRaiahsQJbEKPwnVdWJYFy7Jg2zbC4TAEQcD6xgYMXfc/VywW0dTUjNraGJLJJOYX5v3HEAXv970uHoeu65iZ9bpBXTh/ARcuXNh1ylepFKXjJAgC6urqMDs766daVnq4ItvwEpUHAxCiU6i0aV5dXYUlVtfU6x87d+4cfrh5E5ubm5ibm0NHR8eBH+P555/H+vo6kskk3n//Pfydv/N3DnUyIUkSgsHgQ9N16uvrUV9fD9d1Yds2isWiH0QIgoB4ba1/opLL5eA4rt9daHZ2Doa5fbIiCAI6O7q2No0ppNMpSJLktSeVRAQDQcRiMTiOg1wu53+uXMFLJpN5Ik4GXNfF+vo66hvqT+T6juPAtm3/j6ZpkGUZ+Xwe2Wx21+e1gIamxiYUi0WMjIzAduxdj3VpyDupyGxuolDQIcve70M4HIYse6dZNTU1CAQCfgBcOuVyXRfffPstHNtGIpHAM888c3rTCx9yI8R1XSSTScTjcdi2jYnJCQBe6hXnBBGdTgxAiE4p13WRSqWwtrmGUFMIAeWQRbjHfKdeVVUMnjuHu3fv4tatW2hvbz/wBluWZbz11lt+PcjHH3+Mn/3sZ8dyyiAIgn+SUaIoClpaWvb8nt7eHv+OtWXbcGwbweD234fjODBNE7btwHZsxGpqEIvFvGLarc3UTlcuX4EgCJiZmYGu6/5cBVEUkUgkEIlE/E2uKIoQRBGSKEFRvA3r0tISJElCa2ur/32lguOzlDpiWRZsx0ZA27v+w3EcuK4Lx3H8/1YUBZIk+R3YHMeF4zpwbBuqqvp/N0tLS7Bt2/9e27Zx7tw5CIKA+/fvI5fP7bpWe3sHEnV1yOfzWF5ehihJkEQJsiz5AbMkSWhobIAseal+pUCjFDB0d3fv+Vz2SgkcHx/Hwvw8BFHASz/5yekNPkp2/I66rouZmRlsJDegaRo+/fRTwPWaclSy7e4DS2QbXqIjYQBCdEoJgoCenh6k7qQwMzuDvq7qnQJ98eJF3BsextraGmZnZ/1hhAcRDofx9ttv4b333sPy8jL+8Ic/4LnnnjuG1R7co2pF4vFaxOO1e37f4LnBHXfRHTiO7QcJgUAAgiD4m99isQjHcQB43Z9WVlZ23UmPRqLo7e2FoihIb6YxMjqy63pDF4cgyzKmpqaQzeW8gAReS+PGpkbUxePY3NzEysqK3+pYEAQEAgE/AJvdSvPZGcg0NTVBURRsJJPQdwwFFAQBwdLcBy2AxcVFCOJ2bYooif68ksXFRdj29nNxXReNjY3QNA3rGxvY3Gr3CnhBRSwW808CFxYXvNoHAI7rtWm+uDURe2RkFGZxewYNAHR1dqO2NoZUOoWlpaVd662N1SK2NZFb13U/gFNVddfGvr6+AXGnDpIoQZJESJLkr6d0mvYwoiiWNUUun8/j+vU/AACuXLmCuiqvCzsI13UxNzeHjeQGujq7MDc3h3Q6DUEU8Prrr5/08ojoCBiAEJ1ipaLr2R9mMT8/j6541+HvcB9jF61QKIShixdx+/ZtfPfdd2hvbz/UXdrmpmY8++xz+MP167h37x4aGhoeece42pU293tpbGzc83OlwmHXdf20sdLfvaZpkCQZXVttVF3X25iXUnZisVoEgoGtqfVeQFPqnlXabJdOC0p/AG9DuHPq+M6PA4CxNc9lZ0c2cWs/rCgKUuk0RHH7bUdVFWBrL57L5fwApPQ8/IBkaw2lgMhLZZO8AEEQURON+qc7pZOekpaWFjiuA1EQIYre50o/80RdAvHauH/CtPPfjqIoj2wxu1cdUiW5rouvv/4GxaKJeDyOy5cun/SSysaF1zRibX0NHe0dCAaDuH79OgDg2WeePbGBrNXWbZDotGIAQnTKBYNBdLR3YH11HY7jVFX3o52GhoYwMjKKzc1NjI+PH3p+wMULF7C2uoqpqSl88eWXqInFztRd34N62KZbURTYtoVIJPLQgHSvExlguwXyXtd6VCezlpaWB1LVHNvCn/35n2NwcBAXzp+HKD38bae/v3/Px92rS1Mul0NLS8uepw3AowOFnWl2p9Hk5CTm5mYBAfjJyy+f/tSrH9F1HW2tbaivr8d7770H0zRRW1uLoaGhk17amUplJDoJZ+vViugJFY1G0dXZBUmSDn6HrkJvpJqm4fJlb3ry999/D8s6fPH8K6+8gqbmJtiWhQ/efx+6rj/+m54gmqYhHArvSmk6Sd3dXUgkyt+lKhwOPzL4OMtyuRy++eZbAF7N0GnrArYn1/VbBvf29qKxsRHz8/OYm5sDAPzk5TNQ40JEDECITrudnZp0Xce9e/eQyWROeFUPd/78eQSDQRQKBQyPjDz+G/YgiiJef+11qKoKXdfxwQcf+KlE5AWk/f39VXOH/3/81/8jPvjww7I+puM4WF1dRbFYfPwXnzGO4+Dzzz/fTr26fHZSr9bW1jA+MeF3obNtG5999hkAr0C/VDN0knj6QXR0DECIzhBVVaFpGiYmJvzZFNVElmVcvXoVAHDr5i2YpnnoxwoEAnjnnXcgiAI2Njbw5ZdflmuZZ0KpLqQalIrsy6lQKGBhceGJDEBu3brld9l69dXXqjbt8qDW19exsLiA2toY5K2apC+//BKFQgGyLFfFxHPOASEqDwYgRGeIKIro7u5GMBjE+Pj4roLhx6pQcWV/fz+i0SiKRRN379490mPV19fjpRdfAgBMTEzg3r3hcizxTBgeHsHy8vJJL+PYFAqFxxbxn0VLy0v44eYPAIAXX3ihKorhy2F1dRVz83Ooi9ehoaEBgiBgfn4eY2NjAICf/OQnfpexasA2vERHwwCE6Iwo3ZmTJAl9fX1QVRUTExOPT02qcDqBKIq4du0aAOD2nTvI5/NHerz+/n4MDg4CAK7/4VssLCwceY1ngaoqMAzj8V94ShUKBWiq9kTVA+i6jt9/9nvABXp6eh5ZuH+aFItFLC8vo6G+AW2trRAEAYZh+KlXAwMDZ+a5EpHnyXnlJjqjHnYnrhSEdHV1VeUGraurC4lEAo5t49atW0d+vOeffx7t7R2AC3z08cdYXV0twypPN03TYBiHT3Grdvl8HqFQ6KSXUTGu6+LzL75AoVBANBrFiy++eNJLOrLSgEhFUXDu3Dm0tLRAEAS4rosvv/wKhUIBNTU1eOmll056qT624SUqj+rbmRBRWSiKgkgkAtd1sbi4+Phc+Qq+sQqCgKeffhoAMDrmteY96uO9/vpraG5phmPb+N177yGZTJVhpaeXqqooFs2q2DA1NjaioaF83apc10U4HEYkEi3bY1a7u/fu+dPOX3vtNShbNRKnleu6mJ2dxfT0NFzXhaqqfnH32Nh9rK2vAQLw2muvVU0zhZ1YiE50NAxAiM6IvTaaxWLR6ywzPl41RcnA9swI13Hx7fXrR94oS5KEN15/A5FIBI5t47e//W1VFuJXiqpqcFznSO2Oy+Wf/JN/grfefLtsjycIAtrb2x85z+QsWVtbw3ff/REA8Mwzzz50Jspp4jgOpqamkEwlEaut3bWZX9/YwN17dwAAT1196pHDOIno9GIAQnTKPe5OnKqq6Ovrg2maGB8ff7Am5ATv5D377HMQRAEL8/OYmZk58uOpqopf/OIX0DQNxaKJf//v//2ZroN4lJqaKC4NXaqKO+X/5f/xv8R77/+ubI9nGMaROqidJqZp4rPPPoPruGhv78CF8+dPeklHYts2JiYmkMlm0N3VvWuIqG3b+PSTTwAHiNfG/VoxIjp7GIAQPQFCoRD6+vpQKBQwOTlZNTMz4vFaXBryhhN+++23ZdlUBoNB/PznP4cky8jn8/jd735XFacAlSaKYtW0Z00lU2VNiVtZWcHk5GTZHq9aua6Lr7/+GtlsFsFgED/5yUunPvUnmUxC13X09vQiFtvdweuPf/wjcrkcREnEy6+8XJXPlW14icqDAQjREyIcDqOnp2dXrrXvBN/oL1++jHA4jEKhgB9++KEsjxmLxfDuz34GQRSRSqXw2We/r5qgq5JmZ2fPZEH+k1KAPjIyiqmpKa8W4vXXTnXL4dK/v0QigXPnziESiez6/Pz8PIaHvTbazzzzDILBYMXXeBBsw0t0NAxAiM6I/dyZq6mpQUdHBwRBQC6X270pP6FiZVmW/Y4+94bvYX19vSyPW19fj59uDSqcm5vFp59+VhUF2ZVkmuaZq4OxbRu6oZ/5AGRpaQnfXv8GAHDtqWtoamw64RUdnq7rGB4ZQSqVhiAIUFV11+cLhQI++fRTAMC5gQG0tbWd6E0RIjp+DECITrnD3ImzbRvj4+OYmJiAXQUnA21tbejs7ARc4Ouvvy7baUVzczNefeVVAMDs7AyuX79elsc9LQKBAHT9bNXAlObGnOUAZHNzEx9//AngAt3d3bh06dJJL+nQcrkc7o+PQxREhEIPnmo4joP3338ftmUhGAzimWeeOYFV7t+TdhOD6LhUX287Ijqwg+ZKS5KE3t5ejI+PY3x8HH2KeuL1As8//zzmFxawvr6OkZFRXLhQnmLb7u5uZLNZfPfddxgeHoaqqnjqqafK8tjVTtM0rK2vwXXdQ+fT7/zeYrEIx3Hguq7/R1VVyLLsF4aXPg54raADmopAMIC6ujjSm5sQxe3fs5qaGgiCgEKhANu2IQiC/0dVvd/J0vVKHy9aFhRFPdXpSI9imiY+/vhjFIsmEokEfvKTn1RlLcR+rG9sYH5+DsFAED09PQ+003VdF5999hlSqRQEUcBbb78NuUrqlojoeDEAIXpCRSIRDAwMYPLOHUwvLKC9owMn2S8pFArh6WtP4/r1b/Hdje/Q1dVZtrvcly5dQqFQwL1793Dz5k04juPPITmLXNeFbdsQtzZzGxsbiMVikGUZm5ubyOfzsG0btm3DcRxEIhHU19ejUChgamoajuvAdRw4rgNREP078Pfvj8Ms7j5R6e7qRiwWQzKVxPLy8q7PxWpi6Oxox1/97/4KsqxgemoKwo4N5pXLVwB4+f+5/O5Usfa2diQSCSSTSczNz/kfFwQBkXAEgiDAcRzcv38foij6RfeiKKKlpQWyLCOdTsOybYiCCFmWIEmSHzBVI9d18fvPP0c6nYamaXjjjTeqdq2P4zgOVldWEa+No62t7aEDUW/dvuV3v3v1lVeRqKsDdP1UpF+d1qCQqFqczlc2InrAYVIDSt2xltc3AOfkUwsGB89hYmIc6+vruH79Ol5//fWyPfZzzz0H13UxPDyM27dvQ1ZkfwN8GpRmuEiSBNM0kU6nYds2LMtCsViEIAjo7u4GANy5exe2vd35a25+DqqqIhqNIl/IYyOZhCiIkKTdnbIkSUIsVgNREiEK3qZe2LFxbG9v808jRFGEIAjQNA0AUJ+oR7zWa6la2pyVNp23bt/B0NAQLly4AFGSH/hd7ejo8E86AG/zWnrcSCSCzo6u7aDIcaAo2zUEoVAIjuP4P4uds242Njawmdk95LKluQWNjY1IpdKYm5+DLMlQFBmyLCMQDPi1Ful0GrIsQ1EUKIpSkQ3n999/j/m5OQiiiLfeegvhcPjYr1lupcBWVVX09/dBkqSH/uwWFhbw/fffA/AaUZR+d08DFqATHR0DEKJT7qgbo0AggM7uLggAilub2ZPqQCOKIl588UX8+je/xvT0NObn572C1DJ5/vnnoWkafvjhB3x/43sUzWJV5Jzbtg3TNGGaJsLhMGRZxvr6OpLJJIpFC5ZVhOM6aKhvQGtrK4rFIhaXFiFJMhRZ9jfKJa2trRAg+Hf9JUnyP9/c1IzmpuaHrkNVVbS2tu65zmh078nj8tY6fsyxLbz3u9+iWDTx9v/yLyFKD35NKdh4GE3T/M8bhoHhkWH09fYB8H5f2tvb9/zenp4e/zSoFJyUfg6apqK+PgHbslEsFv0gDtgalDc9teuxJEnGuYEBqKqK9Y0NWFYRiqJCVRSoqnrkIGVychK3bt0CALz04otoaGg49GOdFF3XMTU1DUkS0d/fv+fpTTKZwieffAq43t/RQ1Miq/SEgW14icqDAQjRk24rtx6ui6WlJaRSKXR3dz/QJrNSEokEzg+ex/DwML744gv8+Z//eVnz/a9evQpRFHHjxg3cuXMHlmXh+eefP9Y73K7rolgswjAMWJbtT/CemJjw0qGc7bv2Pd09qKmpAeBt6kOhkLe5VxQEt34OoVAIly9d3nPNO4e7pVJp2I7upbeccrmtAvSD/D4IgvDQ4CgYDO4ZaAuCgIsXLvqBiWVZKFpF/zEK+TxSqdSuv7fSyUo2m0UymYSqqVAVDZqmQtO0R9ZYra2t4fMvvgAAXLx4Ef39/ft+ftVic3MTMzMzkCTZ77T3MIZh4P3334NlFZFIJPDSS6dztglPQYiOhgEIEflaWlqg6zomJifQ1dn1wKCwSrl27RoWFhawubmJL778Em+9+WZZNymXL1+GZVm4desWRkZG4LouXnjhhSNfw3Vd6LoOwNvg6rqOmZkZGIYBx/U6ewmCgNraGARBQCgcQigcgqpqULdSfUotShOJBBKJxEOvc5B1ZrMZ5HK5MxGAFPJ5qIp27HURgiD4qVcP097ejvb29l0nV6WgyLJs5LcClNLfeTgURn9/PxzHweLiIlTVC0qCwSCKxSI+/vhjuI6DltbWU1mbtLa2hvmFeUTCEXR1de359+M4Dj744APoug5ZVvDmm28++LXsMkX0RGAAQnRGHDk1wHX97ljT09OYmp5CR0fnrrvplaIoCl599VX85t//BvNzcxgZGcX584Nlvca1a9cgiiJ++OEHjI6OwnGcA92NLdVCZDIZJJNJFAoFGKYB13VRE63xu/4Eg0HEamPQ1IB/N7x0jb1SocpJ0zRsJDeO1AmrWuRyOYTD1dN+V5KkB05SamtjqK2N+alfhrFdtG9ZFjKZLMyi93vi2F4RfaFQQDQaxdPXrkHXdQQCgYcWbVcrWVbQUN+AlpaWR/6Offnll1hfX4cgCvjpT985la2U2YaXqDwYgBCdcuVOBRBFEd3d3ZidnYVtWY//hmOSSCRw7drT+O6Pf8T1P1xHU1OTn7pULlevXoUgCvj+xve4f/8+FEXBs88++8AmyrZt5HI5FPQCCvkC8oUCmhobkUgkYFk2dN0bjFdXV4dAIODfDZdlLx3lJGmaBtd1YRjGqW5d6zgOdEPf81So2jws9UtVVZw/PwjXdZHP5/HZZ5+hUChAUVS8+eZbWFhcQLFoQhAEBLQAQqEQ6uvrq/LvrVgsYiO5gcaGRj/oepTh4RFMTEwAAF568aXH17ic8mCZiB6NAQjRk+4hb/SCIOzK495IJhGrqan4rJChixexuLCAxcVFfP757/GLX/yi7Ok3Vy5fgSiI+O6773Dv3j3Yto2nnnoKuXwetbEYJEnC7Ows0ptpiIKIYDCI2ljM3xTG47VlD4zKqXR3vlDQT2wj+8Ybb+LyEYfpiaKIoYtDZVrRyXJdF9evX8fq6ipEScLbb7+F2toYotEICoWC/yebzaG+vh4AsLi4iHw+j3A4jFAohHA4fGKze3K5HKZnZuA4DuK18Qcmm//YwsICrv/hWwDA+fPnT2WNy4+d9tNEopPGAITojCh3asDO4XPzc3NYVVV0d3c/smNRuQmCgJdffhm/+tWvkEwm8d133+H5558v+3UuXboEy7Jw8+ZNjI6OYnV1FR0dHVD7+hCNRtHU1ITm5uZd6VOnhaIoSNQloCgn93L/4osvoL7+6F2dTnpYZjm4rotvv/0WMzMzEEQBb77xBhobGwF4zy8SiTy0AYSqadB1HWvr67BXvHkrpVkplmX5s1COe+0rqytYWlpCMBBEV2/vY4OPpaUlfPjRh3AdF52dnXjuueced5EyrpiIqtXpSTIlouO1xxu/oijo7++H7TgYGxtDJpOp6LJCoRBeeeUVAMDw8DDm5uYe8x2P5zgOMpkMFhcX/cAtEon4swiSySTm5ub8YCsYDCIQCJy64KOkvb39xLqaAcC//Jf/Eu+9996RHmNiYgIrKytlWtHJKdUcAcArL7+y7zbTibo69PT0YOjiRQyeG0R7W7s/J2RtfQ2379zG+Pg4VldX/UYI5baRTGJpaQmNDY0YGBh47M2I5ZVlvP/BB3AdF42NjXj11VdP7b+hErbhJSoPBiBEp1wl3tCDwSDODQwgGAxiYnIC6XT62K+5U3t7OwYHvSL0L774AvmtdqwH4boukskUpqamcOfOHUxMTmAjmYRpmgCAvr4+vPbaa3j99dchiAI2Njbwq1/9CtlstqzP5SRYloXNzc3Hf+ExKRaLKFrFQ3+/bdvIZDOnqjD7Ye7eu4ebN28CAJ5//gX09PQc+DEEQUAgEEAikdhOA6yNo6XZKwBfXFrEyOgIlpaWAHi/90c9HS0V0tfF4+jv639ssTngdcZ6//0P4DoO4vE43nnnnTNxglXCNrxER3O6X82J6Oj2GcDIsoze3l60NLc8ciDdcXnmmWcQi8VgGAa++PLLfW2qXNf1N96CIGB5eRmGYaChsQED/QO4eOGCfxe3tKHq6urCz9/9OSRZRj6fx29+8xusb2wc3xOrgEwmi8mpSRSLhw8CTlIulwOAUzkZvGRiYgJ/uH4dgNf8oJxd3TRNQ0NDA3p7ezF0cQhdnd3+LJmNjQ3cGx7G4uIiCoXCgR7XcRwsLCxgeGQYhUIBgiDs6+9gfWMDv3vvPTi2jZqaGvz85z8/RO0WN/hEZxkDEKIz4kipAfsMQgRBQGNjI0RRRKFQwPj4uH+CcNxkWcarr70GQRSxuLCA77//fs+vLRQKWFhYwJ27dzE5NenfwR0Y6Mfg4CCam5oRCoX2vIvb0NCAP/2TP0E0GoWu6/jtb3+L2dnZ43haFREMenfKD3NyVA3y+TwkUarKblD7MT8/j8+/+BwAMDg4iCtXrhzbtSRJQm1tzG9xGwwGURONYn1jA6NjoxgdHd3XCaau6xgbG8Pa+hpaW1r3/bPf3NzEhx98ANuyEA6H8Ytf/GLPeSpE9ORiAEJ0yp1UKoDrutANA6NjYxVLU6qLx/HSiy8CAG7duuW39dxpamoKo2Oj2NjYQF08jnMD5/xTjoOkgMRiMfzyl79EU1MTbMvCx598jHv3hsvzRCpM0zSIggjdOJ7agOOWzWYRDodPZf3A8soyPvr4Y8AFuru78fzzz1f0eYRCIbS3t+PihQvo7PCGBDqOd7NC1/Vdc0pKNjc3MTY2Bsdx0d/Xj4aGhn2tOZvN4ne/+x10XUcsFsOf/MmfHLxpRZUXoXMOCFF5sAsW0RlQlg3NAd9YQ6EQzg0MYGpqChOTE2htaUUikTj2zVV/fz/S6TTu3LmDL778EpFIBIqiIhqNQJZlRCIR1MRiqI3FjlwzoGka3nnnHXz00UdYXFzE9evfIpvNPHRWSDUTBAHBYBCF/MFScMqlpqYGtbW1h/7+zs5O2LZdvgVVyNLyEj788CN/yvnLL798Yr83oig+0DJ6eXkZqXQKtbFaNDU1+V3eQqEQEokEmpqa9h205/N5/PrXv4ZhGAiHw/jpT396ak+sHktgG16io+IJCNGT7ghvpIqioK+vD3XxOiwtLcGq0ODCa9euoa29Ha7j4P0PPsD4+H2kt2o96uvrURePl61gWZIkvPPOOxgYGAAA3Lt3Dx9//AkcxynL41fKSZ4g/LN/9s/w03d+eujvV1V117Tx02BhYQHvv++lIjU1N+GN11+vuiLs9vZ2tLW2IZfPY2R0BHfu3kU+n4csy2htbd33enVd94MPRVHx7rvvHn7KedECTJODCInOOAYgRHQkoij6XaoURYFlWcfeJcu2bXR1dkLTNNiWhbm5OdQcY2G8IAh46aWX8PTTTwMA5uZm8cGHHxxbu9Pj0NLSgq6urhO59r/4b/8Ffv/73x/qe5dXlv2OTqfF3NwcPvxo++Tj7bferso6CEmSEI/H/X87jmMfOLDOZrP41a9+hUKhAFlW8Itf/OJgLZ8dB8hmgdVVCDMzEBYXAMeFGz5kAHPM2IaXqDwYgBCdcjvvap9kfnJpg7WxsYGp6SnMzc0dW9qMruvQDQOvvPIKNE3D5uYmfv/7z4/9+V+6dAmvvfYaREnC0uIS/uZv/gbLW0PhTgPXdU8klWlmdgZLy4cLIpIbqVPVvWt6ehoff/IxXMdBW3s73nrzzUN0gKqMTCaD4ZERJJNJtLa04tLQJUQiEViWhampqcf+3DeSSfz617+GruuQZQXv/vxd1NbGHn1R1wXyeWB9HcLsHISJCQgrKxByOUAQINTUQGhuBhKJMj7T8mMbXqKjYQBCRJ4ybd4bGhrQ1tqGjeQGRkfH/BaqR+W6LjaSSbiui2g0igvnz6OtrQ1vvvkmBFHA3Nwsbty4UZZrPUp3dzd++ctfIhwOwzRN/O53v8OtW7dORXHqveFhrK6unvQy9s00TRimjkik8m2fD2NiYgKffvapP/X7zTfeqLq0K2D7RoUkSQgFgxgcHERDQ4OftlgsFpHL5zE6tve/34WFBfz23/8WhmEgGo3iz//8z5Coq3v4BQ0DSKYgLCx6AcfSEoRMBnAdIBCAEI0C9fVAWxvcvj647fsbzkhEpxcDECIqK0EQUF9fj3MD5yBJIsYnytOqd2lpCbOzM37HrdLGrrGxET956ScAgNu3b+P+/ftHvtbj1MXj+LM/+zM0NTUBLnDjxg188OGHVX+nPhgIlC0grIRMJgMAiEZPbor7fo2NjeHzzz8HXKCnp8c7KauywYmu62J9fR3j4+NwHAehUAg9PT1QVXXX15UGj6qKgomJiQd+Z8bHx/HBhx/AsopobGx8MO3KsoDNTWBpCcLkJIS5OQjpFFA0AU2DEAoB8TjQ2gr09sLt6gIaG4FIBKiyn9mPnYYbDUSnQXX/Syei43dMxZ6BQAADAwPo7uqGqqpwXffQgcjq6ipWVlfQ2tL60CGIfX19uHTpEgDgq6+/wsLCwpHWvh+qquJnP/uZP9NhcWEBv/rVr5BKVXZK/EGEwiHk8/lTs4nKZrMIBoJVm8JUMjw8gq+++gqA16XtlVdeqbrgQ9d1jI+PY25+zv/3+CiKoqC3txeBQACTU1N+g4lbt27hiy++AFwv+H/nnXcQUNXddRxTUxDW1yEYBiDLEIJBCLFaoLkZ6OqC29sLtLQANTVAlf/dEtHx4L98olOulIucMTPImBkE5SAUqToKXgVB8Ccyr6+vY3FxEa1tbaiLx/fdkckwDCwuLaI+UY+GhoY9v+7atWtIpzcxOzuDDz/6CO+8/TZaWlrK8jz2IggCnnrqKTQ3N+Ojjz5GLpfDr3/za/zkpZfQ09NzrNc+jFAwBMd1UCgUDt+l6BBEUYQgHjzQbWhoqOr2u67r4s7du/juj38EAJw/fx7PPfdc1bVoXVtbw8LiAmRZQU93j/9v8nEkSUJPTw8KhQIkScI333yDkZERwHXR1dyMV595BtLSMqAXvJMLUQQkCUIwCGgBuKEgEA7DDQTOXFeravs7JjptBPe03AojoodyXRcbhQ2MrY4hrIbhui4ECNAkDaqsQpM0BOQAVEl9+JtmsQhMTgKGAbev79jWads2FhYWsJHcQE20Bq2trfsaUra0tIT1jQ2cHxx8bD69bdv4+JNPsDA/D1GS8M47b6O5qblcT+GR8vk8fv/732N52StK7+3txU9+8pOquhNu2zZu37mNjo5O1MXjFbmmY1v4d/+v/zva21rx1E//A4jS2bjv5TgOvv32W4yOjgIAhoaG8PTTT1fVxtR1XQiCgGQyhUIhf6C5Hjs5joOvP/sMM8PDkE0T5zu7cOnyJQiS5AcegqbBDQaBUAgIBoEqrH0ph2QhiaSRRH2kHs2Ryry2EJ1FDECIzgDbsbGWX4NhGzAsA47rwHEcOK4D13HhuA7gAqqk+kGJJmvQJA2S4wITE8cegJSkUmnML8zDti0M9A/sa76Dbdv73jjZto2PPv4YiwsLkGQZP33nHTQ2Nh512fviOA6+/vprvw4lFovhnXfeQTgcrsj19+MgP8tycGwL/89/8dc4N3AOL/8v/qN9ByBra2twXfeRp14nxTRNfPrpp1hcXAQAPP300xgaGqqa4KNYLGJpaQmO4xy+9bJlAfk8rEwGX3/8MdaXluEKAi5fvYr+84MQZHk74AiFgCpsM3wcNgobSBkpBiBER8QAhOiMcV0Xpm36wUjpfy3Hguu6fnDiui4cx4HsANG5FciWC2ngHDRJO/YULtu2kUwm/cnp+Xy+rClBlmXho48/wtLiEiRZxs9++tOKbmTHx8fx5VdfwXUciJKE5597DgMDA1WzQS3dGa8Ex7bwpy9cwJtvvYX//J//630HIPfuDSMSCaOjo+OYV3gwmUwGH330EdLpNARRxGuvvnpi81V+zLZtrK6tYnVlFYIgoKmpCfX19fv7u3YcoFAACgUI+TxgmkhlMvjyq6+gm0VAFtFz4SKuvfKKF3Ds4/TyLCoFIA2RBjRFmk56OUSn1tk4CycinyAI3umGrAE79giWY8GwDOiW7gclRacIxzRhuib0og4ztwoHDgQICEiBXScme6ZwHYIkSaivrwcA5HI53B+/j1hNDK2trbs68ui6jonJSXR1dh7oFEGWZbz5xpv46KOPsLy8jPff/wDvvvszJCo0W6Cvrw91dQl89NGHyOVy+PrrrzE/v4AXX3zhxCd653I5TE1PY6C//4HuR9VC13WYRQPR6PHW8BzU6uoqPvroIxiGgUAggLfeesv/PT5pjuNgZHQUllVEfaIejY2Njy7ed12vPW4+DyFfAAzdq9PYSqmaWlrC9du3UFRVCLVxnH/mGkKhsNe9iojoiBiAED0hZFGGrMoIq9sbecd1YOg5mJECDGyiEIzCtE04rgPLsWBaJlzThYOtFC5xKyCRA9AkFZqsQRSOVuMQCoXQ0dGJhYUFjIyM+HdtRVGEqqqwrCJyudyB05gURcGbb76JDz/8EKurq3jvvffx7s/frVjtQzxei7/4i7/ADz/8gFu3b2F2dgYLiwt48YUX0FeBVLe9aJoGyyoik83uPbfhhKU301sNDKpn/sfk5CQ+/+ILuI6DeDyON99882ATv49JJpNBOByGKIpobm5GOBTau7bKNIF8AUKhABTyXhBSquPQNAiqClvV8MX3N3B/YQFubRx1dXV49913MTU1deLBMxGdHQxAiJ5goiAiqAQR0GrguipQ2wnXdVHckcKlWwZM24Dt2HAcB7qjI6/n/XQuRVCgyRoUSUVg6+RFFvf/0iIIAuriccRqarC0tITFpUW4cNHU2ARRFBGNRLG+voGGhoYDn8Coqoq3334b77//PtbX1/He736Hn71buSBEFEVcu3YNnZ2d+OSTT5DL5fDFF19gYnISr7366r6K8MtNlmUEA0FkM5mqDUA205uIRqJVUcDvui5u3b6F7298DwBobWvD66+9BuWEax4KhQIWFxeRyWbQ3t6BRF3dg7/Xtu1NHc/nvaDDtre7VanqA3Ucm7qOjz/+GGtra4Ao4sKFC3jhhRdgmiZ0Qz/2rnKnAbPWicqDNSBETzrbBsbH4RQKwMDAnl9m2cUddSUmDEuH5Vh+sXuprsSFCxGin7Z10BSufD4PTdMgSRJSqTREUcDk1CSam5vR1Hi4nGvDMPD+++9jY2MDsqzgrbfeRHNzZQtIbdvGt99+i7GxMQCALCt45ZWX0dnZWdF1AMDi4iLWNzYwdPHisdeCHKYGZHNzE6IonvgJg2VZ+PrrrzExMQHAa7P77LPPnmhgVCwWsby8jPWNdSiKipbmFtTWxry/x111HAXANLwTDkHw2uNKEhAIeu1xQyEgEPAfd3p6Gp988gls24aqqnj99dd31d/oug5N06qmjumkrOfXsVncREOkAY3hyjS3IDqLeAJCRPsiSwpkSUFY3d4U2o4Nc0exu2l5Jyeu6z40hWs7KNH2TOEqFaO7rouFxQXYloVQMITMZgaNDY2H2gBpmoZ33nkHH3/8MVZXV/H+B+/jpRdfQn9//9F+KAcgSRJeeukl9Pb14pOPP4FhGPjkk0/Q39+PZ599tqL1GOFwGCurK9B1vSJpNc8+9xzODZzb99fvd07FcUql0vjss0+RSqUAAXju2edx4cL5k14Wcrk8UqkUWppbvFRF0wRSKS/g0Au76jiEYBBQte15HMHgA/M4Su2E7969C8D72b/77ruIRqP+5PREIoHAjmCFiOioeAJC9KTb5wnIfpVSuLaL3c1dKVyOu3VSspXCpYrqA0FJKYXLsiysrKxgbX0NoiCiobEBdfG6Q6e/WJaFzz//HDMzMwCAq09dxZXLVyp+V9eyLHz77bd+u15VVfHyyy9XrOOT4zh+IXUlTkBu/O7/h0hNFAMvvfvYE5CFhQWEw2HEYrFjXdej3L9/H19/8w2crdOA1157Da2trSeyFsuysLa+BkM30NXVBdcwYGezUMzig3UcoghBVXe3x31Ey+V8Pu+nJwJAd3c3Xn/9dUiSBNu2MT09jfRmGv19/YhGq6ce5ySt5deQKWZ4AkJ0RAxAiJ50OwOQ/v5jm1hs2cUHgpKHpXA5rgNJkPxZJaqkQnAEpNZTMAwDhUIB8XgcTU1Nj+7yswfXdfHdd9/hzp07AE52YODS8hI++/Qz6LoOwJv8/fLLL1fFCUC5OLaFv/vGNbz5xlv4q//Lv3xkAGKaJu4N3/NrGiqtWCzim2++8VOumpqb8MrLr5zIHJdisYi1tTWsLS9D0AuoD4XRXFMDYWcdRymtKhjyTzn2M4/DdV0vyPr6axSLRQiigJdefAnnz3snPIVCAdPT0zAMA93d3ScaDFabUgDSGGlEQ7j6ZtQQnRZMwSJ60lXo7r8sKYhICiLYvpO6M4VLt3SYtgnTNrdTuIomXGMrhSsEKGEFRsbE1NIUFlYW0NrYipaWlgMFD4Ig4JlnnkE4HMG3173NZr6Qxxuvv1HxtrTNTc34i7/4C3z99deYnJzE6uoq/uZv/wbnBs7hmWeeOdZC52w2i8XFRfT19R178KUXdOiG/tivS6VSEAQBtSew4d1IJvHZp59ic3MTEICrV67i8uXLlQ9MXRdOLofx778HCgW0RCKIJ+ohq4oXcKjqrjoO94CpUZlMZrvQHN6wzDfeeMNvUV0oFDAyOgJVUTEwMFDW+TxERCUMQIjoxEiihKAYQlDZ3uR4gxR3D1HcOd09FAvCFmuwsLCAlekV3J2/i7aWdjQlmhBUAt50d/Hxk77Pnx9EJBLGJ59+iqXFJfz2t7/FW2+9VfHCZ0VR8Oqrr+Li0BC+/OILJJNJjI6OYnZ2Fs8++yy6u7uPJU1KlmXkC3lsbmZQW1sdd7iTySRqojUVndTuui5GR0fx7fXrcB0HgUAAr732WmWbFOg6jFQKyfl5NEaikBQZHfE4gq1tkDV1u44jFPLSqw4RFLmuix9u/oAbN27AdVwIooCnrz2Ny5cvQxAEZLNZRCIRBAIBtLe1o66uriq6kBHR2cQAhIiqijdIMQBN3n1nt2ibflASC9aiPl6P5dVlZHNZzC7MIFPYRKy2FrIsQRZkr+Bd9upLSqlcP9be3o5f/Pzn+PDDD5FKpfCb3/wGr7/x+qG7bR1Foq4Of/qnf4rJyUl89913yOfz+P3vf4+bN2/i5ZdfLvvAu0AgAFXRkMlsVkUAUigUoBs6mpoqt/E3TRNfffUVpqenAQAtra145eWXj78wv1j02uMWCtCTSSRX15DOZyFLKmqjNQiFw4jU13uF44+p49iPjY0NfPzxx0in0wCA2tpavPHGG4jH49jc3MTy8jJy+RzODZxDOByumuGK1YhZ60TlwQCEiE4FRVKhSOquFK7OeBdMy0Ayk8LswgyW5hYhqRJCwRDidXEYruGncAkQoIm7gxJN0pBIJPDLX/4SH374IdLpNH73u9/h6tWruHyp8uk3giCgt7cXnZ2duHPnDm7euol0Oo3f/OY36OrqwgsvvFDWbkS1tTGsb2yg3XVPvL2qqqro6Ois2PDB+fl5fPXVV8jn84AAXHvqGi5dunQ8P4fSPI7C1hBAywJEEWvrG1hNrkPRAmgaGERtWyvESARumVIBHcfBzVs3Hzj1uHLlClKpFIaHh6EbOsKhMHp7epludQAn/e+F6LRjAEL0pNv5Ruq6FasJKYfSdPdQIoyWeAvW19YwvzAPUzeRnEsiVBNGbV0MrugVt9uOjZyVQ9bMwoFX9K6KXjDy0hsv4YfvfsD8zDx++P4HLC0u4ZVXTqYAWZZlXL16FX19ffjiyy+wvLSM6elpzM7N4emnn8bguXNlSVOqqanByuoKstnssXY5CgZDCIce/XOUJKkiAyILhQKuX7+OqakpAF7b51dfe7W8p16uu3seh6EDogjbdZHKZBAMhxGujSMYjaKxrxd1LS0Qyhzsrqys4NNPP0UmkwEANDY24oUXXkBtbS0EQYBu6FtBX8eJz1shoicPu2ARPelcFxgb87pg9fUdKr+8mriui+TGBpaXl1EsFuE4DhoaGyGrEgLhAIpuEYZtwrS8LlylzlulLlyT01O4ffMWYAMRNYKfvPgy+rv7oEgnN/l6YWEBX375pXe3HkAwGMSFCxdw4cKFIwUiruv6uf/HdUfXsS3c+eTfIhQOoee5tx/aBSudTiOVSqGjo+PYTp1c18X4+DiuX/8DikUTEIAL5y/gqaeeKk+xv2EA+QKEfP6BeRy6YSKZy2HDNGBpKpq6u9HccjxtfTOZDL788kvMz88D8ILZoaEhBINBGKaBlpYWNDc1w62CU6/TaCW3gpyVQ1O0CfUhpqoRHRYDEKIn3RkLQHaybRuZzU2sra0hm80C8Dbv9fX1qI3H4QouzK26Et0yYFoGik4R6c1NfPPN19hIJgEAPd3duHTpEsJq2JvsvpW+td/p7uXgOA5GR8dw8+YPftteWVZw+fIlXLx4saKF2wfh2Bb+4T/4u3jxhRfwH/yn//ChAcjExAQsy8K5c/sfVngQm5ub+Pqbr7G0uATAq4F46aWX0NBwhDaqO+o4hELBm0K+c+q4osANBrGh65heW4USCCJRn0CiLnEs3dZ0Xfdmy4zfB7be1RsaGtDc3AxVVRGLxVBbW4tYLMbA4wgYgBCVB1OwiGjbGbsfIUkSauNx1MbjyOdymJ6eRqFQwOzsLAq6jqbGRlgFC5qsoTYShyAIcFwHZo2BnsZufPvHb3F7+DZmZ2exmd7Es88/h0g47KdwwYU3SFFWoUoaNFnddxeugxJFEefPD6K/vw/37t3DrVu3YVlF3LhxA7du3cbly5dw4cKFA89GsSwL09PTaGpqOrZUnHt376C5+eEpToZhIJPNoL2tvezXdRwHd+7cwfc//ADXcSCIIp66ehVDQ0MHP2lxnN0BR7G4PY9DliHIMhAIIi8Aa4UCJE1Da3MzaiwLvfE4ampqjmXjb1kWbt2+hVs3b8GyLABea91XXnkF0WgUuq4jFotVbYB6WglgEEd0FAxAiJ50T8jd0FA4jAsXL8LQdayurmJjfR2ZzU2v7a9pQhRFRKNRRCIRxOvqUBdO4Oev/QKXei7h008/RS6Xw41Pv8P5y+fR09cDy7X8FC7d0ZG38nB1L51LERRosgZFUv2gpFwpXLIs4/Lly7hw4cIDgcjw8DAuXbqMgYH+fQcikiTBME0kk8kTqQVIJpMQBRG1tbVlfdyVlRV88803SG6dYjU1N+HFF17c/1A91wV0Hcjnd9Vx+AMAAwF/HocTCCBZKGB9YwO5fA6KrKA+4tW8yLJc9kF+tm3DdV0MDw/ju+++8wOPYDCI8+fP49y5c37tEgvLiagaMQAhoieKFgigvaMDLa2tMA0DgWAQqWQSs7OzyOfzSKfTiEajkGUZ62trUBQFP/vZz/CHP/wBi0tLuH9zHGvTa3jxpZfQ0dwIw9K32gObfgqX4zgwXAMFswDXcOHChQjRT9tSt4KSo6RwlQKRixcv4t69e7h3795WgfW3uHHjBi5dHsLFCxcfG4gIgoC6ujhWV1bR2tpa8Rkc6xsbqKurK9t1k8kUbty4gbm5WQCAoqh49tln0N/f//ifdamOo1AACvlddRwIBCBomjeHIxSCHQjAKBYRDAZh6jpm5mYRjUTR3dXtF3qXi2mayOVyyOVy/gDJxcVFPxVPVVU888wzOH/+PNOrjhlrZ4jKgzUgRASMjno1IL29R545cBoVTRMrq6tIJZMoFotQVRX19fUwi0VsrK97BeoAMpubmJ2dhWGaAIDurda44R0nB7Zjo2ib0C0dhm3AtLzp7qVCd8d14DrurhQuTdagyhq0rfbAonDwOhzbtjE6Oobvv//eK7IGIIgiuru6cPnylUfO+jAMA8Mjw2hv70Ciru7A134Ux7bwpy9cwJtvvYX//J//6wdqQMytn+VR6yKy2Sx++OEHjE+MezUQAtDX24dr167tfQpgWV5aVT7/8DoOWfbmcGz9cUTRL5jf3NyEoii4cOECBEGAaZplqe0oFovI5/PIF/JoamyCKIq4f/8+Njc3kc1msby87He2kiQJV65cwZUrV5hiVSHL2WUUnAKao82oC5b33wrRk4QnIET0xFNUFW1tbWhtbUUum0UymYRl22hvb0dzUxOWlpehyDKK9fW4cuUKhoeHcffePUxNT2NmZgY9PT0YOHcO4VAIoVAIATWIgLI9zM51XW+Qom14gYllwrQN2I4Nx3FQcArI6Tm/I1cphWtnUCKLj365liQJFy6cx7lzA7h37x5u374N0zQxOTmJyclJNLc049zAOXR2dj5Q/6BpGsKhMNKpVNkDkL24ruu1QT7ipl3Xddy+fRv3hofhOg4AoL29A9euXUM8Xrv7i39cx2GaXsBRquOQJCAY2p46rmn+HW9d1zEyMgLHdRAMBNHU3ITa2PZJx0Gfh+M4ME0TgUAArutiYmIC+Xwelu2lU0mihHit15Z4bW0NY2NjKBaLAABBFDB4bhDPPvvssRS0ExEdN56AENH2CUhPD3DAIuazLrO5iYmJCbiu69WHxOOI1dZidXUV337zDdY3NgAAAU1De3s7ent70d7RAdMwsLi4CE3TEAgEoGkatEBg1+bfsoswbAOGtdWFy/ZaA5dOSkqtgR+WwhWQA1BEZc90ENd1MTc3hzt37mBlZcX/uCwrGBjox9DQ0K6TAV3XoShK2e+kO7aFf/M//Nfo6enBC3/y9/0TkI1kEouLixg8d+7AhfOAV3y9swYG8GZdXHv62vZMj1IdR2keh17YXcchioAW8AKOcBgIBABBgOM4SKfTSKfTsG0bfX19cF0XKysriMVi+x4GWQqyRFGEaZpYXV2FruswDAOGaUCWvDQ6AJidnYUsywgEAgiFQl7N0Y0bmJmdget4b9OqqmJoaAjnz58//mnt9FBL2SXojs4TEKIj4k6DiLyUE+Y1P1S0pgaXLl9GOpVCKpXC7OwsMpkMunt68Kd/9mcYvncPN2/eREHXcX98HIVCAaqqIhqNwjRNZDIZv0hYURQMXboEwJvELYkiVFWFpmmIBqKQFcXrwrUVlJRSuAzbgOu6sBwLpmXCNbdTuLaDEg0B2ftvURAhCAI6OjrQ0dGBTCaDe/fuYez+fVhW0asZGb6HpsYmXLlyBc3Nzf6m2nGcss/ikERp12O6rouV5RUENO3AwYdpmhi7fx93bt/2ayBisRieeeYZtLW1QSgWgWTKO+HQC9437VHH4QaDu1IOTdPE3NwcMpmMf9JRG6/1T0Gamh7s5OVsnbqIoohsNot0Og3DMGCaJgzDQDweR2dnpx/UaJqGWCwGTdMQDAb9x+7o6IDrupifn8c333yDhYUF/xqRSASXL1/GuTINoCQiOmk8ASGi7Tkg3d08AXkMq1iEZVkIBIPYTKe90xEAqysrmNsa/gYAzc3NuHr1KlpbW2HbNgxdh23bqInF4Lou7o+NwTAMPzgBgPPnzyMQDGJleRmFQgGKqkKRZciyDEmTAAnQLR2mXdyVwlWqK3HhpXCpouoHJTtTuGzbxvj4OO7evYvNzU3/utFoFG1tbWhra0MymcS5c+fKltpTqgF56+238X/4r/8HiJKMVCqN6Zkp9Pb07nsC++bmJoaHhzF2/z7srZ9ZKBTCU5cuo7e5GaKhe0GHbT9Yx7EVcCAUAraGDpaCw2w2C1EU0dHRAdu2MTk5iUg0glhNDIqioLj1911a5+LSIgr5AkzThGmasB0b3V3diMfjWFlZwdramh9UqqqKUCj02OdYKBQwOjqKu3fvolAo+B9vbGzE008/jZaWFhY+V4nSCUhLtAXxYPykl0N0anGnQUR0ALKiQN7axEZrajAwMIDNTAbhUAixWAxr6+tYXVnB0tISlpaWUJ9I4OrVq+js6vI3kYIgYGBr6J5t2zANwyt+1zT/OsViEblcDsViEa7roqWlBU3NzUAaWJ5ehqIocAQHjuhAVEXU1sVh2gbWUxsoChbyYgGiIACCdz1ZlBGQAki0J/B219vIprMYHx3H1PQ0MpkMhoeHMTw8DFVVsbq6hqtPXUW8jN2cSve6XNfF0tISwqHwYzfmrutieXkZd+7exfzcnPdBx0FdIIjz3V3oaWyE7DhAcmM7rUpVvfa44ZBfx1H6OYui6M+DMUwDAKDIClRVxdraGurr69HZ2YmxsTEsLS1h5/25q1euQhRFFE3v7yMcDiNWG4OqqH7L28bGRjQ2Nu7r56HrOsbHxzE2NoaNrTQ+wKvlOX/+PC5cuICampr9/XCJiE4ZBiBEtI0HogciCALCkQjCkQhaWlpgWRasYhG2bePGjRu4f/8+1tbX8eFHHyEaieDixYu4cPHirnQkSZIQDIWwM6O/sakJjVvpPq7rwrZt/3OapqGxsRFFy4JtWbAsC4qgoLWm1WtrO7UB0zZgOiZMx0TRKaKzpxOyLGN+ZR6ZrYnwoihAqBVwpf0ysptZzE7OIpfOwTVczM7OYHZ2BuFwGL29vejs6kIwEIAgCBBFL71LEATIsgxBEHZt1B8XsBSLRQgC0Nra6j+/0v+6ruvXvUxPT+Pu3btIp1IQLQuaYaK5Noa+1la0d3TAcYH05iZcQYCjqCiqCmxNQ0dfHyAImJqaQnZ+HrZtw3G9NKnurm5EIhHIsuwHILZtw7IsP51LkiTE43HIsgxFUfw/pefV2dl54N+Tkp1NARaXFv3aDsBLszo3eA4XL1xkYXkVY9IIUXkwBYuItlOwurr8FBU6Gtd1kU6lcOvWLUxMTMDeqhWIRiLoHxhAOBRCPB5HKBRCMBQqS91FaQNvW5a/sbZtG5FoFDYsLK0uYSOThG4WoBd1WI6Fmpoa1NTUIJvNYnJqEpuZDAqbeRTyBciQoQgKZMjQ1ADi8VrEYjGveF0A+vv6EQ6HMT8/j7X1tV1raahvQGtrKzKbaXz1q/83ZFlB4vxzECQJoiDi0lYtzL17wzCLBuAC+Xzea3G7vg4nm4ViFqFYFmpralBbXw8tFECsphZtvT0wJAnDszNAMARhKxAqnR6sr69jdmsOiCAICGgBhMNhNDY2QtM0WJZX6C/LctnrXX6sWCxiamoKIyMjWFld8VoEb4nFYujs7MTg4CBPO06JxcwiDNdAa00ragO1J70colOLAQgRAffvw8nnGYAck6Jp4u7du7hz5w50w/A/HgmHEY/HEa+rQzQSQV9fH2RFQdE0IVVic2ybfrG7YZkwLC8oWV5eRjaXhe06mJ+dw/LqCgRXgCxIXotgSUNLYwvaW9vR2tIKTdP8eR6AFwgFAgFEIhEYegH/1f/+P8bAQD9e/jv/a4TCEaiqikQiAdd1MTMzg7npaaxMT8NKpSEXixAdB1ooiO7eXrS0tyMQDkMIh4FQGGIkDCUUwsbGBlKpFPL5PIpbXbCam5vR0twCwzCQy+UQCoWgaVpF6yccx8Ha2hoWFhewvLSMhcWFXScdwWAQPT09GBwcRDzOGoLThgEIUXkwBYuI6JgpqoqrTz2FoUuXMD01hfv372NhYQHZXA7ZXA7z8/Oob2iApmno6OzE5OQkCoUCgsGgV8ysaaiLx6EFAnAcx0+BOvK6JBWKpCKC7VoMy7HQGm2F6XjByeXBS8gWspibn8Pk5CQ2khsoWDqS8yncnb8HWZCgSRoStQl0tnair6sPiUTCD54URUE2k0U0UoNMJoOaWC0EADe/+gpzY2PQ1zcg2TYEQYAmS2juaEdHVzda+nqRsW0YooSsKMAwDBRWltET7oECwCyacBwHdXV1CAaDCIVCfuqSpmnQdtTTHKdSwDEzM4P5+XlsJDd2BRyl9XR1deHChQuoq6tjQTkRPfF4AkJE2ycgnZ0A888rIp/LYWJiAuPj4/4sEQDQtoYi1tbWIrI1Yd0wDHR1dSESjWJxcREry8t+lyVV01ATjfrdtUpzJ46qlEImSRLC0QjMrZOSglnA8voy5pcXsLi4iNXVFdileSVbM0sCiobm+mbUxxvQVNeA9N0/Iru+DiXeiWI6g9zGOraq4+FKAuoS9ahtakKovh5OIIjzT18DBAH37t2DYRrQVO+5BoNBJBKJigUXD2MYBpKpJOZm57C6torVldVdncwAr46koaEBnZ2daGlpYdBxhpROQNpq2hALxE56OUSnFgMQIgLGx+HkcgxATsjG+jrGx8cxPj6O/I42rABQG4uhpaXF/+M4DrLZLAzThLk1b6ImFkNrayvyuRxGR0chSZL/R1VV9PT2AgBWlpfhuq7X1nfr88FQCLLstejd9XbgupiamoKu6xgcHPSG9u3kunBFF3kzj5n5GUzPz2BheQGpzSQs24JYtCEbJkS9gMDiFERBhNvQBVnWIAsK6hqb0dY3gKKsQInFoG2dYKiaiuamZgiCAMuyIElSxTfvruuiUCggnU4jmUwinU5jaWkJ2WzWn0a+kyzLqKurQ1t7Gzo7OhlwnGEMQIjKgwEIETEAqRKO42BxcRHzc3NYXFzcdTJSUhePo6WlBY2NjYjFYqiJxfxhflaxiM3NTa8bl23DsW1AENDe3g4AGBsdhb41j6Skv78fkWgUCwsLWFle3nWteDyObDYLWZZ3zacAvOLuq089haJp4oebN7G5sQEjlUJufRVGOgXHMVCEDVtwYQkObBEoKgpMWYapKbC3AhpVVBELxRCLxhCviaMuVoeA5k0DDwaDCAQCCAaDUMpUm+Q4DgzDgK7r0A0dhu79d0EvYG11Del0GrlcbtfP6McURUE8Hkd7Rzs62jsYcDxBGIAQlQcDECJiAFKlDF3H0tISFhcXsbi4iGQq9dCvK80gicViqKmpQay2FrGaGoQjkYemY5Va+zq2DVlRIIoi9EIBxo4CeQBQVRWu62JkdBSSKEKSJORyOWSzWWSzWegbG7A2NyGbJiTLgiuKXlqVICASiyHR3o6Gri78R//p/xZv/9kv8Xf//t/DysYK1pJrWFxdRC6X89ruwt2VwiVDhix4f0pduCRJQjgURmCrDgbArrkqga02waZp+ic5giB4z9NxUCwWUSgUHkiXehRN05BIJFBXV4dYLIZ4PI7a2lq2yX2CLWwuoIgiWmtaGYAQHQGL0IloG+9HVBUtEEBXdze6ursBAHqh4Acka+vr2EynYZgmcvk8cvk8FhYXH3gMWZJ2zbOQFQXKjhkXkiTBsiyYpulN/bZtFLf+u/TH2fq9kIpFyKbpBRymCVEQoIoi1EAAkYYGxBob0dDVhYauLmwWi8gVCujt68Pc6hpEV8LVwav+ulzXhV7UsZpcxfL6MlY3VpEzctANHZlMBvlCHoZhIG/m4bgOJFtCspiEvCn77YElQTr0z1ba+rlomoZoNIpAIABJktDU1ITa2lrU1tb6J0tEP8YTL6Kj4asrEdEpEQgG0d3Tg+6eHgDeJt40DG92xuYm0pubSJf+O52G47qwbBuWbaOwNWjvIATbhmya0EwTIddFNBxGsK4O0ZoaxOJxROJxRJuaoMbjQCgESBIMw8DMzAwymQxaWlr23KgJgoCgGkRnUyc6m7aH+xXt4lZbYK/oXS/qKJgFFAoF5At55At5mMb2KYciKFAlFaqgQpVUiK64fZqyVe8SCoUQCAYQ0AIIBALQNO3YWxwTEdHeGIAQEcC7eaeSIAjQAgE0NTejqbl51+ccx4FpGLtOMopbk9p3fsx2nO1TElGEZtuQi0Wotg0FgKyqUDQNSiAAQZIwsbSEnOsCLS3QWlrgKgqcrTSu5eVlLC4uQpZl9PX1IRbzUlRCoZA3vHAfFEmBIimIqBH/Y7Zj7wpKDMuAaZtwXAeO48BxHbiO6008dwFN1qBKKjRZgyZp0GQNosCAg4ioWrAGhIiAiQk42SzQ0QGcYItTqjDXBQoFIJ/3/lfXvW5XoghIEgRJAgIB73QjHAY0DfbW3IuVlRW/I9TAwACi0aj/sebmZkjSdnrUxMQEGhoaEI1G91rJIZbuwrRN6Ja+KzixHXs7KNk6BXEcB4qoeAHJjqBEFnkPjg5mfnMeFiy0xdpQo3F6PdFh8dWXiOhJYhhewLEVdAiCN48DkgQhGPSaEITDXtARDHrByA6lOomGhgboug7LshAMBgEAjY2ND73kv/pX/wq//OUv8fOf/7xsT8MbXOgFEjuVUrh0S/eDEsuxvO5XroGCUfCDEkmQ/NOSgBzw/5vocQTw1JjoKBiAEBEAb0PHA9EzqFjcFXDAcbZPOTQNgqJ4wUbpzz4Lr0VR3Hda1d/8zd8gHo+XNQDZy35SuHRLh2l7dSSWY8G0TGTMzAMpXDuDEqZwERGVDwMQImINyFniOLsDjmJxO+CQZQiy7J1slNKqnoCWspIoISSGEFK2AybXdR+oK9mZwpW388gVc3DhnZaokrqrriQgByCJh+/CRaeT67rg4QfR0TEAISI6zR5XxxEIbAccoZBX08GA05sdIgcQkAO7Pm7a5gNByV4pXLIoQ5M0qLLq15UwhYuI6PEYgBARnTalOo6twGNnHQcCAQiatjutii1n96100hHFdsG85VgPBCWmbXoDDt0ijKKBTWMTjutAgPBAUKJJGudGnDH8+yQ6GgYgRLSNNSDVybK8gCOXe3gdhyxvF44foI6D9kcWZciqjDDC/scc1/FPS3Z24nJcB7ZjI2flkDWzfjeuH7cF1iSNKVxE9MTiuxQRMSWn2vy4jsM0vZa4pToOSdp9wlHlrZP/0T/6R3jppZdOehllJQqin8IVgzfvxHVdFJ3iA0GJ7Xp1JbqjI2/l4eoPpnAF5AA0SYMiKSf8zOhRXPAmDVE5MAAhIjpprgvo+nbQ8eM6jmBw9zyOU1bHMTg4iIaGhpNexrETBGE7hUvbO4VLt3QUnaI3LNI1H5nCFZADUCWVKT9Vhm14iY6GAQgR0Ukwze2UqkLB286c0TqOv/zLv8Q/+Af/AP/4H//jk17KidgrhevHdSV7pXDB3apN+VFdCVO4TgaDQaKjYwBCRNtYA3J8SnUcpbQq294+5VBVr45jZ8ChnJ1UHNu2Ydv2SS+jqoiCiKASRFAJ+h8rTXf/cVBiORZc130ghas03X1nfQlTuI4XZyURlQcDECI6Vek8p4bjbLfHzed313FIEgRV9drjlorHq7yOg47frunuO34dLMfaNdndsAw/hctwDRTMAlzDheu6ECD4aVuloIQpXOXHnyfR0TAAISIqh511HKV5HILgBRyiuLuOIxTygg9uYmgfZFFGRI3smu5eSuHaWexu2iYc13nodPdSClep2F2TNU53J6ITwwCEiOiwTHPXPA64rpdWJUlee1xV3Z1WJTFnn8pjPylcpeCkNN1dd3Tk9bw/SLGUwrWzPbAscltARMePrzREtI35zY9m27vncTxBdRxHcf78efT29p70Ms68vVK4inZxV12JbukPne7uui5EiLvqSgJyAIqoMOVoiwuXHbCIyoABCBHRXnbWcRQKgGF4dRxb3ar8Oo5SwBEInPSKq9J777130kt4oimSAkVSdqVw2Y79QLG7YRtwXfehKVw/LnZ/0lO4GIQQHQ0DECJiLcJOP57H8eM6Dk3bLhxnHQedUpIoISSGEFJC/sdc131oUFJK4crbeeSsnJ/CVZp5whQuIjoovlIQ0ZONdRxEALwUrtJ0952KdnFXsbthGw9N4XIcB5IgeV24dswsUSX1hJ4REVUrBiBE5HlS7uSX6jhKQYdl7a7jkKTtYCMcZh0HPfFKKVxRbE9335nCVQpOTNuE4zgousVd0913pnAF5IB/YnIa60pKrY5P49qJqgkDECLadhaL0F3XCzRKheM/ruMIBlnHQXRAj0vh2nli4rjOdgpXMQfHdeC67q4UrlJ7YE53J3oyMAAhorN3+rFzHkeh8PA6jp3zOMQnt5iWqFx2pnDFEPM/btrmrroS3dJhu/buFK6t6e6yKHvDE5nCRXSmMQAhotOvWNydVuU4u+s4FGU7pYp1HEQVVTrp2JnCZTnWA8XupRQu0zV3pXAJEB4ISk4qhcvFGTwlJjoBDECIaNtpScF6VB2Houyu4wiFAJV3UImqiSzKkFUZYYT9j5Wmu/+4E5fjOrAdGzkrh6yZ9VO4HhaUVCKFSxAEtuElOiIGIERU/Up1HKWAQ9e3A45SHUcgsH3KoWlnL62M6Izba7p70dnqwrUjKLEcC67retPdrfwDKVw7J7wrEhtJEFUbBiBEVJ2bdcPYdcohCMLuwnFV3T2Pg3UcRGeOIAh+CtfO6e47U7hKwUnRKfopXLqpAwYeSOEqFburkspOVkQniAEIEVWHveo4RHF3HUfpj8yXL6In1X5SuHRL9+pKHpLCBXerNmUrhavUHvhx093d05KmSlTl+A5ORCfDtrfTqvL53XUcsgxBlr2TjdIpB+s4iOgR9krhMm1zV12Jbun+dPcfp3ApouJ33iq1B37YdHeenhAdDQMQItp2nHf3HlfHEQg8OI+Db/JEdASCIPj1IDtTuIp28YFi91IKl+EaKJgFuIYL13UhQvSDkkwxg5gc2/uCRLQvDECI6Pg2+qU6jq3AY2cdBwIBCDvncYRCrOMgooooTXePqBH/Yzunu5f+t5TCZTkWTMtE1swiEU6wCxbRETEAIaLysSwv4ChNHf9xHYcsb6dUsY6DiKrIXtPdSylcuqUjFoyhLdrGFCyiI+K7PxEdnuPsLhw3TW8GR6mO48fzODTt8Y9JRFQldqZw1Wg1J70cojODAQgRbXtcDYjrArq+HXQ8bh4H6ziIiIjoRxiAENGjmeZ2SlWh4GU+s46DiIiIDokBCBHtPqUo1XGU0qpse/uUQ1W9Oo6dAYfCKcNERES0fwxAiMiTSnknHYGAV7tRmjquqrvncbCOg4iIiI6AAQgRAZEIEI1CcJzddRyhkBd8sI6DiIiIykRw3eOcPEZEp0ah4KVfhUJefQcRERHRMWAAQkREREREFcN2NUREREREVDEMQIiIiIiIqGIYgBARERERUcUwACEiIiIioophAEJERERERBXDAISIiIiIiCqGAQgREREREVUMAxAiIiIiIqoYBiBERERERFQxDECIiIiIiKhiGIAQEREREVHFMAAhIiIiIqKKYQBCREREREQVwwCEiIiIiIgqhgEIERERERFVDAMQIiIiIiKqGAYgRERERERUMQxAiIiIiIioYhiAEBERERFRxTAAISIiIiKiimEAQkREREREFcMAhIiIiIiIKoYBCBERERERVQwDECIiIiIiqhgGIEREREREVDEMQIiIiIiIqGIYgBARERERUcUwACEiIiIioophAEJERERERBXDAISIiIiIiCqGAQgREREREVUMAxAiIiIiIqoYBiBERERERFQxDECIiIiIiKhiGIAQEREREVHFMAAhIiIiIqKKYQBCREREREQVwwCEiIiIiIgqhgEIERERERFVDAMQIiIiIiKqGAYgRERERERUMQxAiIiIiIioYhiAEBERERFRxTAAISIiIiKiimEAQkREREREFcMAhIiIiIiIKoYBCBERERERVQwDECIiIiIiqhgGIEREREREVDEMQIiIiIiIqGIYgBARERERUcUwACEiIiIioophAEJERERERBXDAISIiIiIiCqGAQgREREREVUMAxAiIiIiIqoYBiBERERERFQxDECIiIiIiKhiGIAQEREREVHFMAAhIiIiIqKKYQBCREREREQVwwCEiIiIiIgqhgEIERERERFVDAMQIiIiIiKqGAYgRERERERUMQxAiIiIiIioYhiAEBERERFRxTAAISIiIiKiimEAQkREREREFcMAhIiIiIiIKoYBCBERERERVQwDECIiIiIiqhgGIEREREREVDEMQIiIiIiIqGIYgBARERERUcUwACEiIiIioophAEJERERERBXDAISIiIiIiCqGAQgREREREVUMAxAiIiIiIqoYBiBERERERFQxDECIiIiIiKhiGIAQEREREVHFMAAhIiIiIqKKYQBCREREREQVwwCEiIiIiIgqhgEIERERERFVDAMQIiIiIiKqGAYgRERERERUMQxAiIiIiIioYhiAEBERERFRxTAAISIiIiKiimEAQkREREREFcMAhIiIiIiIKoYBCBERERERVQwDECIiIiIiqhgGIEREREREVDEMQIiIiIiIqGIYgBARERERUcUwACEiIiIioophAEJERERERBXDAISIiIiIiCqGAQgREREREVUMAxAiIiIiIqoYBiBERERERFQxDECIiIiIiKhiGIAQEREREVHFMAAhIiIiIqKKYQBCREREREQVwwCEiIiIiIgqhgEIERERERFVDAMQIiIiIiKqGAYgRERERERUMQxAiIiIiIioYhiAEBERERFRxTAAISIiIiKiimEAQkREREREFcMAhIiIiIiIKoYBCBERERERVQwDECIiIiIiqhgGIEREREREVDEMQIiIiIiIqGIYgBARERERUcUwACEiIiIioophAEJERERERBXDAISIiIiIiCqGAQgREREREVUMAxAiIiIiIqoYBiBERERERFQxDECIiIiIiKhiGIAQEREREVHFMAAhIiIiIqKKYQBCREREREQVwwCEiIiIiIgqhgEIERERERFVDAMQIiIiIiKqGAYgRERERERUMQxAiIiIiIioYhiAEBERERFRxTAAISIiIiKiimEAQkREREREFcMAhIiIiIiIKoYBCBERERERVQwDECIiIiIiqhgGIEREREREVDH/f4Bz2nJWvmSHAAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from mindquantum.io.display import BlochScene\n", + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib widget\n", + "\n", + "state1 = circ.get_qs(pr={\"theta\" : np.pi / 4, \"phi\" : 0})\n", + "\n", + "scene = BlochScene()\n", + "fig, ax = scene.create_scene()\n", + "state1_obj = scene.add_state(ax, state1)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "现在将它绕 $z$ 轴旋转 $\\pi \\over 3$,旋转后的 $\\theta' = \n", + "\\frac{\\pi}{4}, \\phi' = \\frac{\\pi}{3}$,旋转后的坐标为 $(\\cos{\\frac{\\pi}{3}}\\sin\\frac{\\pi}{4}, \\sin\\frac{\\pi}{3}\\sin\\frac{\\pi}{4}, \\cos\\frac{\\pi}{4})$ 。" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zhuyk6/.pyenv/versions/3.7.5/lib/python3.7/site-packages/mindquantum/io/display/bloch_plt_drawer.py:495: UserWarning: jupyter environment detected, if animation not work, please run '%matplotlib notebook' in cell.\n", + " please run '%matplotlib notebook' in cell.\")\n", + "/home/zhuyk6/.pyenv/versions/3.7.5/lib/python3.7/site-packages/mindquantum/io/display/bloch_plt_drawer.py:50: MatplotlibDeprecationWarning: \n", + "The M attribute was deprecated in Matplotlib 3.4 and will be removed two minor releases later. Use self.axes.M instead.\n", + " xs, ys, _ = proj_transform((x1, x2), (y1, y2), (z1, z2), renderer.M)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "118b6fcf658e44e9ac414b2254f63cab", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAMgCAYAAADbcAZoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5Rj13Xg/37vvchABVTOuToHNmMzsxlEKpGyZFvWz7Ity5551szop7c8lsNb8ow9GoeR5WePR7PGnifJkn+mbI8tmpRsic0oikGM3Wyyc3XlnIECCvGG9wcK6Kqu0BVQQIX94arFrgvg4hQq4O5zzt5bsSzLQgghhBBCCCFyQM33AIQQQgghhBC7hwQgQgghhBBCiJyRAEQIIYQQQgiRMxKACCGEEEIIIXJGAhAhhBBCCCFEzkgAIoQQQgghhMgZCUCEEEIIIYQQOSMBiBBCCCGEECJnJAARQgghhBBC5IwEIEIIIYQQQoickQBECCGEEEIIkTMSgAghhBBCCCFyRgIQIYQQQgghRM5IACKEEEIIIYTIGQlAhBBCCCGEEDkjAYgQQgghhBAiZyQAEUIIIYQQQuSMBCBCCCGEEEKInJEARAghhBBCCJEzEoAIIYQQQgghckYCECGEEEIIIUTOSAAihBBCCCGEyBkJQIQQQgghhBA5IwGIEEIIIYQQImckABFCCCGEEELkjAQgQgghhBBCiJyRAEQIIYQQQgiRMxKACCGEEEIIIXJGAhAhhBBCCCFEzkgAIoQQQgghhMgZCUCEEEIIIYQQOSMBiBBCCCGEECJnJAARQgghhBBC5IwEIEIIIYQQQoickQBECCGEEEIIkTMSgAghhBBCCCFyRgIQIYQQQgghRM5IACKEEEIIIYTIGQlAhBBCCCGEEDkjAYgQQgghhBAiZyQAEUIIIYQQQuSMBCBCCCGEEEKInJEARAghhBBCCJEzEoAIIYQQQgghckYCECGEEEIIIUTOSAAihBBCCCGEyBkJQIQQQgghhBA5IwGIEEIIIYQQImckABFCCCGEEELkjAQgQgghhBBCiJyRAEQIIYQQQgiRMxKACCGEEEIIIXJGAhAhhBBCCCFEzkgAIoQQQgghhMgZCUCEEEIIIYQQOSMBiBBCCCGEECJnJAARQgghhBBC5IwEIEIIIYQQQoickQBECCGEEEIIkTMSgAghhBBCCCFyRgIQIYQQQgghRM5IACKEEEIIIYTIGQlAhBBCCCGEEDkjAYgQQgghhBAiZyQAEUIIIYQQQuSMBCBCCCGEEEKInJEARAghhBBCCJEzEoAIIYQQQgghckYCECGEEEIIIUTOSAAihBBCCCGEyBkJQIQQQgghhBA5IwGIEEIIIYQQImckABFCCCGEEELkjAQgQgghhBBCiJyRAEQIIYQQQgiRMxKACCGEEEIIIXJGAhAhhBBCCCFEzkgAIoQQQgghhMgZCUCEEEIIIYQQOSMBiBBCCCGEECJnJAARQgghhBBC5IwEIEIIIYQQQoickQBECCGEEEIIkTMSgAghhBBCCCFyRgIQIYQQQgghRM5IACKEEEIIIYTIGQlAhBBCCCGEEDkjAYgQQgghhBAiZyQAEUIIIYQQQuSMBCBCCCGEEEKInJEARAghhBBCCJEzEoAIIYQQQgghckYCECGEEEIIIUTOSAAihBBCCCGEyBkJQIQQQgghhBA5IwGIEEIIIYQQImckABFCCCGEEELkjAQgQgghhBBCiJyRAEQIIYQQQgiRMxKACCGEEEIIIXJGAhAhhBBCCCFEzkgAIoQQQgghhMgZCUCEEEIIIYQQOSMBiBBCCCGEECJnJAARQgghhBBC5IwEIEIIIYQQQoickQBECCGEEEIIkTMSgAghhBBCCCFyRgIQIYQQQgghRM5IACKEEEIIIYTIGQlAhBBCCCGEEDkjAYgQQgghhBAiZyQAEUIIIYQQQuSMBCBCCCGEEEKInLHlewBCCCF2twsXLvAP//APVFZW8rnPfS7fwxFCCLHJJAARQgiRN7qu8+lPf5pTp04BUF1dzcc+9rH8DkoIIcSmki1YQggh8uaP//iPOXXqFH/wB39AS0sLv/Zrv8bU1FS+hyWEEGITKZZlWfkehBBCiN3n7Nmz3HTTTTz66KP84z/+I++88w533nknn/jEJ3j88cfzPTwhhBCbRFZAhBBC5JxhGPzyL/8ydXV1fP3rXwfgpptu4qtf/Srf+c53+N73vpfnEV7V1NSEoij86Ec/2pTz79u3D0VRePXVVzfl/EIIsdVIACKEECLnNE3jrbfeorOzk6Kioszx//Af/gOWZfHoo4/mcXTrEwqF+L3f+z0OHz6Mz+ejqKiIW265hT/90z8lkUgs+7jHHnsMgKeeeipXQxVCiLySAEQIIYTYoN7eXo4cOcLv//7vc/bsWSzLIh6P8/bbb/Mbv/EbHD9+nOnp6SUfKwGIEGK3kQBECCGE2ABd1/noRz9KT08P1dXVPPvss8zOzhKJRPj7v/97CgoKOH36NJ/+9KeXfPzx48eprKzk8uXLXLx4McejF0KI3JMARAghhNiAb3/727z//vsAfPe73+XBBx8EQFVVPvnJT/JXf/VXAPzgBz/g+eefX/R4VVX56Ec/CsgqiBBid5AARAghRE69++67KIqyqo8//MM/zPdwr+vb3/42ACdOnOD2229fdPvP/dzP0dzcDMDf/M3fLHmOdO8TCUCEELuBBCBCCCFyqqOjg8rKymU/CgoKMve98cYb8zjS64tEIpnqVR/84AeXvI+iKDzyyCMAPPPMM0ve54EHHsDn8/HGG28wOjq6OYMVQogtQgIQIYQQOfUzP/MzjIyMLPnxxhtvUF5eDsCHP/xhTpw4kefRruzChQuYpgnAoUOHlr1f+raRkZElGy26XC4efvhhTNPk+9///uYMVgghtggJQIQQQmwJXV1d3HvvvXR1dfGxj32MJ554AqfTuez9v/Wtb616K9dSH9no6zE0NJT5d21t7bL3m3/b/MfMJ9WwhBC7hS3fAxBCCCEuX77M/fffz+DgID/7sz/L448/js228luU2+2msrJy3c/pcDjW/di0UCiU+bfH41n2fvNvm/+Y+T7ykY9gs9l47rnnmJ2dxev1bnh8QgixFUkAIoQQIq/Onz/PAw88wMjICJ/+9Kf51re+haZp133cJz/5ST75yU/mYIS54ff7ufvuu3nxxRc5efIkH//4x/M9JCGE2BSyBUsIIUTevPfee9x3332MjIzw2c9+lm9/+9urCj62ivkJ85FIZNn7zb9t/mOuVVpaCrBknogQQuwUEoAIIYTIi1OnTnHixAnGx8f5tV/7Nb7+9a+jqtvrbammpibz78HBwWXvN/+2+Y+ZL5FIcPLkSRRF4SMf+Uj2BimEEFuMbMESQgiRc2+88QaPPPIIgUCAL3zhC/z5n//5ms/xD//wD3zhC19Y9xieeOIJ7rjjjnU/HmD//v2oqoppmpw9e3bZUrxnz54FoKqqipKSkiXv8/zzzxMKhTh+/DhVVVUbGpcQQmxlEoAIIYTIqVdeeYUPfehDhEIhvvjFL/KVr3xlXeeJRqMb6pmRSCTW/dg0j8fDnXfeycsvv8zTTz/NF7/4xUX3sSyLkydPAvCBD3xg2XOlq1+lq2EJIcROtb3WuoUQQmxrL774Io888gihUIgvfelL6w4+AD7zmc9gWda6P+67776sfE2/9Eu/lPna3njjjUW3/+M//iNdXV0A/OIv/uKS57Asi+9973uABCBCiJ1PAhAhhBA58eyzz/LhD3+Y2dlZvvzlL/PlL38530PKil/6pV/i8OHDWJbFJz7xCZ5//nkATNPkH//xH/k3/+bfAKlO6Q888MCS53jzzTcZHh6mvb2d/fv352zsQgiRD7IFSwghRE586UtfIhqNoigKX/va1/ja17627H0ff/zxZS/Wtxqbzcb3vvc9Tpw4QU9PDw8++CAejwfTNInFYgAcO3aMxx9/fNlzyPYrIcRuIgGIEEKITWcYBu+//z6Q2m50vdyNtra2XAwra5qamnjvvff46le/yhNPPEF3dzd2u52DBw/yqU99is9//vMrNj6UAEQIsZsolmVZ+R6EEEIIsVU1NTXR29vLiy++mLW8kfmuXLlCe3s75eXljIyMbLtSxEIIsVbyV04IIYTIoyeffBKAj3zkIxJ8CCF2BdmCJYQQQuSRbL+ax7IgmYREIvX/wkLQtHyPSgiRZRKACCGEEHn0X/7Lf8EwDO6+++58DyU3LAt0PRVkpAON9P+TSSzLAtOEmRmoqUGpqgK7Pd+jFkJkkQQgQgghNlUymcRms6EoSr6HsiWdOHEi30PYHHMBxZJBhmmmApH0/+c+LNMEVU0FHIkEytQUlJZKACLEDiMBiBDbWDQZRVVUbKoNTZVtCmLricViFBQU8IlPfIK///u/z/dwRLalVzKWCDSWDTLStW8cDnA6U8GF3Z763G4Hm1yaCLHTyW+5ENvUbGKWyxOXcdvdqKqKgoJNtS360FRtweeqIkmuIne+8Y1voOs6gUAg30NZt56ennwPIb8MY2FwMe/f1vzgYt6/M0HG/MBi/v8lyBBiV5MyvEJsQ5ZlcWnyEt0T3dQW1GJhoShK6gMFFBZ8nvm3omRWTBYEKYq26JhslxEbFYvFaGpqYnR0FI/Hw+/8zu/wpS99Kd/DEksxjKW3SyUSYJpLrmZY6cBjflBxbbCxEb29qb9bDQ3g8WTn6xRCbAkSgAixDVmWRcdUB9FYlNaSVhQUdFNf8GFYRur/ppE5ZlrmqgOVa4OSa1dS0oGLBCpiOf/zf/5PPv/5z2dmw10uF319fZSXl+d5ZLuUaS67XQrDWBxkwNVj6W1S126Xstths/4GSAAixI4la6BCbHOWZaGqKnbNjl1becbRtMyrAcq8wCTzuZH691pWVFZaRZkfvIjdJZlM8uUvf5n5c1zJZJI/+ZM/4Stf+UoeR7bDmebyKxmGcbXCVPr/zAsy0isYS61k5HOiQSY5hNhxZAVEiG3q8uRlorEoLf6WrF/gp4OT9CrKckELXBOYqEsHKen8lKVWUSQ/ZWeKx+O0t7fT39+/4LisgmTBtb0y5v9f11cOMjRt+SBjqzVBTK+ANDaC253v0QghskhWQIQQi2iqtqqgZqmgZP5qStJMYljGmvNTVlpNkfyUrS8ej/N7v/d7DAwMLLotmUzyla98hT/5kz/Jw8i2kXSQsVwZ2yWqS2XK2Gra0tulHI6tF2QIIXYlCUCEEOuWDgicOJe9j2VZi1ZSlgpU1pqfcr3VFMlPyZ+vf/3r/Lf/9t9YaoHdMAwuXryYh1FtUcutZKSDjJV6ZSy3krFTOodblmy/EmKHkgBEiG1MURQstvYuSkVRsCmpoGAlpmUuuZqykfyU662kSH5K9sVisUW5H9caGRnh1Vdf5c4778zhyPLo2l4Zq23IpygLe2XMDzR2SpCxGhKECLHjSAAihNgSVEVF1dQ1JdIvmZ9ipP69UqCiKuqC21azmiKByup84xvfYGxsbMX7vP322zz44IP09vZSUVGRo5FtMl1fdjXjug357PZUkHHtaob0yhBC7FDy102IbUphd84KqoqKQ3Pg0Bwr3u+6qylW6vPVrqYs1+jx2jLFuzmRfjWrH2npiljbKhdkfq+MawONlXplwOLStfP/LYQQu4xUwRJim+qY7CAaj9JU3HTd7U1iadfLT5lfDWwjjR7Tqyh2zZ7ZFrYT81OeeOIJfvqnfxrLshZ8fenPb775Zqanp+ns7MSyLHw+H6FQKI8jXsK1vTLW2pDv2uTv9ErGDvx+b7rubhRNQ2lqApcr36MRQmSRXLUIsc3JHML6rTY/xbKsJYOUdHPH9SbSr7SSkv7YTh544AFeffVVpqenF5Tf/Z3f+R3uuusu/uZv/obx8XFeeOEFAOrr6/Mz0Ov1ypi/VWq79MoQQohtZHu9uwkhRB4oirLmRo/X5qZstNHjtaspWzGRvqioiNtvv33R8T/4gz/g2LFjFBcXU1xcTHt7++YPxrKW7/p9vV4ZNtvyZWwlyMg9ec2F2HEkABFim9qJW3i2u/Xmp6S3gc1PpJ/f6FFV1DXnpyyVWL/j8lOu7ZWx1oZ8SwUYW7Eh324mf+eE2JEkABFim9vqZXjFYulGjyv1TwGW7UK/0UaP12v2uKWCW8taXMZWemUIIcS2JgGIEEJsUavJA7k2P2V+Uv1GGj0ut4qSjUaPpmmi6zp2u/3qOVbq+r1SrwxVvVrGdjf3ytiJJL9NiB1LAhAhtqndWoZXLLSe/JT5qynReJRoPEo8GSeeiJPUkxiGgWmaJJPJzIee1NE0DU1LBR6qquJ2unE5XbgcLpx2J067E7fDjdPhxGV34XV7cbvc3HfffRw7doy+ri4mh4eZDQQwolGKPB4cQHRmBj2RIJlIkIjHSSQSaICqqqhzz6U4HChOZ+rDbkd1uXAWFOArKqLA4aCgoAC3x7O1Vm+EEEIsScrwCrFNdU51MhubpaGo4bo5B2L30nWdUChEOBxmamqK2dlZotEowWCQUCiEYRgL7m9aJun/DMtY8P/5/4arQXD6ol9RFFTTQjMMNMPEZprYTAu7YWEzLFTDQkVFRUGzFDQ0FAu01BoMpqalPmw2DJst87m1ypUMTVXx+Xz4fD4KCgrw+XyUlJRQUVGBw7nydjexBXV1odjtKM3NqRUtIcSOISsgQmxzMocgAAzDYHJykuHhYaanpwmFQgQCAZLJ5PUfrKTyUlRVxe12Y7PZMAwDTdOw2WxotlTOis/nQ1VVglNTxGZDGLEoeiKKHolgJuNYyTiGkcQwdCzLxLJSJW2tiQF0FMzSGrA7MOYCC8Omgc2O4nJgc7hw2J14PB6KvEXY7Q5US8Hr8eIv9KMndSZGJzKrMxagJ5PY7HZmw2FC4TCGaRKcmSE4M7PoSywqLKSiooLq6moqKyvxFRTIaokQQuSJBCBCCLHNWJZFKBRifHyc/v5+JiYmmAnNsFw9gnRg4fV6KSwspLS0dMEqgd1uz2y18nq9AAz09RELhUiEwxixKIqu0+z343U46A2FGYnECIdnmQkGsJuAZaFYNsCGqarYPG5sHg+mTeGNixcpr6lm3/H7CMyGmJ2dZTY+SzyZwMTESiZQkkkghBJUgH5cTieFhYWUKWUoPgV/uZ+m2iYUlNQaiqWgWAo+rw+baiM4HSQSjhCdjRGLRIlEIliWRTAYzAQlwZkZOq5cAcDpcFBdXU1FRQXFfj8V5eXYHQ4JSoQQIgdkC5YQ21TXdBfhaJj6wnqcNtlespOZpsnIyAh9fX2Mjo4SCAQWbZ0C0DSN4uLizIV1Oshwztt+lO5KnkgkGB0ZIRoMEguHUBJJNMPkQHsbSjLJUF8/lmnisNnQDZ1AYJrgdICJsXGSiQSmqmJqKoam4fB6qairo6SqiuLyMoqKihkZGSEUDlFXW8unP3CcE/ffz3/8o/+Jql2d90ptDwszOxtmcnqSgeEBJiYmiCQima1gBgamZWFg4HI6KSosory8nNra2syKzMqJ9DaS8QRjo+NMjk8wPTlNaCaMYqXuk+ZyOvH7/VRUVlJaUkJTc3NmjDabzNXlRWdnKvdHtmAJsePIX1UhhNiCEokEg4OD9PT00NfXtyjgUFSFstIyiouLqayspLKyksLCwgUz+KZpEo1EmJmYIDYzQywUwqWqNFRVo0UjJDs7KXC6KLHbcLrdOOx2rGAQLAu/18PA8DDnB4eYmpnBsM1tm/J6UEv8VFZXU11dTU11DcXFRQued3h4mJnQDE2NTRT4vMt+jTabDb+/GL+/mLq6Oo4ePgpAPB5nYmKCoaEhAsEgwUCASCSCqZvoUzqDU4P0XezD7rBTW1dLRVUF/jI/iqKgW/MaPXK14pev3EtBhY9mmjFNk0AgwMTkJFMTk0yOT6JEFMYj43QOdVLgLWB0apSWphYGBwaxa3Y8Hg8ejwev14vH60WVXiFCCLFuEoAIsY0piiJ9QHaQUChEV1cX3d3dTE1PLdhSpWka5RXl1NTUUFNdQ2lpKVo6OduysBIJohMTRAIB3DYbPruDmfExhvv7wLJw2R34XC48bg9WMIBmWbTU1MyVsXVgOewYikrfxDhXensZGBuFuQaIFBdSXlZOdXU1VdVVlJeVX33uayQSCcYnxqmqqqKoqAjT0Nf8OjidTpxOJy6Xi7sPH8blchGJRDI5LqOjo0wHpkGH0Z5RRntGQYESfwkNjQ3U1zfg8bnnlSc2MOaqfxmWgWmZ+Ap9FBQV0NLSTFJPMjQ0zODgIOPjY8wEZxh8e5AX3n6BosKiTKCX3va1f+8BvC4PM4EZFBQKfYX4vAVbpiP9jiPb4oTYcSQAEUKIPLEsi4mJCXp6eujq6mJ2dnbB7QUFBTQ2NlLfUE9lRSWqYVztkTE1hZJIEpqaIjgxwWw4hGHoKEBZaRnekhJ8KDRVVuN0u1AdTixHqvO3Na9fhqWqjI2P0dXZRXd3D7o+l7SuqJSWltLc0kJLczMul2tVX5PD4WBP+54F275cbhdul3tNr43f72d8fIKBgQFaW1szKxD19fUAJJNJRkZGGBgYoK+vj3g8ztTUFFNTU7x7+l1cLhdNTU3U1dVRWVm5KGCyLGtBz5TKgiqOtB9mNjpL/2A/PX29jIyPMDE9yeT0FIqi0NBQT1NjE8F4gFByhsGRQcKhcGq1RVXxejxUV1ZT6CvCNtdD5dqGj9pWa/QohBB5IDkgQmxT3dPdhGNhagtqcdlWd3EotoZ4PM6Fixe4dPHSoqDDX1BAc20tzXV1FLndKEkdkqmmfMl4gtlwmMhsmOKiYtwuJxMTE8zOhPB6vbiLi3EXFqA4nQu7fy+RwxCLxbh0+RKdVzoJh8OZ4263m9bWVpqbW/D7i1f9NVmWxdT0NP7i4gXbk0xD591nv4uvoIC24x9YkANyPcFgkJ7eHhobmiguLlrxuacDAXrntqsFZ4ILVo9UTaOhvp79+/dTVla26gAgGo3S09NLR9dlxibGMK1UTkplVSVt7W2UlpWSNJOEI2EikQjRWJSysnI8LjfTgWnisTi+Al8qUd5mWzI/RVPVxU0eN9jocce4ciXV96WlJfVzLITYMSQAEWKbkgBke7Esi5GREc6cOcPw4ABqUkczDGyWRV1FBbUVFdSWl+Ow2692+zZT/TYmJyaYCQSIJeJYNhsOj5eKmloKSkuudv1eZaJ0OBzm/PnzXO7owJzLK1E1jabGRlpbW6mqqlrXhW8gEKS3r4emxiaKiq4GC6ah87uf+3luufkWHv2V//eaAhCArq4uYvE4+/buXXXeRSKRYHh4eG51pJ9kMpG5ze12097ezp49e/B4PKsex9jYGOfOnae/vy9zzO/3s3//fpqbm1FUZUFH+vGJccanxpmNRjAtA4fbgd/vx+P1LMpPWa4jfTogURUts6KyKFDZydu+JAARYseSAESIbSodgNT4anDb17a9ReTA3Hap2MwM3Zcu0XXpEpHpAKphoFgWbpeTlpYWmpuaUkGHaYJlkUwkmYlGmYlFqW5owOkrYCw4TUw38Pr9FPh8ONZREWh6OsC5c2fp6u7KrA6kL6AbGxuxb+ACzzRNLl66hMvpTF2Mz0+EN3Q+ctv+JatgrUYsFiMQDFBRXrGuxG/TNBkcHOT8+fOMjo1eXRlRoLq6hpbmZpqampbNabnWzMwMFy5coOPKlUwA53K5OHDgAPv27VtUMSsejxMKhQiFQpSVleHxehifGic4E8Tj8+Byu0BlQXd63UrlzcwPVBR16SBFQZkLRjQ01bZsoKIq2zBpPh2AtLauOsAWQmwPEoAIsU31BHoIRUMSgOSTaabyMdJ5GckkSiKJlUwwNjzMpQsXGB8fRzFTf2YVBSrLy2lvb6e0shJlLvkbm52p2TDToTDhRAxFVfF5fVRXV+N2b+x7OzY2xvtnzzI4MJA5VllZyaFDh6ipqcnKNp+R0RHGxsbY075nUa7IRgOQbIrH43R0dNDV1UUgEMgcVzWNutpa9h/YT0V5xapek1gsxuWOy1w4f4F4PA6Ax+PhpptuoqmpacVzTE5NMT42TjwRQ1EUCgsKKSsrw+fzZe6TDkauBiZXE+nTQYphGateTVEVdcXVlC2ZnyIBiBA7lvxGCyHESkxzQYBBInE1L8MwUp3o51YvrLnZ9rPvv090NoKpqhiaSkF5Ka3799PQ2orD6wW7naSuEwwGKS4uxmazEZkNozgd1FVWUFRYuKHeE5ZlMTQ0xNmzZxkdHc0cr6ur5/DhQ5SXl2fjlQFSyeBjY2OUl5WvOlF9rdLb1xwOB6Wlpes+j9Pp5NChQxw6dIhAIMjFixfo6upG15P09fXR19eH1+vl2LFjNDU1rbji4nK5OHL4CAcPHKSzs5MzZ84QiUR4+eWXuXjxIjfffPOyr3NpSQmlJSXE43GCwSDT09Mk5jrWRyIRTNPE6/Ve92fg2kT6dJCSCVwMnaSVxLTMVQcqmqJddzVF8lOEEBslKyBCbFOyApJFlrV8kKHrC4KMBfkZlgWahmW3Mzg2xtlLl5kMhTA0Few26uobOXToYOZCNJlMpjpzB4OEZ1OJ3+mciXSDwI2anJzk7bffzgQeiqrQ0tzCwYOHVkzkXq90V3av17vkNqZsrYD09vYyG4mwf9++rF78mqbJ0NAQ5y+cZ2RkJLNFy+12s2fvHg7sP7Cq7Wm6rnPu3DneP3s2szWrqamJG2+8ccHKxnLS3/+BgQEmpyax2x2U+P0UFxdvOLAzLXPhFq9rA5W5FZWl+qesFKikA5JNy0/p6EBxuWQFRIgdSAIQIbapdABS7avGY199Mu2ulQ4yrtkuhZ46tmSQkT6maWCzZ8rYpj8su53u3l5OnTpFJBIBUtt5WltauOGGG3C73ei6jqalZoy7uroIhUP4vD6Ki4spKirKWpftSCTC6dOn6ezsBEBRVfbt3cv+/ftXdQG8HqsJmrIVgEQiETqudFBf30CJ37+uc1xPujLYhfMXSCRSieuqptHW2srRo0dXtR1udnaW06dP09XVBaS+D4cPHeLgwYOrCmQsyyIcDhMIBAgEApiWSV1dPaUlJVkLUpdjWuaCRPpF277M1LavlQIVVVEXBC2aunKgos6tuCypowPV7YbW1tTvoBBix5AARIhtqjfQy0x0RgKQay23kpEOMpZbzUg35LPbrlaVSpexXaKHRGdnJ6dPnyYajQKpC82DBw5w4MABXC4Xs7OzTE1NMR2YprGhkaKiImKxGJqmbSjh+1q6rnP+wnnef/8shp5KXl7LzPtGDA8PE4vFVsx5MA2db331P7GnfQ93PPbpDeWAdHZ2ous6e/bs2dQLcV3XuXjxImfPns0EIijQ2NDIDTfcsKDK13ImJiZ4++23GRsbA1IrKsePH8/0MVkN0zQJBmfw+bzY7XaGh4eJRqOUlJRSVFSYt21QC1dTNp6fcjWRfmGQYu/qwe4pQG1vx2Z3bs9EeiHEkiQAEWKb2tUBiK4vDDLmr2Skg4ulggxFyXT9nr+SgcOxqhlWy7Lo7u7m9OnTmf4diqqyp72do0eP4nK5CASCjI2NEo1FU9toSvyUlpRmNehIj6W3t5e33347s/pSVlbGzTffTEVFRVafaym6rnPhwgXKysqorq5e9n6mofO9b/536utqOfaBn95QAJLuC7Knfc+Gk/NXwzRNenp6ePfddxf0SqmuqeHIkcNUVlSu+Pj09+idd97J/Ly0tbVx8803r6uS2dT0NBPj40RjURx2J2VlpZSUlKy6glcuXS8/xTCN6wYqzu4+cLvQmxtRbLZMIv2i7V6Khl2zZ7aFSX6KEFufBCBCbFM7PgDR9cXbpZJJSCYWBxmw8N92+9XVjPlBxga2O42Pj/OTn/wkUz1JUVX27tnD0aNHMU0TTdNwOByMjY0RDoc3dZZ6qdn1G2+8kZaWlg09n2VZWJaV+XoURSGZTGLMJdun3y7sdjuTU5OMjY1RX9eAzaZlblNVNbPyEgwGMU2D//xrP8+Ro0f4xOd+i8LCIjRNIxqNkpxLvIbURafD4cDpdGIYBrFYLHMhmj6vw+EgFotht9sXzqBv8gVnOgn+3PnzDA0OZo6XlJRw/PhxysrKVny8ruu8++67nD9/HgCv18tdd9913QBmObOzs0xMTBAIBmhrbcPr9W769qzNYlnWkqspuqmjdXVhOOxEGqox1YUrJqvJT1mcl7LwuBAifyQAEWKbSgcgVd4qvA5vvoezPnO9MkgkFudlmObCQAMWBxnpvAybHeavamRRLBbj9ddfp68v1YBO1TQOHzrE3r17iUZjTE5OMBuZpaK8gurq6k27ELQsi1gsxqlTpxbkeRw5fJgDBw4QDs+STCYwTTPz4ff78Xq9BAJBJibGM8GFaVp4vR4aGhoyW7iufSs4eOAgNpstk7cyX1VVFePjE7hdrkwyfZrL6WLv3r0AvPf+e5i6TqDjHRRFpajtGHv37cftdtPf38/U9NSCx6Zfw1AolOpXMo/NZufggQMAnD13DsPQF9ze0txCQUEBo2OjTE1Op/IR5i5ai4qKqKioIJFIMDo6iqqqqKqKoqZyFNJFAtKrHOnbNU3LdDBPm5ya4vTp0wwNDWYS1qtrarj9+PHrbnkbGRnhlVdeSa1YKXDo4CGOHj267hWMZDKJ3W7Hsiw6OjpwOByLyvluW5aF0tmJ4nZjtbRgXtPoUb92NWXu80x+ygqBSrq62XKrKdcGLUKI7JMARIhtqi/YRzAS3PoByLW9MubnZawUZFjWwiDD7oD5+Rk5mPU+f+ECp0+fzlQ1qqqu4s477iSZ1BkYHMAwdLweLyWlpRQXFa2qUZ5lWei6Pu/DwOv14HA4mJmZIRgMous6hmFgGAYFBQXU1NTQ39/Pyy+/gq6nVg2Ki4upqanhpptuQlEUrly5klo1UFVURUVVFaqqqigqKmJmZobp6enURffcBZjT6aS0tBTLspiYmEiNfd6FWlFRIaqqEolEMAxjwQyzruv09fXR1NS04AI9fXt6u1kymcQ0dH7+A7dz11138bn/9Cc4nK7MOcy573n6bSh9wW8YRqa3RnrlRVEUvF4vhmFw8dIl/MXFOF2uVPljy6KoqAi73U4wGMyUsk0HXF6vl9LSUmKxGH19fZimhWmZmec/dPAgABcvXiKeiC34fjU2NFFcXMTExATj4xNoWiowSSZ1uru7GB8fT33tqkJrSyv79u/H43Zjs9kyq0jzJRIJ3nzzzUySut/v58677tpQYr1lWUxOTjI+PkEiGcftclNWXo6/uHhbrooACwOQ1tZUjtYqLM5PSX1cm2APZJLmV5OfstxKikNzyGqKEOsgAYgQ21RfsI+ZyAyV3sr8ByDX65WxXHUpy0oFE5ntUvOCDLt904OM5UxOTvLGG28wMTEBpLY43XzzzZSWllJYWEg0GmVqaoqSkhLcbveCbUu6rhMIBNANHT2ppy7CTZPW1lZg6YvchvpG/P5iJqemmJyYyFy8prd19fT0cPHiRSDVf+KWW26hsrIyc3s+LjJN01xVwLUZjQgvX76M3W6nubl5w+eaL73dzDAMTNPEMEy8Xg92uz3TzTx9u2EYeL1eVFXlzTffZGoqtZqjahqVlZWUl5Vx9OhRFEWhr6+PZDKJzWbDbrej2TRmgjO8/fY7JJMJFFXh2A3HOHjw4Ia30AWDM0xMjBNPJNi/bx+qqq76e7WlrDMAWd2pF+anGKZB0kwuWk3J5Kcss5piYVHkKqK6oFoS5IVYIwnbhdjmLHI0h2BZS3b9Rk8u2SvDujbIWKKMLQ5H3oKMpSy13Wrvnj0UFxczE5rBMAwKCwuJxxMkEgn6+/tJ6jq6nqS4qJjGxkYMw2BwaBBNs2Gfu+BMb5NRFIXq6ioAbDbbgkADrjaoSxsbG+PVV18lFEptgdpIAnO2JJNJFEXJWvng9SgpKWFwaBBd17M6jvT3aikFBQUUFBQseduHP/xh+vr6ePPNN4lGowwPDTE5MYHP56O1tRWH04FpmiSTSSKRKIahU1dXz2OPPcpLL73E+Pg4p06doquriz179uIvKaayohLTNAmFQjgcDhwOx3W3aimKQnFxEcXFRei6jqqqJBIJLl++TFl5GeVl5VsyYT3XFEXBplw/D+Ta/JRrg5bxyDjBaBC7ZqfCu/mFH4TYSSQAEUJcdW2vjOs05FtQ1jbdK8NpX1zGdovPvpqmyfnz53n3zJnMdqvKykrKy8vRbBqRaKrKlH8uOEhvC3K73RQ67Nht9kyzOIfDwZHDR5adyV5NCVfDMHj33Xc5d/4cWKkVmDvuuIPa2tpsfLkbMj4+znQgwIH9+1c9W9/U2ER11fKVstaqqKiIwaFBgjMzCwK2fFEUhcbGRurr6zl/4QJnzpwhkUjw2muvce7cOY7ffpympqYFj0kHpCdOnODixYu8f/Z9AoEAZ8++zy233AJAPB6np7cn8xhNs+F0OGhra0NRFILBIJqm4XK5FgVi6c9VVaWkpISxsTEmJiaprKigtLR0+62I5IGiKNg1O3Zt6aDUaXMSSoaWvE0IsTLZgiXENtUf7CcYCVLhrcDnWGfSaTgMkcim9MrYitL5F3a7HV3XGRgYIBwO09nZSTAYBFJbnO666y5UVWVqehqf10tBQSFOZ6pC02bPIE9MTPDqq69mxtPc3Mytt96K0+nc1OddjXSgVlJSQk1NzeoeY+h0vv4MdruDhpvuy8oWLCCTdN3Y2JiV82VTMpnk9OnTXLp8CctMvcXW1zdw/Phty5YPHhsb48UXXyQej+NwODhx/wkqyitIJpMkEgkSySSJRBzTMDOv/fkLF0gmU31KNFXD6XRSU1OD1+slkUgsyMdJJ+BPTU9RWlJKXV1dDl6JDTBNlK6u1BastrYttVKaNhGZIJQMUeGroNxbnu/hCLGtSAAixDa14QAkFsPq70eJRFKBxPwgY7ntUtsgyJgvkUgQCoWIRqNEIhFi8Rhul5v29nYsy0pdJF66nLqIU6Cmppay0lL279+f8wt+y7J47/33OHPmDFjgdDq5/fbbaWhoyOk4VjI9HaCvv5e9e/ZmVnyuxzR0/q+HbuOBBx7kV377D7IWgCQSiUw53q0qEolw5swZOq50gJXa0nfLzTcv20gxHA7z4osvMj09jaIqHL/tOO3t7cue3zRNYrEY8XiCeCJGIp6gsrISp9PJwMAAk1OTaJoNj9udWq0rLMwkxjudzrkyyRbFxUVb73WUAESIHU22YAmxza17DiEYRJkJpVYzSkqurmTkcW//RhiGQTgcJhKJ4HK58fuLicViDAwO4HS48Hjc+P1+3G43hmHwxhtvcOXKFYDMTHpZWRmVlZU5z7GIx+O8/MormR4TDQ0NHD9+fNUX+bkSCEzjdrnXPK6ZmRkCwUBWx5L+Hm3l/hcej4fbb7+d1tZWfvzjHxOJRDI/d/fcc8+inBKfz8cjjzzCK6+8Sn9/X6bvzE033bTklilVVfF4PHg8i/sAlZeX4/X6iMdjRCIRpqan0TSNiooKwuEww8PDqZyUaISxMRdVVVUUFuavu7oQYnfZnlcaQoiNUxRwu6CwEFaRl7BVpXtcRKIRLMtC02yUl6caw/l8Pg4fOrzg4m1qepqTJ09mOlNXV1fT2NhIdXX1sknGm2lqepofvfgi4XAYRVU5ftttK85650s60C3ZAjkXaf39/QDU19fneSQrq6io4OMf/zinT5/m3PlzTE5O8uRTT3LjjTdlKlWl2e127rvvXt57L7UaduHCBQLBIPfec8+aAmOn07loFS/9PUwnxEdjUQBi8Rg9vT14PV4aGhryWuRgO5ENJEKsnwQgQmxTu3WmMhaLMT09jdfrpbCwEEj1j6iprsHn8+F0Ohd0z06zLItz589z+vQpLNNC1TRuP358w93DN6K7u5tXX3sN0zDweDzcd9991+2qnS+KomS97O1G2e12JiYmqKur2/K/D6qqctNNN9Hc0sLLP/4xwWCQd95+m+6uLm6//XZKS0sz91UUhaNHj1JUVMTLr7zC8NAQP/zhD3nooYeWXO1YrfRrVFhYSGFhIaZpMjs7SygUygQluq7T399PYWEhJSUl+auatY0u7rf6z54QW5EEIELsdtvgjX5+f4PZyCyaqmVmadNlR1cSi8V4+eWXGR4eBlIrI3fddRcVFfkpnWmaJqdOneL8+fNAqsHhPXffs+W2XM03OzuLx+PZUhdbPp+P0bFRIpEIXu8WbsY5T4nfz6OPPsqlS5d559Q7TE1N8a8/+Ff27d3HTTfdtOCCv6mpiYKCAl544QWCwSAnT57koYceylqnc1VVF5UXTjeeHBoeYnhkGH+xn4qKivwWQdhCP3NCiOyQOnxCbHM56wOSRxMTE/T29WBZFvX1DRw4cGDBjPFKxsbGeOqpp1LBh5LqpfGxj30sb8FHNBrl2WefzQQfhw4d4sEHHtzSwUcymeRK55VMs721sttTpYqzzev1oioqofD2KoWqKAr79u3lY489Rnl5OVhw8eJFvvvd7zIyOrLgvqWlpTz88MN4vV5CoRAnT57M9IXZDB6Ph9bWVkr8JViWxdT0FENDQ5v2fNvZbvjbK8RmkRUQIXarbTCrGIvFcLlclJaW4na71zTzm95yderUO2ClLqzuueeevAUekOqh8aMf/YhoNIpms3HXnXduyTKy1woEAiiKsqoeJkv54m98kdJN2FqmKAo+n4/Z8CxUZv30m87r9fLII4/Q2dnJG2++SSwW45mTz3D48GGOHj2a2UJYWFjIww8/zDPPPEM4HObpp5/mAx/4wLq/H9ejaRr19fWUlpYyMDDATGiGyclJbDYbDodj2VLCu5XC1v9bKsRWIysgQmxTO/1Nb3Jqissdl4nFYqiquqbgIxQK8dzzz3PqnVTwUVZWxqOPPprX4KOjo4OnTz5NNBqloKCAD33wQ9si+IBUAFLgK1h31/FXXn2Vnp7uLI8qpba2dlGTv+1EURTa2tr4xMc/Ts1co8n333+fZ555JlMoAVLbzR5++GEKCwuJRqOcPHmSQCC4qWPzeDy0t7dTW1NLQUEBo6OjdHZ2kkwmN/V5hRA7nwQgQogtaXR0lKLCojVtTYrH43R1dfHCCy8wPLdtpKWlhUceeSRvlX0sy+LMe2f4yU9+gmVa1NXV8+EPfxi/vzgv41mrdKnWdML/evz4xy9x9ty5LI7qKofDkb9E6SxyuVw8+MAD3HXXXWg2G2NjY/zzk0/S29ubuY/X682sfMRiMU6efJqp6elNHZeiKJSVlWVKVRumQceVK0Sj0U19Xixry6/SShUsIdZPAhAhtrkNvwlu0TdRXU/icq8tL2JwcJB33nkn1UVcgZtuvjnT1TwfTNPkzTff5My7Z4BUvseJE/dtqzKnyWQSt8u9oQBksw0MDCzKndiuWlpa+MiHP4zX68U0DF566SVee+01TNMEUqsSDz/8MH6/n3g8zsmnTzI5OZmTsTkcDmw2O6ZhcLnjMsPDw5lxbZotHoQIIdZHAhAhdqst/sZeWFDI+PgEiURixfuFw2Emp6YYGxvjzTffJBqNYrc7eOjBhzh44ECORruYYRj8+Mc/5tKlSwDcfMst3HjjjVuqitRqeDwe9uzZg92e/STybDFNk+Amb0fKpaKiIh577LHMFr0rV67w1FNPZZLPXS4XDz30EKWlpSSTCZ555tlNXwmBVENJXU9SV1dPZWUl4xPj9PT0bPrzbmWKomy732khtgIJQITYphRFYSengdTW1uJxu5fdXmMYBoODg3R2dXL50iWePvk0iUSCgoICPvzhD1FdXZ3jEV+VSCR47vnn6OvrQ1EV7r77bg7s35+38ayXaZpEIpEtv9XE6/MRi8fQdT3fQ8kam83Gvffey5133omiqoRCIb7//X/JbMlKByHl5eUkkwmef+45wuHwpowlvcpRWFhIfX0DRUWFVFVWsad9T+b3LJlMbvmfEyHE1iEBiBBiS7Lb7TQ3N6NpGvF4nCtXrjAzM4NlWczMzHDp8mUmJieYCc7Q0dGRSTb/8Ic/nNftQpFIhJMnTzI6Mopms/HA/Q9suQZ+qxUKhei40kEsFsv3UFbknWvONz9pe6dobW3lY489RmlpKbqe5KWXXuKll15C13UcDgf3339/JjH9+eefv+6K4VoYhsHY2BjnL1xgdnYWRVEo8fszM/4ulwu3241lWXR3d9PR0UE8Hs/Ok2+DYEbK8AqxfhKACLHNbfhNcAu/0acvdAzDwDRNunu6uXDxIgODg9g0jdBMiO7uVHWlfCebAwSDQX74wx8yPT2N0+nk4Q98gJqamryNZ6NCoRAOu3PDPUoe+eCHOHbDsSyNajGn04mm2TY/MTpPCgoK+OAHP8j+uVW03t5ennrqKQKBIE6nkwceeACXy0UwGOTFH72IYRgber7Z2Vn6+/s5f/48wyPDFBUWrrgFT1EUamtr0Q2Dy5cvMzk1tatWQ3Z6RUIhNoMEIEJsU7vpTc/j8VBRUUlNdQ0+r5dkIkFffz9dXV0AHDhwgDvvvDNvyeYAk5OTPP3008zOzmb6O5RtQu+LXLEsi+DMDEVFhRve475//z4qKzevBLKiKDQ2NFBSUrJpz5Fvqqpyyy23cO+996JqGrOzs/zLv/4LIyMjFBQU8MADD6DZbIyOjPLqq6+uKQAwDINAIJhZvQiFQoTCYcoryjmw/wD19fXXDey9Xi979+yhqKiIgYF+BgcHN/T1Zkh+hRA7kjQiFGK32iZv7MlkkqGhIQLBAKUlpdTX19PV1cXQ3AXOoUOH0Gwa586dw+fz4fV68fl8OW2WNjI6wvPPv4Ch6/j9fh544AE8c9uCtqtoNIquJ9fUf2U5/+Mv/oITJ+7n4H2PZmFkSysoKNi0c28ljY2NlJWVcfLkScLhMM88+wx33H4HbW1tnLjvPp57/jl6enrw+XzceOONy54nHA4TCoUIh8NEohEAamtqcTqdVFRUUFlZuebAU9M0Ghoa8BUUZCZILMuSJG0hxCKyAiLENrdTtzpYlsXU9DSXLl8mFApRX99AdXU1z7/wAn19fQDcfvvtHDt2jNaWVsrKykgmkwyPDDM2NgaArusMDQ0xNT1NPB7flNdqbGwsE3xUVlXy8MMPb/vgA1KvndPhykoAous6urG5CeK6rjMwMLBjt2HN5/V6+ehHP0plZSVY8Nprr3Hq1Cmqq6u54/Y7ADh79iwXLlzENE1mZ2eZmJigr68vs8oRCASYnJrCbrdTW1PLvr37Mit2qqpuKGgo8fszfW76+/sZGRlZ++/eNvi7tlP/9gqRC7ICIsRut0XfRC3LYmRkBJ/XS21tLZqm8fzzzzM8PAzAbbfdRnt7O5DqEu3z+aiqqsI0zcwe+EQiQSAYJDkxDoCqqHg8HlpbW4HUXvdUbwPbui64xsfHefa55zB0narqKu4/cf+6u4VvNYWFhVu698e1VFVlanoKp9OZ09WvfLHb7XzgAx/g9OnTnD17lrNnzzI+Ps4tt97K0RuOcubdM7z11puMjY1S7C9GURScDmcqsHQ6qampoba2dlNXJyzLwuF0MDo6SigUoqGhAafTuWnPly+ywiPE2u2Md0ohdqENv+kpypbchhUOh3E4HDgcDva0t2Oz2TAMg2effZbR0VFQyGw5WYqqqplcEI/Hw4H9+1PdvCMR4vE4ppUqKWpZFp1dnViWhaqoOJ2pZOuqqiocDgeJRAJFUZYNTiYnJ3nuuedTKx+VlTsq+DBNM1NlabtQVRW3y00kEsn3UDaNZVkkEglM08TtdqPPbflrbGykt6+X0dFRnn/uOR5++GFmw7NcuXKFvv5+2tvbqaqqWpAjlYt8KUVRqKqsosBXQG9fH5cvX6ahoYGioqK1nGTzBiiEyJud8W4phNj2LMtibHyMkZERykrLqK2txWazoes6P3rppUzwcc/d99DU1LSmc9vt9iUveva07yEWixNPxEjEE8RisUywMTQ0RHAmiKqo2O0OHA47paWlFBUVMT4+znPPPU8ymaCsrIwTJ07smOADUitDXd1d7Gnfs61WEzweDzMzoXwPY90MwyCRSJBMJnE6nTidToLBIOPj4ySSSZLJVIldn9dHa2srmqZhWRbt7e1UVFTyzql3iEaj/Ou//oAHHrif2UiE4aEhXn/9dT7ykY/kLaBMJ6j39fUxOzu7tgBECLEj7Zx3TCF2qZ1Qiz6ZTNLX10d4NkxlRWVqbzupff3PPfccY2NjKKrKifvuo66uLivPqSgKLpdrrsTs4guiqqoqioqKSSZTF4SpHBIIBIKZ4CO9YnK5owO7zUZFRSV+fzGxWIxwOIym2bDbbdhsNux2+7JNFbea9Ng3Wn43ze/3U1Liz8q5VuJyu5mYnMAwjC31WluWNZfUr5PUdQxdR9f1zKpEX18fwWAwszoHUFNdQ3l5OaqqYrfb8Xq92O12HA5H5vuiqiotLS2p+9fUUFVVxbPPPkMsFuOZZ5/l9uPHCQYChMNhXn31Ne677968bRfSNG3BxMHMzAw+ny+vleuyZTdVJBQiWyQAEWK3y3MOiGmadFy5gmmaNDc1Z/IOLMvi+ReezwQfDz34IFVVVTkb19Xg5KqZmRmefvppkskERUVF3HHHHaiqSlJPoid1bLbURe9sJMLQ8NCCJFWP20N7ezuWZXH58mVsNlvmQ9M0ysvL0TSNSCSCaZpompa5TVGUnF44hkIhCny+rD3nH/3RH+dkK43P66W6qnrTzm8YBrquYxjG3L8N3O7Uz8ns7CxTU1OphHtdR9cNXC4nzc3NWJZFx5WOzHlURcVms2cCDF9BAS6XC5vdjt1mw+FwZPpuFBQUrLrCl99fzGOPPcYLL7zA+Pg4r776Km1tbXR2ddLf38f5Cxc4eODAprw2q5H+edJ1nd7eXpxOJ01NTUuvzGzR3DQhRHZIACLENrXdZ90sy0rlX6gqtTU1eDyezEWXZVm88sorjI6ktl2duO++nAYfSwmFQjzzTGp2uaioiA984APLbk8qLSmhxO/HMAySySS6rmcuvizLwuv1pmbDk0mi0RiGaWQqEI2MjBAKL9xGVF1VTUVFBcFgkJGRETRNQ9M0VFXF6XJSVZl6bcbGxlIVjFQVVVFRVQWfz4emaSQSiczrrShK5v/XBhm6rhONRSnNYg+T3/3dL3Hfifv4pRvuzto5l5IuIZvOYTFNM/ORLjYQj8eZjUSwLAvTMDAtE5vNTmlJCYZh0N/fnylkYBgmhmmwb+9eNE2jt7d30femproGl8uVet2iUWw2G06nE6/Xlkm4VlWVtta2zErYtbP+Jf7srQ45nU4efvhhXn/9da5cucKVK1coLS1lcnKSd955m/KyMioqNq8ny2rYbDZaW1vp7umh48oVmhob8Xq9eR2TECK3JAARYrfKY3JnesuV0+mkrq5u0Z7w06dPZzqcH7/teNa2Xa1XOBzmmWeeIRKJUFBQwEMPPXTd3Ih0Avu1uSGqqq749TQ0NJBMJjOz7IZp4p5bibHZbHi93kxn+GQymbmYtSyLsbExDHNhF+x9e/ehaRrDw8MEgoEFt1VWVFJVVcXMzAx9/f0oipJZtZmemqJ0rrFfd3c3pmlmvi5FUaiursblcjE5NUU4FFoQyHh9PkpLSojH44wMD3Hsxpvw+Qrp7+/HZndQW1sLwPDwMMlkMvOclmVRUVGBx+NhanqawPR0JlC1LIuCggKqqqpIJBJ0dnZhMXebaWJZFocOHZrr4j1AIhlf8LXW1dVTWlJCKBRicGgw87WoqkbB3HgVRcEwjFRg53RmAr3M61VZSVlZ2YLVqfTtRUVFK+Y25PICW1VVbr/9djweD++99x6Tk5O43W6i0SgvvfQSH/3oR7O2vW69PB4Pe9rb6e7uprOrk8aGxqVfvy2chG5Z1rafCBIiXyQAEWKb22616NMXu8CSM7FXrlzh7NmzABw9epQ9e/bkdHzXisfjPPfcc5kO5x/4wAc2tc/HUkFLmtfrXfZCVlEUDh06lLlYT8/8p1eVKisr8fv9mObc7dbVwMbpdFJeXoZlXn2sZrt64W232zEMY0EwkGbOrfLA1Z/F9MWtaZpEozEqysvxet1EozHsxtU8h0Qikak2lv4a0udQUBat1KRfF1VVMx3aFUVBURVUJRWIBQIBLCwaG5pQlKtV0dKrESUlJfj9/iV7XaiqminRvNzrv10oisINN9yA3eHgnbffJhqNomoa0WiUl19+mQcffDDv5WPtdjttbW2MjIxs6945+X4dhdiOFGu7Xb0IIQAYDY8yMTtBob2QUk/p2k8wPQ0jI1hOJ+Rge5NlWYyOjjI6NorP66OhoSFzcZw2ODjI8y88Dxa0tbVxxx13bPq4VmIYBs899xyjo6O43W4eeeSRHd9x2zTNrCYGm4bOR27bz4n77+c//tH/RNU2d95rcnKSgcEBDh08tKUS0fPp8uXLvP7666lPFMCCozcc5eiRo3kd17WSySQjIyPU1NSg6TrKwACKz4fV3JzvoS1paGaIJElqi2opdG6fnjlCbAXbv/yEELvUdpt1S29vqaqqoqWlZVHwMTY2xgsvvgAWNDU1cfvtt+dppCmWZfGTn/yE0dFRNJuN+x94YMcHH7quc/bcWQKBYL6Hsm7prXG7oSP6au3Zs4c777wTRVVIF8078+4ZhoaG8juwa8RiMQKBAB0dV4jHYlt6+xXsjAqEQuSLBCBCbHPrfhPM0Zt7PB7PXNDW1NRQWVG5KHgKBII8+9xzWKZFSUlJ6mIpzxcf773/Hl1dXaDAfffem8mH2MlmZ2exLAuXK7vdqtP5ErmQ3v4Vi8Vy8nzbRWtrK/efuB9l3urWK6+8QiKRyOOoFiooKKCtrQ3TMuns6iIej1//QUKIbUkCECHEpgmHw3R0dDAyMpJK2FwiqIhGo5w8+TSGrmdyLPK9daarq4sz754B4NZbbsskTe90kUgETbtavSlb/v1/+Pc8+OCDWT3nclRVpcRfgrbJW722o9raWu4/cYJ03nQsFuONN97I76Cu4Xa7aW9rQ9M0+vv6MbfBLnFJRBdi7SQAEWKb2upvepNTU3R1d+FyuWhra10y+NB1naeffpp4PI7D4eCDH/xg3ro1p42OjfLqa68CcODAAfbt25vX8eRSOBzG5/VmffXpypVOJsYnsnrOldTX1+P3F+fs+baT2tpaHn744dR2LFIVznp6evI7qGvY7XZaW1qorKrcEY0KhRCLyW+2ELucsgkTjBMTEwwM9OMv9tPS0rJsVac333yTUCiEqmk8/PAjea+EEwwGeeH5F7FMi7q6em666aa8jieXTNMkGotuSqWnf/2Xf+GdU+9k/bzLSVXfim67CnG5UllRySMPP5JZCXn5lZcJBrdW3o/NZqOgoADLshgaGmJmZibfQ1pEfr6EWD8JQITY5tb9JriJORaFhYXUVNdQV1e37AzmpUuXuHLlCgD3nziR9xnrWCzGCy+8QDKZoLS0lHvuuTvveSi5pKoqBw8cpGQH5LoEgzNc7riMruv5HsqWVV5englCLNPiX//1B0QikXwP66p5vWGi0Shd3V0EAoH8jmkZu+nvhBDZIgGIECIrkskkPT09JJNJHA4H5eXly74xj4+P88abqb3nR284Sk1NTS6HuohhGPzoRz8iFArh8Xg4ceLEsqs2O9m1jfe2K7c7lYgulbBWVlFRwR23p0pd63qS73//+1sqKR1A1TSam5spKiyiu6ebycnJfA9JCJEFEoAIsU1lZdYtSzN3kUiEyx0dzEYi1511jsfjPP98qtdHWVkZRw4fycoY1suyLF599VXGxsYy5XbzvRUsH/r6+hgZHcn3MLLC6XSiKIpUUVqFtrY2GhsbgdTv5g9/+MMtt3KkqipNTU2UlpTS19+3ZbaLSRleIdZPAhAhdrsN7mMOBIJ0dnZi0zTa29oyfRiWfiqL559/nkQigcPh4IEHHsj79oULFy+mknAVOHHffZT4/XkdTz5YlrUl99ivl6IoOB1OKcW7Srfffnum8lkwGOTZZ5/FNM3rPCq3FEWhvr6e+rr6Hd+PR4jdQAIQIba5fPYBSSQS9PX34vP5aGtru24Fq3feeYeJiQlQ4MEHH8x6ude1Ghsb45133gbgpptuzvtWsHxJJBIYpoHbtXzwuBF33XU3Bw8e2JRzL8ftdmMYRk6fc7tyOBzcfffdmc/Hx8f50Y9eym+S9RLPrSgKZWVlqKrK7Owsw8PDWyIRfKtXJBRiK5IARAixLpZl4XA4aGluoamp6bq5A4ODg5w/fx6Am2++hbKyslwMc1mxWIyXXnoJy7RoaGjgwP79eR1PPs3OJR9vRgUsSK0sNTe1bMq5l1NfX09TU1NOn3M7q6mpoa2tLfP5wEA/b7311pa4wF9KJBJhZHSEkZGdsW1QiN1GAhAhtql8zbpZlsXw8DDDw8MA+Hy+626jCoVCvPTSjwFob2/P+8W+ZVm8/PLLRKNRCgoKuOOOO/K+FSyfopEIDrtz0xLv/9tX/hvPPPPMppx7Obv5+7leN99884JVzIsXL/L222/ncUTAMn/nysvLqamuYWR0hLGxsRyPKWW55qpCiOuTAESI3W4NM5zpmvxj42Orvlg1DINnn30WXU9SXFzMrbfeut6RZs1777/H8PAwiqpyz7335r35Yb6Vl5dTX1+3aedPJBIkkrmtrhSPxzl/4QLhcDinz7udORwOjh07BoAyVz77woULvP/++/kc1rIqKyuprKhkcGgwr9WxJAgRYu0kABFim8vVFgnLshgYGGBicoLamloqKipW9bg33niDcDiMqmncf//9eS/zOjw8zJl3zwBw/LbbKN0BfS82yuFw4PP58j2MrLLb7SSTCeJbrKzsVtfe3o7f78cyTYqKigA4ffo0ly9fzu1AVvl3rbq6msqKyhWLXwghth4JQITYxjY087bGx05MTDA1PUVdXf2q8zdGx0YzzQZvP3487xe5s7Oz/PjHqa1gra2ttLe353U8W0E0GmVgYGDLlV7dKFVVsdnsJKQU75qoqsott9wCQHAmSHV1NQCvv/E6vb29+RzakhRFoaamBo/Hg2maW6uZohBiWRKACLFN5XrZv7S0lJbmllWvGOi6zks/egmA6poaWltbN3N412WaJi+//DLxeBy/389tt92W1/FsFbOzs0xOTS7bsX47czmd0gtkHaqqqqirqwcrVWWvqroKLPjxyy8zPj6e28Gs4e/c6OgoHR0dzM7ObuKArpI+IEKs3857xxFCrM0KWx1M06S3t5dIJIKqqmuqv3/q1ClisRh2u4N75pX4zJdTp05lmg3ec889u7LT+VIikQhul3tTApCEkeCNgTewV9uJeqK8MfAGCSN3W6KcEoCs280334SiKowMj7B3z16qq6uxTJMXXnghZxf4a1VRUYHb7aazs5NoNJqz55UyvEKsnQQgQmxzmzULZxgGXV1dzMzMrLmfwtDQEBcvXgTgnnvuznu/j76+vkwJ4LvuvDOzt11AJBLdtM7vp4dP8+g/fIyRA+P8IPZDHv2Hj3F6+PSmPNdSysrKaGhoyNnz7SSFhYUcPHAQSPXvueuuuygsLCQej3Py5MncbNlb4yqvpmm0tLRgt9vp7OyU4FOILUwCECF2qxXe3HVdp6uri2g0SnNz85pWPhKJRCbPorm5mdra2g0PdSMikQivvvoaAPv376exsTGv49lKDMMgnojt2ARel8u1Y7+2XDh06BBOp5NwOExnZyf33XcCVdMIh8O8+OKLm1sAY53nttlstLW1oSgKgUAgu2O6xlbtkSLEdiABiBDb1GYu+/f29hKPx2lpaVlz4vhrr71GIpHAbnfkPc/Csixefe01kskEJSUl3HTTTXkdz1ZUXVWd9+IAm8UwDAYGBiQxeZ0cDgc33ngjAGfeew+n08GJ++4DJVVN7vTp3K1mrYXdbmfv3r1UVlYCmx8oSBleIdZOAhAhdrsl3pyrqqpoaWlZc2fsvr4++vr6gNTWq3z31+jo6GB4aAhFVbnzzrt2ZKL1RmiaRkVFRd63yG0WRVGYnJrMaT7ATtPW1kZJSQmGrnP27Flqa2s5dkOqV8jZs2c3vzLWOi/u0zlek5OT9PT0yGqFEFuMvBsLsc1l643VNE1GRkcwTROv17vmvIB4PM4rr7wKQFNTU963XoVCId6a6+J87Ngx/P7ivI5nKwoGgzu6UV+mFK/0Alk3RVEyzQkvXrpEJBLh8OHDmdyaV159lanp6XwOcUU2m41AMMDIyEi+hyKEmEcCECF2q3kzi5Zl0dfXx9jY2Lpni9966y10PYnL5eL222/P1ijXxbIsXvvJaxi6TkVFBQf278/reLaq0dFRpqam8j2MTeV0OCQA2aCamhpKS0uxTDNTzOGee+6hsrISQ9d57tlnicVi2X3SLE2sFBUVUV1dzcjoCNNZDpSkDK8Q6ycBiBDbVLb2HVukOpwHZ4I01DeuedsVpPaDd3V1AXDvffdit9uzMrb1unDxIqMjo6iaxh133CFbr5ZgWRax+M5NQE9zSACyYYqicPToUSD1uxWNRlFVlXvvvRen00ksFuPZZ5/FNM08j3RplRWV+Iv99PX1bUo+kJThFWLt5F1ZiN1MURgfG8t0OC8uXnt5WtM0efXV1Nar1tZWKisqsz3KNQkEgrzzzjsA3HzTzRQWFuZ1PFtVLBbDsixcLle+h7KpCguL8Pv9+R7GtldbW5tZBTl37hyQqjL24IMPoqgK09PTvPzyy9l/4ixMtCiKQkNDAyUlJVmfHJEEdCHWRwIQIXaxdP5IdVX1qjucX+vcuXOpRoWalvcqU6Zp8tprr2KZJlXVVezduyev49nKInNb7Xb6CkhxcRFlZWX5Hsa2N38V5OKlS5mtmqWlpdx5x51Aqnre2bNn8zbGlaiqSn19PXa7nWQymZXcOUlsF2L9JAARYpva6LJ/IplEURQqyiuoqKhY1zlisRhn3nsPgKNHjuR9Nv3cuXNMTExgs9m54/Y7ZHZyBZqqUVxUvOM7whuGQTAYzE3jvB0uvQpiGkYmFwSgpaWFgwdTTQtPnT7F+Ph4voZ4XaZpcvnyZQYHB/M9FCF2NQlAhNiFAoEAFy9d3PB+6Ndffx3TMPB4PJkLkHyZnJri3TPvAnDrrbfs2N4W2VJcXLQrmjLquk5Pb4/0AskCRVE4cuQIcDUXJO3GG2+kuqYGLPjxj3+88bybTVpdUFWViooKxifGmZiYyMo5ZaJDiLWTAESIbUxBWfM2gFAoRE9vD0WFRRvafjM5OZnp+XHnnXfmNdHbMAxee/VVLNOitq6O1tbWvI1lO7Asi2g0umWThrMp3YtGEtGzo66ujpKSkkWrIIqicO899+D1epmdneVHL/1oy25RKi8vp6y0jIHBgR1dhlqIrUwCECF2kdnZWbq6uvB5fdTX18/N3K39IsGyLN566y0AGhoaqK6uzvJI1+bc+XNMT09jtzu4/fhxmZG8Dl3XudxxmZmZUL6HsukURcFud5BMJvM9lB3h2lWQ+eV3HQ4Hd919FygwMjzC+QsXsvGEGz/HEmpra/G4PfT29q47EJcyvEKsnwQgQmxTa73ItiyLwcFB3G43zc3NG1qx6OjoYGxsDEVVufnmm9d9nmwIhUKcOZPKQ7n11lvW3EBxN0pvnXG5dmYH9Gs57NKMMJvq6+vx+/2YhsHFixcX3FZZUcmhg4cAOHXqHSa3aJ8ZVVVpbm6msbFxw6u3UoZXiLWTAESIXUJRFJqbm2lpaUHTtHXPLCaTSd5+O1Xmdv++ffnJtYhOw8QFiE7z5ltvYZkmlZWVtLS05H4s21A8HkdRFJzO3RGAeDye1M+8yApFUTh8+DAAFy9exDCMBbcfO3aMkpISLNPixRde2LIFAOx2Oz6fD8uyCIV2/mqgEFuJBCBCbHPX2wZgWRZDQ0MkEgnsdvuGqx69/fbb6HoSh8PBDTfcsKFzrdm5b8Lbh8CxB8ruwXLs4TbtV9mjv8qtt94mW69WKRaL4XQ4d83rVVNTQ11dXb6HsaM0NDTgdrtJJBJ0d3cvuE1RFO6//340m41IJJLZrrkmOcwfmZyc5ErnlTXng2zVHBchtgMJQITY4YaHhxkdG12wV3uBNbyJzszM0HGlA4Djx4/ntoTra/8G9v8WHB2FuclsRQPvHSFu+8wT+C/8Zu7Gss3pur7j+39cy7IsuWDMIlVV2btvL5BaBbn2tfV4PNxz991Aastmb29vzse4WqWlpXg9Xnp7exet5qzGbgnkhcgmCUCE2KZWs+94amqK0bFRaqprFncEX8eb5qlTp8ACv9+f2xKu574Jx59M/cW6ppGxYgdFBY7/M5z769yNaRtrbm6mvr4+38PImWAwyHvvv7dltwJtV3va96CoKlNTU0v2/qivr+fAgQMAvPzKK2uvOKUom5aEvvBpFBobG9F1nYGBgU1/PiGEBCBC7Fizs7P09fdR4i9Zd6PB+YLBIH39qbK7t952a25n/aL/X7jexKQBRP40F6PZEXbTrG16pW4zK2FFozA2lvr/buFyuWhuagLgwjIVr44dO0ZBQQGmYfDcc89t2dLPTqeTuro6pqanpDSvEDkgAYgQ29xy20oSiQRej3deud2NOXXqNFhQXVNDZUXlhs+3atFpODa6aOVjETtw42jq/mJZwWCQ8xcu7KqytFd7gWT/a379dfjFX4SGBjhwIPX/X/xFeOONrD/VlrR//34Aevt6mZ2dXXS7pmmcOHE/iqoyMzOz+nyQPOyWKykpobWlFa/Xu6r7SxleIdYvhxu4hRC5YFkWiqLg9/spLi6+fvCxin3xgUCQ/rnVj2O5TjyfHYHVpito6fv7N3NEW1L6+w6pmX7LsjBNM5P74HQ60TSN2dlZdD1JOJy6WLSwcDoceL1edF0nEAhkHpO+wEoHnBMTEwsCF8uy8Pv9uN1uZmZmmJmZWTCmYDC4aJzj4+MMkNrmUlNTg6qqTExMZCpzQWp1prCwEK/XSyQSSZ137sc43dejxO/HsiympqZAUVAUJbMtsbCwAE3TiEaj6LqeOW8sFkXXvdhstszro6Qfu44g/a//Gr74m6CpV3+NLAtOnoQf/BC++ifwmc+s+bTbSmlpKRUVFYyNjdHR0bFkYYri4iJuu/VWXn/9dS5durQlegctJf1zB6ny3j6f77o/F/N/7oQQqycBiBDb1FJvjJZl0dfXh6Zp1NXVZW2bzVtvvQnMdRAuK8vKOVfNW5XaXrWaKqrG3P23mPTFbjrBNT0jHwwGMU0L0zQwTRPTMiktKcVmszE5NcVsOJw6PhdIFBcXU1paSjgcprevD2vuuGmZ2O0ODszNRl+6fBnDWJjv0NLcQkFBATMzodTPSf/VpOASfwler5dkMsnQ8BAKcxfkioKqqpkAJBgMEp/rp5G+6PL5fLjdbpK6vmgGfKlVlmg0uuh+qWORBat5TpcLr9dLPJ5gcmrq6m2WhcfjocSfCjIHBhfv2d+3dx+apjE2NkYgGMgcHx0bBQWqKquYmZmhp7cnc5uiKDgdTvbuTSVWd3R0YJomqqpmPqqrq3G5XExPB3j11SRf/M0ysBSuzVtOf/4bX7Robzc4flzZ0WWA9+3bx9jYGBcvXuTw4cNLfq179uyhf2CAwYEBXnnlFX7qp35qVUUsrDxc28diMa50XqGmuobKyhyu9gqxi0gAIsQ2N38bwPj4OFPTUzTUN1z/gatM8JycmmJ4eBggP00H3X54uzJV/WqFbVhWEpJvleK4I7urH5ZlYRgGuq5f/b9pUlxUhKqqTE5NEYtGMQwDw0gFEv6SEkr8fgKBIH39vQsurF1OV+Yit7fv6m2KoqCqGoUFhdhsNpLJBPF4PHPxq2kaylzDNLvdTmlJCYqamn1VVRV13kVfw1yCuTIXQMzv+aEoUFRYRG1tbWbmP92Ize12c+TwkWVfi9bW1mVvKy0pobSkZMGxwEBg0f0aGhrYW7d3wbGVEuL9/mL8/uIlb1MUJTPezKqNZWUugGtqUheQlmURi8VRVSVT/cvtdlNf35B6/ecCxPmvoc/ny3w/0x/pgD6eiPHNb7pRFTBXWEBUFYuvfjXMl//rIIcOHgRSgY1hmGha6nuqqiqVlZW43W7C4TDRaBRV01AVFZtNw+Fw4HQ6F/ycbDXpkrzRaJTu7m7a2tqWvN/dd93Fk08+STQa5d133817E9PluFwuKsorGB4ZpqCgQJqbCrEJJAARYoeYmZlhcGiQivIKSktLs3bet99O7dmuqKigvLw8a+ddE/evY2m/tfJGBw1+/6shfvc7MVwu16KblwokXC4XTqeT2dlZpqamMrcZhoHL5aKxsRHLsjh3/tyi83k9+3A6ncSiUUKhcOaC0mazoSrpC3oX1VXVmQtKVVUWzPru37c/E2Bce2FZVVlFVeXSqzlOp5OqquVXehZVPJv3GiQSCfx+P3b79ZJqtof527auZbfbM1/ntWWHHQ4HJXMrUUtZaYtQUWEVL798/d2LpqnyyitFlJVdHVthUSF6Us8EN4ZhZIKL8GyY8bFxTOtqonaJv4T6+npisRiXOy6jaTY0VUPTVGw2W6b55uTkJKZpotls2OZ+DtPb7jZbuiTvu6ff5eLFi7S2ti75/XA4HNxxxx288MILnD9/nvqG+tzmk61BdXU1oVCI3t5e9u7du6hbupR0FmJjJAARYpuav+84Ho/T09NDYUEhNTU1azvRCm+kU9PTjI6MAnla/Ug7+FlGn3iKyo+9Bkaq9G6alQQ0+KffhL/6cYI3PvpRvv2tb5FMJtF1nebmZjRNo7u7m1B4Ybfj6qpqKioq0HWdaDSKzWbDbrdnAhNIXVw1NjQtCDDSM9cAtbW1yw7b6XSuGLTlIwhoa2vLbf+WLWJ6OsDsbDgrDQlDodW3z7EsBVUpyny+0gV3OuicHyyr81a9amtqMUwDQzcWBC6QKrkdjUUXHGtqbKKoqIixsTEmJifRVDXTjNTr81FaUoJpmoTD4cxxm822rlWWPe17OHPmPaamppiYmFj2576uro7qmhqGh4b48Us/5uMf//jSQVKeL/BVVaWxsZFLly8xOjZKddXyAelWXJUSYqvbfe9CQuxAdrud8vJyysvLs/pm+O7pd4HUFotc5n6YpkkymSSZTJJIJpkNh3kx/An2fKuKG/e9hP22SRQNLAOGfwhf/V/wN29dHfPXvvY1fvVXfxW73Z65ICsrK8PvL8Fm0zIXWukL8aKiIoqKipYbDsXFy9+2nSiKsusaEKYlknECgUBWApCCgtRWttVcIytK6v5roSjKgp9PSJUSXul3sL29PZNrpOs6uq5ngmi3242/uBjDMEgmk8Tj8UweUjwep7tnYSdzm83Ogf37URSF0bFRLNOaG48dh8O+5MqKy+WisaGBnp4eurq6Vgy8777rLr77xBNEo1Heeecdbr311rW9QDnidrtpa22TLVhCbAIJQITYxhRFIZFIZBJk1/jgFW+emJhgYKAfgCNHj653iIuktwElEgkSySS6niSZSFJdXY2mafT09BCcmVc9yYKenh4AEm0/z3Dt/wd77yzO5BQUVPODsRf5m7d+Z8Fz/P++/nV+9md/lmPHjmWOLbctaTcJBIJEIrNrXyXbAWw2O8Zcsv+122nWyu2GD34QTp60MIzlf480LXW/XMV8ipJKdtc0LRN8ABQUFFCwTBTkcrnYt3ff3Iqhga4nF+S7RGYjRKJRdP1qQYH0ysrExARTU1M4HA4cDgelZWVzAUg3N910UypvaYm/My6Xi1tvuYWf/OQnXLyU2rK17LbRPK8u+Hw+gEzQJqsdQmSHBCBCbGOhUIi+3j6qPdVZn6VL1+uvqq7KVBxarfSWpkygkUhkKnNZlsXFSxcz99VUDbvdjmEYaJqG3++noLAQ+9x2qJGREYLBIKqmcfPNNy/6On/1V1t58Uc/4uTTJ68etOCnfuqnOH/+vMxezjM7G2ZmJrQ7A5C5GXtd1zOz/xvx7/4d/OAHK9/HMOFzn9vwU22qdIGC+QHLfM3NzUBq4iC9Kpm+r81mx+12k0gkCAZn0PUkdruDZDJBd3c30VgUu82Bw2HPJNOnm6I2Nzdz5coVxsfHefnll3n00Uc3HBhulkQiwYWLF6itqc2s7Mwv/iFleIVYOwlAhNimdF1ncHAQn8eX9W01wWCQ8fFxAG66aencj3g8TjQaI56IkUyktnVcLRM7S29fD5C6SHE6HJl8B1VVaWluySQIX7uVY/5WKNM0effddwE4eODAssHE//M3f8Ohw4cZGx3LHAuHZ3nssY/x7LPPrOs12IlisRgu19IXmjtd+ucvmUxmJQC57TaL2to/Z3DwC6TqP1/N59G0VPDx1T+B227b8FNtCYqiZFY60oqLixZsT7Qsi0Q8wYULF+jr7+fI4cOpbZSJBNFolEgkkglALl2+TFVVFROTk8zMzPD6669z00034XQ6UyswlrllLusdDgcl/hKGh4cpLi7eMQUchMgnCUCE2IbS/T4AamprNrYtYImN7GfOnAFSnYEddjsTExMkEglisRi1tbU4nU7GxsaYmp5CVdTM7KaqpoKJggIfe/fsxeFwLDmrudx2kGt1dHQQCoVwOBwcnCtjuhRVVfnhD37ArbfeimFcrSB0+vRp/viP/5jf/u3fXtXz7XTxRAJ/cXG+h5EXDoeDqqqqrF08nj59msHBPwSeAT4HfBjQUJTUtqvPfW7nBB+rpSgKrW1tXLhwgaGhQe68444lK9IB1FTXkEjGSSQSXLp0ic6uTtra2qioqGBoaIiZnl48iTi22VlslpVpTJkvNTU1BAIBhoaGaGxszNs4hNgpJAARYhsaHx9nZmaGurq69Vc0mhe0JJNJYrFY5qN3Lrjx+/10dXcB4LA7cblSs5MAlZWVVFVVLVk1J70PfSOSyWRm9ePI0aPXnbVubGzkz//8v/P5z39+wfGv/umf8sADD3DLLbdsaDzbXSqxP5GV2f/tyGazZbXk6ze+8Y25f70N/Ao1NS0888xrFBVpOcv52IpK/H78fj/T09P09PSyb9/eJe+X7u1SUV6R6l80NcXrr7/ORz/6UYqLi3FVRNAnJogZBoGJCVRVxev1EgwGGRgYwO12Z6rVeTyeTS+uYLPZqKmpoX+gn5KSEjxe2dopxEZIACLENlRcXEx9fT0RWwTLWH25ylRDthiWZeGx24nH4/ReuUJkrjytoihMTU5hmSYej4cjR45gt6eq3lwbZGz2hez5C+eJx+N4vV727tmzqsd86lM/x8mTT/Mv//KvVw9a8NM//dOcO3cuk1C6G1mWRVVVVV5nkfNtZmYGm8224bygyclJ/vmf/3nBsc9+9lNUVe3cbudr0dzSwvQ779DV1blsAJKmKAr33HMPT33vKQKBAOfOn+fQwYP4ystRHA4oLYW5ZpKQ+rtTXFxMLBZjamqKpJ7E5/VlqoD19vbicrvwuFNBSTa3S5WWlpJILA7iJTFdiLWTAESIbSRd+9/hcFBeVk5voPe6j4lEIkxNTRGJRIhGo5iWSYGvgLbGRux2OyVFxZTVN+J2u7Db7Tz11FMAHDp0eNVbpbItFotx9myq+d+xY8fWtJryzW9+kyNHjzIyPJI5Njsb4dHHHuOF55/P+li3C03TtmzTt1wZGhqmoMC34QDk8ccfJ5G4WhXKbrfx6U9/eqPD2zFamps5deodJiYmCAaDK5a4hlSFuiOHj3DmzBlOnz5Nc1MT14bJ6Yt8t9u9oPdOul8KpPLikskkwWAw08zRbrNz4MABVFVldnYWx7x8tLVSFCVTwEE39HWdQwiRsjVLTgghljQwMMClS5eW7MKr6zrBYJDh4WGuXLnCxMQEkKrgks6jqKqqoq21jaamJiCVO1FWXobfX4zL5aK/v59wOIxms9Ha2pLLL22B9957D0PXKSkpyVThWS1VVXn6hz9E0xb+eXvvzHt8+ctfzuYwt5XZ2VlCodD177iD2e02ksnk9e+4AsMw+Ou//usFxz72sY/ltE/OVufxeKiuTl2od3d3X+feKYcPpyY8LNPkJ6+/vupGhPNLDtvtdtrb2zly5AgH9h+gqbGJsvKyTB5aT08PZ8+d5dy5c/T09DA2Nraun4dIJMKFixdIJBNrfqwQIkUCECG2ienpaSYnJ6msrMz0/0iviAwODvL+2ffp6u5iYm6/dDo3pLi4mP3799PU1ERlZSUFBQWp25bYNvDee+8B0DS3OpIPMzMzXLp8CYAbb7xxXdsb6urq+NrXvrbo+H//73/Ba6+9tuExbkeTk5OMjIxc/447mN1uz8yWr9fzLzxPf//AgmO/8iu/sqFz7kStLakJjM7OziUnTK6lqip33nknAEODg0zOTaCsR7q0sN/vp6qyKnO8vb2dpsYmiouLSSQSDA0PZX4exsfHGR4eZmZmJpPnthyn04lhGAuq7gkh1ka2YAmxDSQSCXp7e/F4PITDYUZHRwlGgmh+jQJvAUVFRbjdbrxe77qbZU1OThIIBAA4msXGg2v17rvvYpkWVdVVG+pX8TM/8zM8++yzPPHEwr36n/zkJzl37tyua0yYKsG7dEWi3cJmszE7G9nQOb75jW8u+PzwkcPcdNNNGzrnTtTQ0IBmszE7O8vo2OiCQGA5FRUVtLS00NXVxTvvnOIDx2/Lan5Fuoywf66v0fyGi8lkkomJCUZGR1AUBa/HS1VV1ZLbUDVNo7a2lr6LfYRmQrBMD0UhxPJkBUSILcqyLCKRCKZp0tPTk/k8EolQUFBAc1NzJqHY5/NRUlKyZLL4ar07V3q3srIyb8nagUAw0/X8phs3flH3l3/5l9TWLgxiotEYH/3oRzd87u0mkUjgcO7OClhpqYZ7638Nuru7ee6aPKLPfvazkoS8BJvNRmNDAwB9vX2rftyNN96IoqpzVbR6Nml0KaqqZr53NTU1HD58mH1791FTXbOgut/4+Djd3d1MTk5mtmwVFxfj8/oYHR1d1QqPEGIhCUCE2EIsy2JmZobe3l7ef/99Ll68yOzsLDU1NTQ0NHD48GEOHDhAQ0MDfr9//SV4Fz4psViMoaFBIL+rH2fPvg9AbV0dpaUbn1ZUVZWTJ09isy1MYj937jxf+tKXNnz+7cIwDAzTwOHYnU0I00pLS2lpWX9u07e+9S3mNcCmqKiQT3z84xsf2A7VkA5A+vpWfZHu8Xg4sH8/YHH27NkNb5lbC0VRcLvdVFRU0NzcnJmIUVWVZDJJX38fZ8+d5dKlSwQCASoqKjLbYYUQayMBiBB5Nv+NuaOjgytXrhAOhykpKaGlpQWv14vP56O0tHTJvAyLjc++Xe64jGVaFBcXU1mZn0pJoVAo03PkyOHDWTtvVVUV//t//+9Fx//yL/+Kl156KWvPs5UZhoHX48Xl3N0BCKR+39YzYx2NRvnOd76z4NinPvWpDVfU2slqampQVDVTiW+1js71/dGTOqdPn97EEa5OaWkpe/bs4dDBQzTUN2S2ubpcLiorKwkEAhKECLFGEoAIkSfJZJLh4WHOnTtHNBoFUhfLe/fu5cCBA9TW1jIxMbF52xAUBUVRME2TSxdTSd8HDhzI23aSc+fOgQVV1VWUl5dn9dyPPvooP/dzn1x0/Od//ucJBIJZfa6tyOFw0NbWtusvlsPhMO+9/x7xeHzNj/3nf36S6enAgmO//Mu/nKWR7Uzp5n2QquC3lsfdeOONAHR0Xtky1dvsdjulpaU0NzdnSgvH43EGBwc5e/YsHR0dTE9Py5YsIVZBAhAhciwcDtPd3c3Zs2cZGRmhoKAgUyaysLAQr9eLoihMT08zMzNDSUnJkudRULISLIyPjxONRlE1bc0lb7MlEonQceUKAEcOH9mU5/iLv/gLGhsbFhyLxeJ8+MMf2pTn20rS1dJ2u3Q/mfVs6/nGN7+x4PMTJ+6jtbU1C6Pa2Rrq64HUNqw1Pa6hgcLiIrDgzTff3IyhZUV5eTmlpaWoqophGJlcESHEyiQAESJH0heA6aaAtbW1HD58mMbGxkwd+zRd1xkYGKC4uJji4uJNHdeVK50A1NbUrqnhXzadP38eyzQpLy/ftC1gqqry9NNPY7cvzJu5dOkyv/Vbv7Upz7lVDA8P09HRke9h5F06Z0rXjTU97vTp05x598yCY1J6d3Xq6upASZURX8tKhqIoqepiCvT29jI8PLyJo1y7+Vtfa2pqsCyLwsJC9u3bl6myNTAwwMDAwIZ7zwixE0kAIsQmi0QidHR0MD4+DqTekA8cOEBFRcWySeSDg4NYlkX93OzhSjYys60ndcYnxsGy2H9g37rPsxGxWIxLly8DqWZkm7kFrLy8nG9+85uLjn/jG9/k2eee27Tnzbd4PI7DsbsrYMHVAMRYYxfrb3xj4epHbW0NDz30UNbGtZO53W4qyisA6F/DNiwsi+KiItpa2wB4+eWXr9ufIx8UFOx2OxUVFYyNjWG32zMTOTabjYmJCc6dO8fg4CCGsbbAV4idTAIQITaJaZoMDQ1x8eJFkslkZpVjfunH5Xg8Hurq6ja3GaCi0NvXC1aqPGllRX6Szy9evIih6/j9fmprazf9+T74wQ/yC7/w6UXHP/NLv7Rjt07EE4lFq2y7kaIoaKqGvoYAZHJqiieeeGLBsc985jN5Wy3cjurmJlIGBvrX/NgjR46gqirhcDiVJ7ZFpRvEzm/2WVVVxaFDhygvL2d8fJwLFy5IECLEHAlAhNgEiUSCS5cuMTIyQnV1Nfv27cskLa4kvZqR3le8kmysFPT29ALQ0tKSl+TzRCLBhQsXgc1f/Zjvz/7sz2hpWZjvEo8n+NCHdl4+iGVZJJMJWQGZ097eTllp2arv/53HHyeRuLqFxm638elPLw5gxfLq6+oAGBkZWXMBAJfbzdEbUqXBT58+vWWqTV278myz2Whqalq0hdRms1FbW8v+/fuprKzMBK6SkyV2OwlAhNgEdrudgoIC9u3bR3V1dSbJ/HqGh4fp71/7LOF6hMNhpqenAdi3Lz/bry5dukQymaCgoCDTMyBXfvjDH+JwLFxh6uzs4td/4z/mdBybLX3BtqmraduI0+lc9eqFYRj89V//9YJjjz32WNartO10RUVFqQkYa23VsNKOHjmK2+1G13XeeuutTRhhdhQVFeFwOJYMLpxOZ+bnZnR0lO7u7i25pUyIXJEARIgsisVihEIhFEWhrq5uTWVPo9EoIyMja97asd4+IJfn8i5Ky0opyEPnc13XOX/+PACHDh1adZCWLaWlpXz7299edPxvvvU3PP300zkdy2ZyOp0cOngob93tt5rx8XFGRkeuf0fghRdeoK9v4YSAJJ+vTzqfbT0TLKqqcttttwGpnkWxWCyrY9uIa1dto9EoZ8+ezZRWX4rT6SQYDNLd3S0rIWLXkgBEiCyxLIu+vr51zfClH+t0OqmqqtqE0S1+vnTidy7yLpbS0XGFeDyOx+PJWznThx56aMleDp/97GczRQN2Ak3Tch7gbVXRaJTQzOqqMV1bsODw4UPcfPPNmzGsHS8dgAwODa0uD+KaC/Pm5maKi4uxTIv3339/M4aYFU6nE0VRGBoaWvY+xcXFNDc3EwwG19SgUYidRN6RhMiSQCBAOBxe1wX9xMQEs7OzNDY2rvpCUWH9+RJjY2OpGToV6uuuX2kr20zT5Ny5swAcPJj71Y/5/uRPvkJ7e9uCY4lEkkceeWRHbJEYGxvL2ba+7cBms2EY1/++9vT0LKqM9tlf+WzeGnVud2VlZTidTgx9rvLeGimKwi233AKkmpZGIpFsD3FNLKwlfxZUVaW6uppgMLjiGIuLi/H7/QwODu6IvzNCrJUEIEJkSTgcxul0UlhYuObHJhIJysrK1rVNZj1L+OlqMuVl5Yv6YuRCX18fkUgEh8Ox6OI/H/71Bz/A6VyYpN3b28cXvvCFPI0oeyKRyJZJ3N0KVE3FMK8/A/+tb32L+bsbCwsL+PhPfXzzBrbDKYqSSdAeHRldywMz/6yrq6OoqAjTNLdMLshSE0ElJSXY7XbGxsZWfGxVVRUlJSUSgIhdSQIQIbIkFovhcrnW9dja2tpV9fzIBsMwMjPi7e3tqYM53od86dIlAPbu3btsL5RcKvH7+du/fXzR8b/7u7/n+9//fh5GlD2JhFTAmk9Ttev2AYlGozz++MKfh0996lN4vd7NHNqOV11dDbCgVO1aKIrCrbfeCkBnVyezs7NZG1s2KYpCRUUF8Xh8xQkit9tNXV3dlvgbKESuSQAiRJasp2t5NBplfHwcy1p6OX8l690Kkm6IZXc4Nq3r+Eomp6YYHR0FBfbs2ZPz51/OiRP38Wu/9v9adPzf/tt/u+4Lpq0gkUxid0gFrDSv10tlZeWKF4ZPPvkU09OBBceWyhUSa5PObxsbH0PXr9OLZZnvT3oVBIstswqylIqKCvbs2bPi3+lEIsHMzIwkootdSQIQIbJkNb07rjU4OMjo6GhO34B6e1O9P9ra2vKSe3HpYqrvR0N9w5abUf6v//W/cuDA/gXHkkl92+aDmKaJYejY7bICkubxeKisqFzxwvDa5PP77ruXtrb8bxXc7goLC3G73Vimdd3tScCC7VdXDykcP34cgK7uLsLhcLaHuSrpv9nL/RwpioKiKMzOzi6bdD86OkpXV5cEIGJXkgBEiCyKxWL09vau6mI1FAoxMzNDbW3thgKBtZThtSwrE4Dkuu8GQDwep7OrC4B9+/PTe+R6/uVf/gW3e+FWuoGBQT73uc/laUQbU1/fgG+LBXr5pOs6gUBw2Rn4d999l9OnTy84JqV3s0NRlMwqyKpXFZe4wK+pqcHv94MFZ86cyeYQsyqZTHLp0qUlK12FQiHGx8epqamRCnViV5KfeiGyyDRNpqam6OzsXLHUpGVZDAwM4PV617xtayNGRkdIJBKoqrqw3G+OZuA6rlzBMk2Ki4uprMj99q/VKCws5O/+7u8WHf/ud5/gu9/9bh5GtH6qqlLi9+N0OvM9lC0jkUjQ29ezbEfub3zjGws+r6mp5qGHHsrF0HaFdB7I8PDwus8xfxXkcsdlQqHVlVXONbvdjt/vZ2xsbMEqRzgcpqurC5/PJ00txa4lAYgQWeTxeGhra2N2dpaOjo5lqw8Fg0Gi0Si1tbXrzuVQUNb82M4rnQBUVFZcbXiYo7Kipmlmtl/t27dvS5czveuuu/j85//DouP//t//+xXr+281s7OzTExM5HsYW0o64XepCYLJqSmeeOKJBcc+85lfliThLEpPfExOTa5cne06kyLV1dVUVVVhmRZvvPFGNoe4KqtdeU4noweDwcyxkZER3G43ra2tW/rvoBCbSQIQIbKsoKCAPXv2kEwmuXjx4pLbsYqKimhvb895d+p09au21rn97Dl88xscHGR2dha73UFLS0vOnne9/vN//s8cPnJ4wTFdN3j44Ye3TT5IKBRidDV77XeRdOC9VC+Qv/vOd4jHr14U22wan/70z+dsbLuBz+dL/d2zUjkQG3Hs2DEgVdZ7ZmYmG8Nbs+v1Y/J6vXi9XkZGRjJVu5qbm2lra7s6CSTELiQBiBCbwOPxsH//fpqamlBVFV3XM28+yWQSRVEoKCjI6ZjSqy4o0NjYmNPnBrg4t/rR3t62bWaUv/+97+HxuBccGx4e4Vd/9VfzNKK1SSQSOOxSAWu+9H5785peIKZp8td//dcLjj322GNUVFTkbGy7xZrzQJZRXV2dKfzx+uuvb3hcm8E0TdxuN9FolN7eXizLQtM0yfsQu578BgixSWw2W6Yp4dTUFJcuXeLy5cucO3eOycnJrD7Xaqqo9PT0AOAvzn1OQCAQzOz53kqld6/H5/Pxj//4j1w7yfm9732fv//7v8/PoNZAeoAspigKbpd70erf8y+8QG9v34Jjn/3sZ3M5tF1jTf1ArrNKe9vx2wAYGBjYUrkglmUxPj7OuXPnmJiYwO/3097eLluuhJgjAYgQOVBeXk5zczPRaBTTNJmYmNhw+ci1vpENDg4CLF1OdJOT0C9dSq1+1NTWrqtTfD7ddttt/Mdf//VFx7/whS9ktrRtVYlkUgKQJezZs4fSkpIFx65d/Th06GCm6Z3IrnT/oenpaWKx2IbOVVWZ6iYOLKpetpmWm/SZX11tfHwcn8/HgQMHqK+vZ2JiYtniB0LsNhKACJEDiqLgdrsxDCNVPpKrb2CRSGTDb8LXE4vFGBlNzTY2NTVt6nNdK5FIcKUzlfx+YP/+69x7a/qd3/kdbjh2w4JjhmHyyCMf3NL5IAU+H263J9/D2PJ6e3t55plnFhz77K98VmarN4nH40k1E4Tl+4GsYVLkxhtvBFKrvCsmtm8CRVGwLItgMEhnZyfvvfce0WgURVHYt28fzc3NuFypst5jY2OMj4/ndHxCbFUSgAiRI4ODgzgcDhobG9m7d28mB2RoaIjz589z8eJFRkdHN2WGrKenB6xUQuSC3JMcXGB1dnZh6DoFBQWZrRfb0feeegqfb2E/jdHRUX7plz6TnwGtQn19PcXFRfkexpbT2dm5YPXqW9/6FvOLGhUWFvCJj38i9wPbRdK5G9nYjlpfX09RURG6rmdyzXJBQWF0dJSzZ8/S2dlJIpGgvr4+s+o4P89D0zRKS0uZmpra0pMWQuSKBCBC5IBlWTidziWbTrW0tNDU1ITdbmdoaIhz585lSjau9EY1v/rK9UpCds6tQNTX1y83wNV8Gety5UoHAHu3eOnd6/F4PPzzP//zonyQH/7wh/w/f/u3+RnUCgzDIB6PS5flJSiKkinDG4vFePzxxxfc/nM/93N4pXnjpiotLQO4fpnoVfzNUBSFAwcOAPDee+9t2gW+ZVmEQiEGBgZIJK+utBQXF7N371727dtHeXn5stWtSktL0XU9bxW7hNhKJAARIgcURaGuri6zV3k+VVUpKSmhtbWVI0eO0NTUlCnP29vby7lz5+jv7ycYDK7Y3HA5hmEwNp7a5tDe3r6xL2SNJqemmJ6eRlEVWpqbc/rcm+HYsWP85m/95qLj//HXf53u7u48jGh5MzMhLl66uK6fmZ1OVdXM6/Lkk08yNTW94PZf/uVfzsewdpXy8nQAMpmVILm9vR1N00gkEnR1dW34fPNNTk7S1dXFe++9x5XOKwQCgcxKdWVlJfX19Xi93utOsLjdbjweT9aLkAixHUkAIsQmi0QijIyMrGpWTtM0SkpKMjNopaWlFBQULNhfHAgEgFSy42rOOTo6imVa2Gw2ysrKFt64ySsSXXMrL3W19Zl90Nvdb/7GF7n55psWHDNNiw9+6EMLElDzTddT5Z6l18BimqZlfne++c1vLrjt3nvvyXmgvhv5/X4UVSGZTGSlepXNZmPv3r0AvPvuu+s+TzKZZHp6moGBgczPyMzMDLquU1FZwZ72PRw8eDAzSXS9PiDXqqmpkdLOQgDboxi/ENvY6Ogos7Ozmcova1FYWEhhYSGWZRGPx5mZmcHjSSUVj4yMcLHnIoqm4I65KSoswuv1Ltrila5+VVZeltMtUKZpZmYi29pac/a8ufDkk09y4MABZmauXjhNjE/wC7/wC/zd3/1dHkd2VTKZxG5zbOttb5sltQJicubMGU6dWlg5SUrv5oamaZT4S5icnGRiYmJRdTxlHYsiR44c4fyF88zMzDA8Mkx11epyzizLYnBwkFAoRCyeKgjisDsoLS3F7XbT1NS06Pdovas2260KoBCbRVZAhNhEsViM6elpKisrN3QhqCgKLpeLioqKTIJjWVkZFRUVaJrG+MQ4VzqvMDo2mnneyclJotFopupKY0Numw8ODg4Sj8dxOBzU1tbm9Lk3m8vl4p+fXJwP8uyzzy0q55ovyWQSu13mmJaSKovdtGj1o7q6iocffjhPo9p9VpWIvoa/mx6Ph/q6VJ7bmXfPLLrdMAxCoRCjo6N0d3dz4cIFLMtCURR0Xcfn89HY0MjBAwc5ePAgbrd7bgjZDeJDoRC9vb1ZPacQ240EIEJsotHRUWw2W+aNNpvcbjdlZWXU19Vz+NBh9u3dR2lJ6nnC4TB9/X1cuHAhU343/WZqWdbi2btNSFS+ciW1/aqlpWVHdv09euQo/+l3f3fR8d/8zd+ko6MjDyNayDAM7NIFfUkOh4PZSIR/+qd/WnD8lz7zGWw2CdpyJb0lNJs5EceOHQNgaHiIkdGRTMJ3MpnkvfdTORwjIyPouk5hYWFmm1VTUxP19fWUlJSsqXfOeoITwzCYnJwkEoms+bFC7BTyl1aITZJIJJiamlqy8lW2pfuMpJWVleH3+zPld202WyYHIx6Pc/HSRdwuN4Xj4zhNE7vfj9eRve06sViMgcFUmdPW1p21/Wq+//v//r959tln+clPXs8csyz4yEc+wrlz5/J6MdvS0iIVsJYRDof5y//1v4jHr1Yystk0fvEXfiGPo9p9MpWwJicxTXNdfyfTEyqqqhKJRAiFQhQVFREMBnnrzbdoa2ujsLAQu91OQ30DHo8Hl8uV162JRUVF2Gw2pqamMltqhdhtdt60pBBbhN1up7W1dXHid5YpirJkGV5N0zIlLsvKyqipqckcr66qxuVyEY3FGBsfo6+vL/OG3N/fz9DQEJOTk4TD4XUlVvf09GKZFsXFxZuy+rOVfPe7313Ua2Nycoqf+7mfy9OIrpL8j6XFYrFFuTqPPvqoJAfnWFFRIZrNhmkYTM8V18iwrCW3X0UiEUZHR+nr6+Py5cu8//77jIyMZG7XdZ2WlhYAJiYnaJ5XfS+d05GN34vrlT5fiaIolJSUMDU1JZMEYteSAESITZDeV1xYWJjXKkRDQ0MAC3Iw7HY7lZWVNDY20trayp62dlrn3rAty0LXdYLBGQYGB+js6uTc+XOZrQLT0wHGx8cJBoPEYrFlq3B1dc1tv9rBqx9pDoeDJ596atG10o9+9BJ/9Vd/lZcxpRqyXSIcDufl+be61157jeHhkQXHJPk891RVpSydBzKvH0gkEmE6GGBifJy+vj4uXryY+VkOBoOMjIwQjUZxOp1UVFZkuqp7PB7a29u54YYb8Hg8WKbF+fPnN/VrWGsVrLSSkpK5v7XBLI9IiO1BtmAJsQmGh4eJRqO0tLRs6iz0Sm9+hmEQCAaAFRoQAqqm4Zzb86woSmbG0DRNYrEYsXg8s31rdjbM1PTCWbua6hrKy8uJRqOEQiESiURq5UVhR/T+WI1DBw/y+7//+/yn//SfFxz/0pe+xN333MOB/ftzOp5EIkE8EZMVkGV85zvfWfD5wYMHuO222/I0mt3HNE2i0SixeByn0wlAd3c37e3tKIpCf38/xtAQDhMUrxdPUVFme1ZlZSVVVVUr/mwrisLhw4d54403OH/+PDfccMOWy0PzeDy0tLRQUFCQ76EIkRcSgAiRZYZhMD4+TmlpaV4vAMcnxrFMC03T8Pv9a368qqp4PJ4Fe5Tr6uqora0lmUwSj8dJJBKZ3JNoLMbo6Gim7G+Br4Cu7m4cdjsOh4OCwkJKS0owTTNTHWsn9aj4d//u3/Hcc8/x4x+/nDlmWfDYo49y7ty5NSW2blQymQSQJPQl9PX18dzzzy849tnPflaCtSxLJBKEZ2dJJhMkE0kSiQQul4uamhoMw+BK5xWAzN+AcDicWTluamrC5vFgsyyoqYF5pWtXG0js3buXt99+m0QiwcDAAA0NDdn/IjeouLg430MQIm8kABEiy8bHxzFNM6f7yZfaR5zeF11TU7P8xdU6LroURcHhcCy6oC7x+ykqLOTChQtAqjNxWVlp5uIjmUwl/MZiMTqupKpEaaqGzWbH6XRkVl4CgSCKktraZLfb0TRt21wc/p//8384cODAgs7a09MBfvZnf5Ynn3wyZ+NI5+1IALLYt7/9beZv3y8o8PGJT3wifwPaRizLmivvbEdRFKanA8Ri0bnf7yTJpE5lVSUlfj+hUIiBwQE0VcM+NwmRLspgs9lob2vH6XQSDofp7u4mEo1mnsfpdKJoNtCT6x6rzWajsbGRrq4uLly4kPUAJBu5G5Zl0dfXh9fr3fRcQSG2GglAhMgi0zQZGxujtLQ0pzPeSxkeHgbIJJ/nwujoKLFYDLvdwf79+5dc4XC5XLS2tJJIJkkmE+jJhR3dB4cG0eddeKiKSnNzMz6fj+npANFoBM2WClzsNhtOpzOzjSPfbDYb3//+97nrrrsWVDZ+5ZVX+R//43/w+c9/PifjSCaTaJpt2wRuuRKLxfjbv/3bBcc++clPZrpa71amaZJMJtF1nWRSR1FSlZpM06S3tzcVXOh65vfywP4D2O12ZmaCzEYiOOx27HY7Ho8ns52zuLiY4uLiJf8GKIqSWVktKChAUVUs0yQcDl9t1JeFC/wjR47Q1dXF4NAg0Wh0QaXAbNlof6d053UJQMRuIwGIEFkUiUSwLGtdXc/XY7k3P9M0Mysg1dWr6wacDVeupLZVNDc3Lbu9SlXVFS/49u/bNzebmppRTSYTmQAjmUwwMxNC15MYpgFAWWkZtbW1RCIRurq7sdts2OY+HA5H5uufmZlBVVU0TdvUlZW9e/fyR3/0R/z2b//OguO//1/+C/fddx+HDx/O+nNeq7i4WMp7LuGpp55icnJqwbGdmHxumia6rmdWKmZmZojH4xiGga7r6LqO3++nqKiIyakpBgb6Fzze4/ZQVFSUqrBnWbjdbgrtdmw2W+Z3B6CxcfnmpqvdXqmqKkWFhQQCAYLBYFY7hZeUlFBWVsbExAQXLlzgxhtvzNq5gUWNSNejqKgolfNiGDtqS6oQ1yMBiBBZ5PP5OHz4cM4THq8tCTk+vsb8jyzMNhqGQf/AAADNLetPPldVddlVjYqKiszWtvRFVjqIsNlslJWVoif1uZnc5IISwn39/RjGwpLCrS2t+Hw+JicnmZmZQdO01IdNw+P2UFhYiGEYxGKxzG022/VXFn71V3+VZ599lueff+HqQQs+9rGPce7cuUxS/2ZxuVyb/hzb0bWdz++443b27NmTp9GsbH7DUFVVSSQSRCJRDNPA0PVMo8mysjJM0+TKlSvoRuo200qtKKZXKiYnJwmFQ2iaDdvcz3D6V97n9VJXV499LrhIB++QmuBIl7TdTIXzApBFBTM2OEnQ3NzMxMQEly5d4tixY1mbdNhIGd750gFIMBikpKQkK+cUYjuQAESILInH45kL1HxLr374/f6V33CzuAIwPDyMoeu4XC4qyjc//0VV1QXb3BwOB1WVVcvef9/evZnZX103MAz9apAzN9ObmiU20Q2dEr9JYWEhsVgskzCbZrPZOXjgAAA9PT2Z2cv0R0lJCY8//jgHDx5cMOMeDM7wUz/1U/zwhz/MXFxuxirM+Pg4Tqczq7PJ292Z987wzjunFhz71Kf+r6w/j2VZGIaBaZqZ/6uqitvtxjRNpqamMEwD07h6e11dHaqqMjAwwEwohGmamKaBZVnU1tRSVlZGKBzOrFSoiopms+HzeoGrjUhtNttcAJ0KNOavVCiKsuTP2lbYwuj3++nr6yNwbS+QLNi7dy9vv/M20WiU0bHRFf9GrMd6y/CmORwO3G63BCBi18n/lZIQO8Tg4CDxeJz9OSy5utybXzoAyeW+4t7eXgAaGhq2ZO7B/Jnda5WWlFC6zJu/2+1mT/sedF3HMMzU1q95K0YOh4NEIpHZR28YqcDF5XLx7W9/m49+9KMLFpjeeutt/uzP/ozPfe5zXLp8CUVRUFUttT1MVdmzZw+KojA0NEQikUBV1cxHemtVJBIhEomkLipVFVVRcThSe/Aty2J0bIyiwkIcc93tFUXJbMfZzMBnq0ldyJtYlsU3vv6NBbeVlZdx5513MDMzg2VZmKaF3W7D5/Oh6zqTU5NYppV5vGmamdn5wcFUTkEqyDAxLZOa6hr8/mImJiYYGh5a8FwFvoJMZ/rBoUE0VUPVNLS5LYHp74nL5ULTNFRNzdzHO7eVrrioiMKCgiVX4BRFWbnU9hYrQXutdB+PmZmZrJ/b4XBQXVXN0NAQZ98/m/UAJBsaGhq2xMSVELkkP/FCZEEymSQQCFBXV5fvoQBkZhJXnf+xwS1YpmnS15eanW1qatrQubaa9Oz1clZK8r/tttv4yle+whe/+JsLjv/BH/4h99xzD01NTamLZMvENMxMGVK4OpOeTCbnLoLJ5M7Mzs4yPDK8oBJPYUEhzc3Nc0GQztT0FFPTV1dfDh08hKZpdHV1EZ5NNXVTFTXzNZSWljI9HWB4JFW8QEGZSxZ209DQgGVZmRyf+RfAjY2N2O12RsdGCYfCC26fiYcWvSaDQ4N0Jbqw2+2Zi+bu7m4Mw1hwv9raWtxuN2NjY0xPT8+9JqnXxV9STFVlFZFIhO6entTrMLdlSdW0zOrUpUuXSSTjhGZC/NM//dOC83/kIx9hOjDNdOBqxbLiomJ8Ph+maTI+Np4J7lJBopL5/qiqmsmFSAeHTmdqNa6goIAGWyOadjVwTF9cqqrKkcNHlg3+Vpow0OataOw0hXMByPT/n733Do/sLO/+P6dNlzTqdVW2F+96XfDaXuNubONewDQbTEvyBvILIZBAGgkvJMGEEsoLCWAMmN5NMTYxJTZg1l6vvV5vVdld9Tqj0bRTf3+cOSONyq7KjDTaPZ/r0iXpzMw5z0hnznm+z33f3zsSmfwM5LFD+I4dO+jt7aW7uzvr4lVMBDORLBeXswlXgLi45IGRkREEQVixEPrUiahhGMQTcWD5IiADAwNomoqieJbVfrjYEQSB+++/n8d/+Use+8Vjkw9YcPfdd3Pw4ME5azWmdq+fTnV1NdXV1dmVedM0s5Na53tdXR3BQDC7gu+sgldXVxMOh7M1Bk6RMYDX66GivDyn/mDqZM3n8+Wca1N/FgUxZ4JsWdasETonIjN1VV6W5Zzfpz4uKwrBYDDn/fm8/uzrKisrJh8jd78NDfWYpsWDDz6Iqk46q0mSyB23305tbS3l4fLs8ZzXejwezjnnnDn//qcS9qeqvzkbok6Loay0FAQwdJ1EIpH3CXl9fT1+v59kMklnZ2de6n7yYcM7FSdqXVdXfBEaF5dC4AoQF5clYlkWw8PDlJeXF0UYfWxsDCx7EnV6e9H8TIgm06/WFH26x0rwta9+lXO2b2dwYDC7LRab4NZbb+Wxxx47xStPjSAIM1bGncL7YCA46///VHUh0xtPTj/WqdJ8HFE0lcHuwRnPa6hvoK0p16TgVPutKC+nYg4jhdPV/ThWst/4Rm7n81tuuYXdu3fP+TqX5UWSJEpCJcRiMaLRaK4AyYNoEwSBLVu3sPfZvRw9ejSvxgP5EpWqqjI+Pk5tba0rVF3OCtyZgovLEjEMA5/PN2PytRzMdqMaGBgAyNpoFhqnmRac2pbzbEYURX7+s58hSbmX3L17n+MjH/lIXo8lCALl4fIV70NTLPzq17+ms7MrZ9tb3vKWlRmMy5yUlYUBiESjBdn/hvUbQLCvj4Uodl8qZWVlqKpKKpVa6aG4uCwLrgBxcVkisiyzfv36osnjdUL5TmFnoRkcGrRtamV5WXuOrDZaWlr4xCc+OWP7Rx54gD179uTtOD6fj+bmZleAZJhuvbtly2YuvvhiOjo66O3tneNVLstNOGxfr6KOOMhzilMwGKSq0k5JffHFF5e8v3zZ8DqUlJQgiiLRAgkwF5diwxUgLi5LQFVVIpnCyZVCEIScm6FTsLugXOIljP9kpvh8TVPTGVskmy9e+9rXcNNNr8zdmKkHmZiYyMsxNE0jnU7nZV+rnZMnT/LYL36Rs+0tb3kLgiBkm/K5FAeFdMJy2LZtGwAdHR2Yplmw4ywGURQpLS11BYjLWYMrQFxclsDw8DBdXV1FczMzTZPYhO08tBzF4JZlZes/3PSr+fHggw9SV58rDuPxBLfdfnte9j80NERHR2de9rXaeeihh3K0dSgU5O677wbsCd9KLhy45BIOh4HJBZQseUwjbW1tRZZldF3n5MmTp3/BPFhqH5Cp1NXVFY2TootLoXEFiIvLIrEsi5GRESoqKlZs5X/6zS8ajWKZFoIozC8Fa4k399HRUeLxOIIontKO1mUSURR59Oc/n1EP8vy+5/m///f/Lnn/uq4jy24kKp1O87WvfS1n2z333JMtzBcEoWgWDlzsFCSwo8qapp3m2YtDkiSam5sBOHjwYEGOsRQCgUDRpPK6uBQaV4C4uCySaDSKpmnL2uzvdIyMjAB2P4N5F6AvQYQ4xeeNDY1F561fzDQ1NfHpT396xvZPfPKT/O53v1vSvouxz8FK8OMf/5jh4ZGcbW9+85uzP09tyuiy8ng8HmTZPm8nJuJ2WmgBTDQ2bdoEwODg4IzeMwuhUOfO8PBwto7PxeVMxhUgLi6LZHh4+JS2pcuJczN0BMiCveQXeTOdTL9qXtTrz2Ze9apXcccdt+dutOA1r3nNkupBdF13BQjwxS/mdj6/7LLd2ckn2J8R1zShuAiF7NX/RKaPUSGoq6vD7/ej6/qSTQicnjb5JJVKMTw8nNd9urgUI64AcXFZBJZlUVpauuJNo6bf/BwL3srKyoIfOxKJMj4+jiCeuj+Ey9x8/vOfp6EhdxKcSCS5+eabF71P07SQzvIUrBf2v8Azzzybs2269a7f7z9lh3uX5SeQST/KlyHDbAiCkK1XK8Y0rFAohKqqqKq60kNxcSkorgBxcVkEgiBQU1OTLZwsFhwHlXmPawmrd9093QDU1da5lq+LRBRFHn300Rk1Gy++eIB/+qd/WtQ+t2zZTG1NbT6Gt2p58EsP5vxeW1fLDTfckLNtbCzC0NDQcg7L5TSEgk4EJDG5sQBpWK2trQD09vYuOg0r3za8DsFlEGEuLsWAK0BcXBbBwMAAyWRypYeRg6Zp2eLN5egB0pdJX2hobCz4sc5kGhoa+NznPjdj+2c+81l++9vfLmqfZ3Mn5bGxCN/5zndytr3xTW+ckZYWj08wOjq6nENzOQ3LNfmuq6tDlmVM0yy6XjCKouD1el0B4nLG4woQF5cFkk6n6enpKaqOtRZW1j9fkiS8Xu8Cd7Cw1Txd1+nPpHs11LvuV0vl9ttv5557Xj1j++te9zoikfn3BUilUhw6dDh3Bfks41vf+iap1GQfFEkSue/ee2c8z7bhXc6RuZyOYE4EpHD/HFEUacwsnBw6dGhJ+8qnDa9DQ0MD5eXled+vi0sx4QoQF5cFMjY2lm0atdJMvfk56VfLURQ/ODiIZZr4/f5sB2OXpfGpT32K5ubcWppUKs3NN980731omkZaTSGKZ+el3TTNGZ3Pb775ZupqZ9ZqCYKAabk2vMVEMLR86UebN28G7DSsYrNjLi8vz9oSu7icqZyddykXlyUwNjZGaWlp0XX9dgTIgm5ci0zVcdIWGhoazup0n3wiiiI/f/TnKIqcs/3QocO8733vm9c+dN3OZ5dl+TTPPDP5zW9+O6MJ4/TicwfXhrf4CAYyEZBkYvJ/U6DrS319PYqiYBjGomxvC3nuWJbF0NAQ8Xjh3MBcXFYaV4C4uCyAVCpFMpksyvC4c7Najg7oPT09AG7zwTxTW1PLF77whRnb//u/v8D/PPHEaV9vGDpA0Ynj5WK69e7mzZu45JJLZn2u3++nogg/x2czgUAABLBMi2SysCmuoijS1tYGQGdn52mePTeFWoDp7++f2RXexeUMwhUgLi4LQBRFamtrl6XIeyFYlpWNgCwqNWwBq3nxeDx7LLePQv656aabeMMbXj9j+3333svoaSYkuqEjSfJZGZXq7u7mF794NGfbW97yljn/FmVlZe75W2SIokjAb6eQLkcdkyNAOjo6iioNSxAEQqGQGwFxOaNxBYiLywLweDw0NjYWTY791MmVs1pW6NxhJ/2qsrISn89X0GOdrXziE59g7dq2nG3ptMorb7zxlK8Ll4VpPkt7sjz00EM5OjoUCnL33XfP+Xxd18/qYv1iJRQKAZAsYDNCh/r6eiRJQtM0+vr6Cn68heAIkGISRi4u+aQ4ZlEuLquAVCpFf3//on3jC4WAgK7r2cZVC4rOLGKlfGr9h0vh+PnPf47Hk2sde+xYO+9+z1/P+Rqfz1cU5gjLTTqd5qtf/WrOtle/+p5TivFIJMLRY0cLPTSXBeKYaCQcm/MCRvNEUcxGwQ4fPryg1xaqD4iDI8TcKIjLmYorQFxc5snY2Bj9/f1Fmd4yHrMteEVRXLgF7wKwLCu7Uljf4KavFJLKykoeeuihGdsfevAhfvHYL2Z9zcjIyIJse88UHnnkEYaHR3K2vfnNbz7la5zPsVuIXlw4AkRNp0/zzPzguGF1d3cv6lwohA0v2IsJlZWVZ209l8uZjytAXFzmydjYGOFwuGjSr6bi9AAJBAIFFUgjIyOoqooky9RUF77Y/Wznuuuu4033v2nG9vvfdP+sXbyHh4eZmIgtw8iKi+nF57t3X8rmzZtO/aIiXEhwIbuAkl4mAeKk1Oq6zvDw8LIccz4IgkBLS8uy2Kq7uKwExTeTcnEpQpLJJKlUqujcr5zVt0gkAkyG7RfMPFf+evvs9Ku6urqiFGJnIh994AE2bFifs01VNW6cpR5EN4yzzoJ3//797NnzTM62uax3Z8ONgBQXyy1AJEnKOgd293TP+3XLcd5ompY1/HBxOdNwZxAuLvNgbGwMSZKKtjmUU0y7YAveBa4C9/Xa6Vdu9/Pl5ac/+xlerydnW1fXcf7iL/4iZ5th6GddysaDDz6Y83ttXe2s4mw6oiAiCqIrQIoMR4A4NW3LgeOG5Vzf5osgCAWNOMdiMdrb24uu7tDFJR+4AsTFZR6UlJQUlfvVdOIZx5hFCaR53kBVVWVwaBCAxkZXgCwnFeXlfGVakTXA17/+DX76058CYBgGlmUhnUURkEgkyne+852cbW98430oijLHKyYpLw+zffv2s06wFTteny1ANEeALEOqXGNjIwD9A/1omlbw480Xx2Uw6RTku7icQRTnbMrFpcgoKSmhqqpqpYcxJ06YvpD5woODg1imRTAYPCudllaaa66+mj/5k7fP2P7Wt76VgcEBLMuiPFyOr4AmBMXGt771zZyGdZIkct+9963giFyWitdjT7rT6fSy1emUlpbakRdr0uXvdBTaBQtcAeJyZuMKEBeX0xCLxRgZGTn9E1cAJ/yvpu3VwkX35ZjHvXRw0I5+1NbWLu4YLkvmQx/6EFu2bM7Zpmk617/iekRRpLm5+awpWjVNky996Us522666Sbq6urm9fpYLMahQ4fRdb0Qw3NZJE6qoabpy9oDwzlvOjo6lu2Yp0MURXw+H6lUYbvCu7isBK4AcXE5DUNDQ7M6DhULFlY2bcDv9y/stQtYYHT+BtXV1Qs6hkt++elPf4rPlxvl6O7u4c/+7M9IpVJnTU3Db3/7W9rbcyeLp7PenYppmqTVlNvorcjILqJY1rKmQ61duxZgwQ0JC2XD6xAKhYrS+t3FZam4AsTF5RRYlkUsFivqlCNVVbPpAAsVIPPFNE0GMwKkpsaNgKwkpaWlfP3rX5+x/Xvf+z7/7//9v7OmYPWLX8yNfmzevIndu3fP+/XupK44EUURWbZreJbLCQsm60BSqRSxWPFYWTc3N9PU1LTSw3BxyTuuAHFxOQWJRALDMIpagDj5wZIkFaygdmRkBMs0URQP4fACOq27FITLL7+cd7zjz2ds/7d/+zcGBgZWYETLS09PD48++vOcbW9+85sXJCrcRoTFi5OGparqstWBeDwewuEwYJ9fp2M5zxvTNN3z1OWMwxUgLi6nIBaLIYoiwWBwpYcyKwJCdpVwSdGP09zcnOhHdU21u3JcJHzgAx9g+/ZzcrYZhsmNN944Z1qRqkIsJjA8ItDTI9LXL3CyW6S/394WHRdIJKDYyyIeeuihnFM2GAxw9913L2pf7sSu+HDSsLT08lnxwqQd73wEyHKhqir79u0rqqiMi0s+OHv8Gl1cFoHf76eurq6oJ91OgeKimxDOg8EBuwC9psat/ygmHnnkEbZu3UoiMemS09vbx9ve9nY++9kvkEoLpNOgqvZ3w7AwTTAtsEwTXQNZsezzWwBRcHobgCgKKAoosv0cjwcU2bK3KSvXSDydTs+wJH71q+9ZcJTS7/fT0tw6L8tel+XF4/Wisby9QAAaGhp47rnn6OnpwTTNedmuF/reoCgKoiiSTCaLOhLv4rJQXAHi4nIKysrKKCsr7pQjpwnhojpgz+PmaVkWQ5n+HzXVC2x06FJQQqEQ3/zmt7nl1leB5QV8gJcf/PAAO879Bddff0NWbJgmIIDXAz6Phc8HkmRhWaDrApoGuiagaqAbgGWRStmniCDapbaiaIsTQRCQZTJixMoKFefnQrbW+MlPfsLw0HDOtoUUnzvIsuymExYpXo+HOJBWl68GBGyDDVEU0XWdoaGhonD8EwQBn8/nWvG6nHG4AsTFZQ6SySTpdJqysrKijoBMTEwAFGwlNxaL2VEWgaLuhXI2YBiQSkFaFVDT9vfqmku5743/wJe//BVAyH598IP/yvnn76ClpQ6PB3xe6xSRCyvnuy1KQNMdcWKhqQKaDqoGpmlloiWTERMnaiIIApJki5ORIS9WohJD1RAlDctc+or2F7/4xZzfL730khnWxPNB0zRGx0apKK9woyBFRjYFS13epoCiKFJdXc3AwABdXV1FIUDAjta5AsTlTMMVIC4uczA8PEwkEinqCIggCNkUrKXVqcydB+/Y71ZWVC4uyuKyKDQN0mlIpQXUtEBatUWBadppVJZlF6eaFrztrW/nj08/ycGDzwEqkMYydd7+9pvY88c/ziuVZCqCQDbVaro4AVsIabqd2qXrFroGmhNFMaxMtATGIzJmohotYSIApmTRfTxAnSkuKrXrxRdf5I9/3JOzbTHRD7DTe/r7+ykJlbgCpMhwrjO6oS97rl9raysDAwN0d3eza9eu0z6/0Da8YAuy0dFRLMsq6sUwF5eF4M4mXFzmwLHfLfYLvlOEXlJSUpD9Ow0Ia2rc9KtCYFl2cXg6IzLUtEBqWr0GlmULDws8ih3N8HjB67XweuyUp0996n3cftttxOOJ7L4HBwZ5+5+8nS/89xfyOmZJsr983qnC1f7ZNG3xpOlQkkojyDEEQQHTA4ZCOiUQi5mnTO3yKLY4mZ7a9aUHH8wZR21tLTfddFNe35vLymO7+VkrYind3NzM008/TTQaRdO0ohCnVVVVVFVVFf29yMVlIbgCxMVlFlRVJZVKzbur8kriFGouKgIyjxua24Awf1iWHdVIqwKp1GRxuBPVmF6v4VEg4LPwesHjscXGqYIZn/7Mp7n//jfnBLR+8ehjfOvb3+KeV99T8PcH9vi8XvsrVKIjBIdR0pl0rTDUNiSoqzHRdQFVtdC1maldiVlSuyYm4nzzm3uwrDWABmjc85q3o+sKggALDc65k7nixbETXwkBUlJSgtfrJZ1OMzw8TH19/azPsyxrWaIfQMHs1V1cVhJXgLi4zIJjeVjsriMCArquIyNPdhDOI6qqEolEADcCslAMY1JsqE4qlWpPXKaLDUG0i8P9HltseD12atJC5siGrnPujnP5q3f/FR/76MdyHnvve97Lrl27aG1pze+bXCC2ULAI+GGhqV0/+tHPSaYEIARYiILAVVe9jhMni9u1y2XhiCsoQADq6+vp6upiYHBgTgGynJimSXt7O7W1tUV/T3JxmS+uAHFxmQVJkqisXB01D4ZhICPj9XoXv5M5eiE40Y9gMEggEFj8/s9wdH1mvYamzV6vIUng84DHa0+SHbGxFCzLwrRMJEniXf/fX/Kr/3mC557bl33cNC3uuPNOnt3zzILrQZaTuVK7LMviZz/9TwROAgqgcPU1N1BfV4WmW/N27Zqa2mWaMj5vGEFwV5eLDXmqAFkB5VhdXU1XVxe9vb3sPHfnKZ+7HJE0QRCIx+OuFa/LGUXxz65cXFaAcDic7YpbzFiWnSdtYRVELLnpVzOZWq+RTjnF4VZGZDgRDrteQ5HtyIbXZ2VTqAqhaZ2VYkmyd/7t73yb8887n1hsIvuc4cFh7n/Lm3nowS/nfwAF5smnnqSjoz2T8GKnHL79bbfR0GA3XJzu2jW/1C4vothKd8+ka5ciW8iZiIknI1RWwRrEGYdzLZuroWahcaK9Q4NDRVH4LQgCiqKgacvrCubiUkjcS6uLyzQMwyCVSuH3+4t6tRjssVqWBcIibXhPc2MdGrb7LVSfhf0/nOLw0zXzM007icjrAb/PLg73eCx83lPXa+QTURRpXtNCwM5twuf18c1vfpObbr45px7kiV8+wcMPP8zrX//65RlYnnjooYdyft+wYT2XXnJp9vfFuHapGiSSOggykiAgipy2IaPisbJCxU3tKhySJCFYK5eCVVVVBYJ9/PHx8VmdEK1TOAcWAo/Hs+yNGV1cCokrQFxcpjExMUF7ezvbtm1bWlrTMjD1Bl2ICMjY6CgAFZXled93MWGak/UaaafPhjp3cfjUZn5OZGMlJ6KiKFJWlpuasWPHDv7mb97Lv//bR3K2v//972fXxbtYv279cg5x0fT19fHYLx7L2XbfffctaFV6ttSuRDLBWHs7ra1r8SjBKT1PyPY80XQQsFO7RNEWJ/N17fKcxjDAZW5WsgjdOX5pSSnj4+P09/ef0op9uQrRFUXJOh66uJwJuALExWUaiUQCSZLwLDUxfxlwbtCCICwtWjNLDUgymcz2GCkPnzkCZHozv1RamFGvYVm22BAl8CqT9Rqnbua3cqTSKcbHx6msqMxxzHnHn7+DXz3xq5zeGaZpcffdd/PMnmdWRY3Tww8/nHN6BgJ+7rzrziXv1xEwU127TteQUVWZt2vX1IaMTmqXZ0rn+FXwp18xnPNypQQI2Gmn4+PjdHd3s2nTphUbh0NVVdWK/j1cXPKNewl0cZlGPB4nGAyueN7vfNB1HbCLbvPN2NgYAKFQaFWIsdlYSDM/WZpZr1EELQDmRSqZZmBggIryihmPfeMb3+D8888nGh3PbhsZHuVNb3oTX/va15ZzmAtGVVUe/sbXc7bdcfedlJbkrxDXmsOAAeaX2qVqoGm5rl2qZqfqOQ0Z3dSuheGIaNOyVuwP0dTURHt7O6OZKPB0nNTX5SIUCi3fwVxclgFXgLi4TMGyLBKJhJ0DvApwBIi0WCefU9zcnRtv+SyT2mJjejO/dHpmvcZ8mvmtVkzLLtaVJClrTKAbOoZhYJomDz74IHfddVdOJOE3v/ktH//kJ3j13a+yRZhpYpiG/Rpj8okWFqZhYFomlmVhmVZOYa5pmui6PmMiL8syR6NHZ4z10KFDSAMSgiBM1jAxGcUTRRFJtv8Zv/rVrxkeHM55/dVXXMWRo0cAJp8vSpM/SxKCKCAK9u9C5nFBnHy+LMn2avIS0/glCfySXfszycyGjNOjJ25q16lxbHid69tKUFtbC0BsIlYUDQk1TWNsbIyKiopVEbl0cTkd7lns4jIFwzCQZXlxTf1WANOwJ55eX/5rVUaLtP6j0M38CjduC13X0XQNXdPRDQNd1zB0Y3K7rqNrOqqqomkamq6haZOTe8PQSafStlgwDAzTyIgHW3S8+OKLWObss+obb7yRn/3s5znbPvYfHwPTyk628k1nunPGthMnTiANzE/tfefb3875va2tleHhYYaHh+d4xcJ58cCLtiiRZSTRHpcjZCTJFjYerxdZzogcQURRFBRFQVYUZNlO15QlGUVR7NfJMrIsoSgKfp8yJS1uZmqXptkpgG5q1yTyCteAgB1xCAQCJBKJUzYkXK5Iua7rdHd3EwgE3GiIyxnBGXCpcnHJH7Iss3Xr1pUexrzRdNuWsSAF6JkUrNnSepaLuZr5mWbG9jbPzfzmwjRNNE0jrabRVA1VVUmradIpFU1XUdMqqqqiG3r2ualkCk3T0A0dXdezYnG5EUQRURS45tprOXr0KEePHpt80ILPf/7zPPDAA8iybEcMMpEIQRSQJRlBFDAzokYAyEyIZVlGlmQ74mIaiMKkqrNX8GWsqAWR3PE0NTWxsXxjNgLiWK06ERZBsKMXnV1ddHUdz3ntjTfeSGNjI2CvCDuRG+dLFMVsRGaqOHN6iTgRnKlYpj1+Qy/cZFdwIi+yhCIrWQGjeDz4vF77bynLKB4PiiKjKD4EwYsg+BAEGVH0Ypoymi6cFaldUmaFwDBXtuahtLSURCJBd3f3ijckdCIwrhWvy5mCK0BcXKZgGEZ2ErYacFIUluyXPy19Rtd1ouNRAMrLlycCshzN/CzLygqHtJoinUqTTCXt78kkqXQKXdMxLRM1rZJIJgoiHqZOSCVRQpbtTvayomQEgD2BnzpZlRU5uyovS/bPomSnE8XjcVLpFA0NDdmVfGf1fiq333YbF154IWNjkey2eDzBww8/zDe/+c28vkcAs8eE53O3bd26lQsbLzzta3/44x/m/F5dW8273/3uJdcj2X1azNw0NcMRIfpkdCnzuP3/tx/XVJV0Op2JVmWeb9k+zJqmkUqnsq81TTMrdizTxDBNDF0nzSKdjAS7z4v95cPjCSKKXrA8iKIXSfYiywG8Xk/2y+fzZp5/6tQuT0aoFEtqV/a8NVlRxVRXV0d/fz/9/f0zHltuG17n8+xa8bqcKbgCxMVlCu3t7Xg8HlpbW1d6KPNC07TMymd+b9KRSAQsUBRPQdLR8tXMz7IsVFUlkUgxNpYikUyQiCdIJpNoumaLiESCVDqFqqpLXuUWRBGPR8HrmVy1lhUFRZHxKB68Xm82XcejeOzUHFlGUTwoHltQyLKc9/9XZWXlvJ7n8Xj4zne+y3XXXZujOZ966nd8/vOf50/+5E/yOq7FMj4+zg++94Ocba9/7evyYoZgpzDZAs1DYc0VnGiYqqnouoGmqeiano2k6bqe7TuUSqfQNB1dsyNsTkqepml25pYFhq5j6DqQIpmIzDie/fkRMQwB3ZAwDBHTkhDxIohePB4PHq+HYCCIz6/gUTz4/T4CAT8+n5dg0IfPJxVPatcKrwM1NDawb98+xsbG5mxIuFw2vE4zQleAuJwpuALExSWDU4BeWpo/h51Co6l2ON4p2l0wc0yEp9Z/LGWyvNhmfrJiYhgJTCNBKpVgLJIkPjFBPJFATaezEzZd1+eseTgVkizh8/rwer1Zy2Wv14vP58Pj9eL3+7ICwuPxonhkvB5vjsVtMeEI0fmk4m3atJF//ud/5h//8Z9ytn/oQx/i5ZdfztYtWwo1zHnzve99j0Qimf1dFAVe97rX5fUYyVSS48dP0Ny8hoA/kNd9O4iiiNfrXVI/Iad2KK2mUVUNTVWzKYCqqpFKJu0oXlpFTadJp9Poho6qaljZyGgcAMMQUFMiyYSIYWS+TFuoWKb9OZcV+7Nhn/P25yIY9BMI+Ckt9VNS4qOszEcw6MkIlPyndp3KmWw5qaq0GxLquk4sFlvxe0NZWdmqdSR0cZmOK0BcXDKk03ZxbyBQmMlIIXDygfNdA7KY+o/5NvNLqxrJZBLTSKLrcUwzga7HSafHScTjJFOpzCrv/JGyBb9+vD4fPp+XUDCEz+fLERZer6eohcRi6e7pRhAEWlta5/X8+++/nyeeeIJf//o32W2WBa9+1avYu3fvik5yLMviK1/5Ss62V1z/irzn4FuWhaYV/2qys/KtKAosIBjpCJdUOoWatlPHnHRDVVVJppLEJ+JZMZ9Oa+i6YEdNjAmSCYmJCTHzu5gZCwhCph5IEvAoCgG//ZkrLfESDgcpKfFRWuqntMRHOBzA6xUXnNqVFU4rHAGRZZmSUAmxWIyhoaEcAWJZVkHsz09FU1PTsh7PxaWQuALExSVDPG6vEq5GAbLkCfW0FcdIJALMXf8xVzM/w7BIJlPE40kSiTixiQmSyQSmlcJQJ0imxhGFNJJknn7FVACv10tJqASvz4eiyAQDQfx+P4FAAJ/Ph8/vw+/zn3GCYqEYhoHXs7BV9gcffJALX3YhI8OTfQ6i0XFe+9rX8r3vfS/fQ5w3T/3uKY4da8/Z9sY3vnGFRrN6yREu8zBNsgWZRjKZIpVOkkwmSSSSJOJxEskk8Yk08aROYiJNMmVgGCKqapBMamCN0yc4x7Wyn21BsNP+gkFbnJSVBSgJ+SgvD1BaFqQ8HMDvn9veVkCYNbQyMDDA3uf2svfZvTz77LMcOHCAT3zyE9x4w42L+VOdkpqaGmKxGNFoNO/7XiiObbVrw+tyJuCexS4uGZLJJN6MI81qQZbssXqU/K1YW5bF8MgIAOUVFTOa+cUTOtHxBLHxGOOxGOPReGaykialTiCLOrKsI8sGimwiSZMF3J7MXEOURHxeH4FAgGAoSEmoBJ/P/j0QCOAP+PF5favGDGClMQ1zwSJMlmW++93vcs3V12RdrgD++Mc9fOrTn+Kd73hnvoc5Lx566KGc39evX8fuS3fn/TjFkuZTLAiCkEk59FDGqVONDMMgkbRrreLxOOPRJOOxBMmERmwizXg0QTylY+giiYRGIqExPDwxGT0RJr8kWaKs1E9ZWSD73e8T0Q0J0YJoNMpz+/Zx/Phx7rnnHu69715+9tOfAVBRUcEFF1zAG97wBnZdtKsgf5eKigra29uzUeHpLOc1qru7m2QyyebNm5ftmC4uhWL1zLRcXApMY2NjwfohFApHLE13O5o3U26eTr3G8PAEkYiCbvjZty/O+PgA4+MTpFIpJuJx1LSGZYEkm8iiYQsNRSfgNwkF7QmG4lEI+IP4AwFKQiFKS8sIhYIEgkGCgYCbx5xnTMtaVBRo/br1fPjDH+Zv//Z9Ods/8pEHuOLyK9ixY0e+hjgv+vr6eOwXj+Vsu++++1whWmRIkkRJqISSUAlUz/4cy7JIppJMxBJEIhOMj6eJjicYi0wwMZ5mIqmiqRaaZpJOxRnojmGmLVDBSln4oxX4W0Q+/vEf0td/klQqRnXVPu66803cfts97Np1PuvWtRX83KiosNNQBwcHC3qc+SBJ0tIdD11cigRXgLi4ZHBSFlYTzs1IXWAuu2VBMmky2hMncnSUgfggA/oJksk0Y2NRNM2LZQk8/fS+jP2ngSLbX36vgdcHoWCAYKiM0pISSstKKSstwx/wEwwEz/qUqOXGzNhHL4bXv/71PPbLx3nil09MbrTgNa95DXuf24vP68vTKE/P17/+9ZxoTCDg56677irIsXxeHy0tLQtOXXOZH4IgEPAHCPgD1NRU5TymJTUmRhIcePYgB/e30318mNHROKFQCa1rNzGSiCKpImJKRC4rZU3TNgQB9u3rzexb5OTJfQSDh6isLKWivIRweZCqqlIqK0spKfHlzbUrHA4DdoRc1/Xsoo+FtWwOWA6iKK5oc0YXl3ziChAXF+yUgqNHj9LU1LRiXWZVVSUajVJVVTXvVT3nZqSfomhb1y2GhsYZGIgwODjOyMgEo6MTjI/HUCYSeGNxVEUhFQiCALKs4/UYKF6TyvIQ4XCAcLiM0rJSSktKCYVCS3L1cck/W5boXPXgF7/EBS+7kOHByQ7jsdgEr37Vq/nxj3+81OHNC1VVefgbX8/ZdsdddxTMeUiSJEpLVo/j3WpFT+skxpIce6mDg88fosxfQTBYwgf+8Z9I6xoiFk2NTaxdv5bzXraVq2+4CN1K8vSPvgWBAOfeeSNjkQkikTjDQ+PEYknGYylMFSJqmmhkkE7Bjk44aV2KRyYUDFJZWUp1TRlVVWVUV4cJhbwLdu0KBALZBpfRaHTelteFwI2AuJxJuALExQXbASuRSKxoqsef/umf8uCDDxIOh9mwYQMbNmxg48aN3HPPPWzevJlkMonf7895jbPq7eSzj48n6O+PMDgQZWDQFhzj4wlMw+6xYX8JWJZdLOqTdcLlAsEqH2VtdVRVl3HyZDd9vb1s376d7du3L/vfwWXhLPW8FUWRH3z/+1xx+RU5EYjnntvHxz/xcd71l+9a6hBPy6OPPsrQwFDOtvvuLVzxeTqdJhKJUFFRseoin8WKoRqkJ1TSMY2ejl5+9N2f0H60g872TlJqCoDLL7+CN77xXt7yp2+ieUMj287bRmlVCG/J5KLGeAQkRUCQLNrW1tM27TiWZRGLxRkdiTEyGmV0dIKhoTHGoymSSY1kwiCZGGd4eJwjR04CGWGiKJSUhigvD1NdHaaqyhYnPp+EooDHw4yGjIIgUFJSQjQaZWRkZIYAWc4oiBMBmasniYvLasIVIC4uQCpl3xxXcmX/gQce4KabbuLIkSMcPXqUo0eP8stf/hJN0zj//PO56667qK6uzgqTdeu2EK6vZWTMx8hgkqMv/gBTN1AkcYbYEGWLcNhHZWWI+voKqqvLqKgoJaSpiEPDWH4/VNvJ3F2dXQCESlYmEuSyMHRdp+t4F3V1dYSCi/+ftba08pEHPsJfv/s9Ods/9rGPc+UVV3LeeectdainZLr17stedmFBe5Jousbg0CBl4TIUXAGyUEzdJB1T6T/ez/69L3Fk/1GOHeuis72DV77yJsLhMp7+3R9paWnhtlfdzOZzNrH1/C3UNFbiLfGy9RXr5ty3s6Ay1yRbEARKS0OUloZobcu1Z9Y0jWg0yvBQlJHRGCPDUYaHo8TjKppmMjSkMTQY4egRAAtBBL/fTzhcRlVVBVVVVVRWhAkEFGTFyoiSSlR1gr6+ITZu3JivP+GCqaysXNEIjItLPnEFiIsL9mqo09l6paisrJw13900Lfr6Rvjc577B6GgcXZfQNBHT9HLyRJzRaICJmIhH1BAQEIUUXkWnuirIeTvW09xUQU11GSVBHx5lWm3G2OiM40XHbbvJklBJQd6nS34xDMPuq5KH1Ix7Xn0Pjz/+OL94dEohuAWvfe1r2fvc3oI17Dt46BBPP/3HnG2Ftt51XbDmj2VapGNpRvrHOLD3JTqPnODCc3fxk58+ws8ffRSAkkCItevXcs0rruKqV15G87omXv3nt+Et8SDKi6tPWkx0QVEUqqqqqKrKrTtRVZVIZIzRkVEGh8aIjMUYHZsgmbC7zff3T9Db04dl2WMtKQkQDpdTUhYinSplbLSEjnZobBTwKDCQkPD4BMoAM1CYhozTWbTZiItLEeIKEBcXbAFSDHUNpgnxuE5PzzDd3cP09o7Q2zuMquqZaEYo27JD1wW8fgVfSsXng4nREU52n6C7p5u+/j70dJqPfewT/Od//TfH2ttpaKinsaGe5qZ61rY2cdklF1Fu6vgSKkHFi4S9ephOpQEoKXEFyGrAtGzhka/C///6/H/xsl0XMdg/6foTjye4+1Wv4mc/+WlejjGdh76aa71bVVPFjTfmv6eDy/xQ4yqpaJr0hM6vH/8tf/zfPRw9doz+gQEEBLyKh5a/beWKqy5ny3kb2HbeVlo3NuMr8SJ5ln4eWgWoc/B4PNTU1FJTU8vmTGDNsiySySQjIyMMDQ0xNDzI6HCERFLDMOKMjI4wOJRpxmiKdPcM8tvfPE1NbTW6T6WkrAS/JhD1WJn6EyErRJwvJ61remrXYkgmk3R3d9PS0uI6CbqselwB4uICVFdXL3txn9PMb2RkgpMnBzl5coj+/hHGxycwzcmaDbBX1SoqAlRXl9HYWEVjYyW1teU8/cIf+dXTnaxtrOe2696MaVok0hqJlMro2ASmIGFoN/HU08/Q09PP/v0HeOyX/4Ol6bzhjfdRIco89aMfUVZbS6hlDc1Ndfi9EgGvwlhcI2BAwKsgS+7KW7HinLf5Wh0VRZEf/eCHXHbZZRjG5Gdi//P7+chHPsJ73/vevBzHYTw2zg+++/2cba9/7esKPsHKpvmsdLvtFcZxpDr0wmEOPn+YY4c6aD/SwdjoKB/+93/llz99gonYBNvP3c5dW25ny87NbNy2lkBFANm7uqcQgiBkew+tWbMmuz2ZTDI6OsrwyBCDA4OMjIyiqmksCxLJcdrbDzOcjiLKXlrK11Fd0UhFRS3l5RV4vZ4pfU4EBMEWHoIgIEkzRYnzNZ/gu137EkPXdVeAuKx6VvfVw8UlTwSDwYLuP9vMLwWRSJLjx/vp7u5neHiUWGwip2ZDFE2CQYmGhkqamqppaKikrq7ylOlhFvZkShQFQn4PIb+HmnK7HmBr2yt406tegWlaTCRVEimV4919hEJhOl54iYn2bZwYHmXvvn0cOhzkqquupHdwjF/98Qif++z/oyxcRmN9LS3N9bQ2NbJl81rqa6sI+BQCHgVRPLsncCuN44QmCvkTiU1NTfzHx/6Dv/z/covPP/XpT3PllVdy0UUX5e1Y3//e90kkktnfRVHg9a9/fd72PxeKohAuC59VltGOI1X7wU4OPn8QIwU7dpzHe971bsYTcYSMI9W69Wu5+a4badnWyEe/9CF8ZV6UU3Qszzdm5pyW5JX53/j9fhobG2lsbMxue/jhr2EYBuvWNZNMJogPDGGRRtNPMDTUx9AQmKZIeXkN1dUNVFbWUVZWhWXJaJq94GSLEft66fw89ftswsTjscWJ/Tz7M+5a8bqcCbgCxOWsxzAMBgcHqaioWHIaltPML52eFBzj42l6e/vp6ellcHCYeDyRFRuSZKAoJpWVQerrK2lurqWhoZZQKDgvlxPDtG9EqWTyNM+0b3KlQS+lQS91lXZ61bYKhVu21KErXuJlYZ7d9wLP7z/EupY26qvDbN60geMnu/n903v40U+GwBJQFIn/+vzn+eKDX0ZT0zQ21NLcVMe65ibWrW+msa4Gv1d2xcky4fP6aGxsynv90l133sX//PJ/eOSRn0xutODee+/l2b3PLqngPbs7y5pRfH7dK66jvr5+jlfkD7/Pn7PqfaZhqAapWJp0TGO0f4zvPPwDjh05RsexDpJqCgHYsnkLl1y8m7e8483UNFSw7fxtlFWV5DhSrQSargEgrWBN3nRCoRKi0Qh1dXVs2rSJDSMbmZiI4Ul4GBkaZWhoiHQ6RTTaTzTaz7Fjdr+SysoKGhoaaGhoory8Bl0X0TR7UUrXrezilCBAKiXkRE/syMlkahdIjIzIVFRYGVev/KR2ubisBMXz6XZxWSFSqRR9fX2UlZUt6HWWNSkyHMGRToNhmIyOjnHiRDd9fQOMjY1hWSDLJopiEAwaVFQEWbOmlpaWJurq6hYdTs/XqrckQmnAi0/UqSmR2L6pke3b13LlBe9F1QySqkZkPEXn8ZNEJpJUhkPU11Vx6NARfv2bpxgdHQUEwOJ9738/YyPD7H9xP40NNbQ01rO2rZkN61qorSq3xYnXdR3KFx6Ph4oCpWN8+tOf5plnnqGvrz+7LZFIcvfdd/Pozx9d8v5/9/vfcfTosZxthS4+dzAMA03X8Hq8q97SdC5Hqo5j7Ww/dwc3XHc9e/6wh4aGBm6762Y27djItvO3Zh2p1l/ZtNJvIQdds/saraQpyHTKysqIRiMMDQ2xadMmJFGisrKKlnXNeGVvJj1qgr6+Pvr6+uju7kZV0wwPDzM8PMwLL7yALCs0NTWxZs0ampqa8PvtJp+WRUaUWDniRFXtBS37XiOg6yaRiEh/v0UyaeUttcvFZSVwT02Xs575WPAaRm5UI522bwxOrUY6rdLXN0B390kGBgYwzRSybKAoBuXlBlVVpdTU1LFmjS04fL78dJcWMxOnfDn6xCfiQK4Fr0eR8CgSZUEfLfXh7PYL//kvUDWDeEpjLBqn/fgJTvT0s2HjJp58KsLQ8CgHDrxEJBLFESe333Ybl1x6KY/94ufUVlfQ2tzI2tYmNqxrpSJcQtCn4PO4l6WFkEwlSSaSVFRU5H3foijyox/9iEsvvRRdn0z7OPDiS3zoQx/i7/7u75a0/688lBv9WLduLZftvmxJ+5wvsdgEJ7tPsHXL1lWVhjXdkerIS+2cs2kHh48c4cEHHwQg5A+ybv1arr3+ai6/9jI2b9/IZXd+aUmOVMuJnomAFJMAqamp5sSJ40QikVkft62BSygtLWHTpo1YlkU0Ok5PTw8nT55kcHAQXdfo6uqkq6sTsLusNzc309LSSlVVJR7P7EJY121xkk6LCEItXq+CKJrzSu0SxZmiZHpql4vLSlA8n24XlxXCseB1JiG6nhvVSKXsbaZpYZq5omNgoJe+vi5GR/sQRQ1F0QmHLURRoqamhtbWVpqbmwmFClNjIohLFCDT7j4LteB1xEl5iY+1TZP+9JfvbOav3nYH8ZTGyFiUo+3H6ezqpqGljYlYiuPHT/KHP+7JCB5bnGzdupn3vPdv+MkjPyLo89Da0sC6tmbWtTRTXhYk6FNm2gi7MBGbyKYQFoL6+no++clP8ud//o6c7Z/73Oe54sorFi0Y+vv7efTR3CjKfffdt2zRCKduqtijH2pcJRVJkY4b7HnyWX712K+nOVIphN8S5mUvO5/K+jK2nLuJlg1r8Jf58uJItRJoGbErFpH5RUWFfX1LZtJdnfNnLgRBIBwuIxwuY9u2rZimyfDwCN3dJ+ns7CIajRCJ2F8vvPACfn+AtWvbaGtbS3V1Vc55Kcv2l98vEg7nfs5N046YqKo1Z2qXUww/V2rXbI5dbmqXS6FxBYjLWY2qwsiISiIRpLvbvmDrui0wpooN07QyF2SN0dFuTp5sZ3i4B0Gwb5SBAJSUlFJXV0dbWyv19fXLsqrqUezUG13Xl7yvfFvw+jwyPo9MZamfjS11wK7sY3ff+DKSaZ3+oVEOH+vi+PFuRNmPYWgceOkQXZ2dpFJpHHFSV1fL373/7+hoP8Z4ZJiW1gbWtzTT1rKGcKkPv+fsFSemZSIUeKZw66238sQTT/C97+W6Vd3/pvt55plnKSsrXfA+v/71r+d0Xff7fdx1191LHut8OV2zu5VgLkeq3r5e3vPe97Bv3z56enrZvuMc7tx6G1t3bslxpDqfc1b6LeQFQ3dSsIonVTMQsHvgpNOpnAWf+Z4/oihSU1NNTU01559/PolEkhMnTtDZ2cnAwADJZIIDBw5w4MABfD4/ra2trF+/PkeMGIZBJBKlpCSUTdsVRfB67a/pzJba5fysqmTeT644yadrl4vLqXBPIZezAqdeY2pUQ1XBMCyiUbu3RiRiZgWH1ws+n3Nht4hGBzly5DCdnZ2YmcJvQYBAIEhbWysbNmykvDy87JMZT+auI+Sh2Ds2MQGArCgF74kS8CoEvAqVpY1sWzfpNGOaFpc//EkSKY2e/kE62k/SfqKb0dEYgaCffS+8wJNPPomm6YAAokVNdQ1veuMbaaiv5eBLL9Da3MD61mZamxspCXrPeBthy7SWpUHZxz72MZ5++mm6u3uy21KpNHfffRePP/74gvalaRpf+/rDOdvuvOvORQmZRbPCjQj1tE4ymqL9YCcvPfcSw30RbnjFDbz//X9Hd29vjiPV9bdey0VXncdVd1667I5UK0FWgEjFM0VxnBJN08xGQZZCIOBn8+ZNbN68CV3X6enpobOzi66uLlKpJIcOHeTQoYP4/QE2bdrIpk2bURSZEydOsG7dunnVDTrOWnM91UntcgSJplmZbYtL7XKEipva5TIfiufT7eKSJ0xzZnG4U68xPaoBUF1dnhUazkqS7UiS4vDhIxw6dIh4fCK7f78/QGtrCxs2bKSysmJFV1AV2xoFQ1+aLaNgQWx8HICy0mWcBE5DFAVCPg8hn4eacBvnbW7LPmaaFi8/731MJNJ0dffT2XmSjpM99PQMUhEuZ/+LB/nyQ1/D0DON+WSRmpoarnz5Fdx08w28sPcZaqvLaVvbTGtTHYHMcVa7U5dpmsvyHkRR5Ec//hEX77o4IwBtDh06zD/+0z/yL//8L/Pe16OPPsrQwFDOtvvuvS9vY50v9opv4f92pm6SjKZIjaskxlJ862vf4uCBIzmOVGua1nDN1dfwtv/zZjxBma3nbSFcU4on6MnLAsNqQtcyNSBK8UxRJElCkRU0XSMen8CS8ydgZVmmpaWFlpYWdH03J06c5OjRo/T29pJMJti3bx/79j1PQ0MDPp8vbz2rJlO7Zj7mpna5FJri+XS7uCwCXZ8Z2dC0mWLDsqxsqNrjmYxuKIpFMpnC6/VkU6YGB4d4/vnnOXnyJGTzxEXWrVvHpk2bqKmpLpq0DU9GgKTU9OJ2MOV9TGQiIMEC1asslanipK6ihIt3bMg+phsmifT5/Ol9t3L8RC/Hjp+gs6uHE939hMpK6e7u52Of/hy6Zgs1RZGpra1j48b1vO2tb6b3eCeKZGVthFdTjxOPx0OIpVvizoea6ho++9nP8ra3vT1n+4Nf+jJXX30NV15xxbz2M91698ILL2Dr1q15G+d8qKioKEjdjGVapKJp+o8P8OLelzh84AjHjnTRcbSdsvIy3vf+v+PZPz5HZWXVrI5U28T1eR/TakMrwiJ0AJ/fjxbTmJiIQ7gwx5BlmbVr21i7tg1N0+jo6OTo0SMMDg7S22tHH3t6eti0aSPnnHNO3gxNprMSqV0eD6wiPwiXJVJcn24Xl1OgaTMtb2crDjdNC1m2RYbHM5lONdu9TNcNDh8+TEtLC+l0iueffyF7kQcoLS1jy5YtbNiwvig7zzoREOeGvRTicdsBa74F6MWELImUBryUBrw0Vpdy6QWbs4/phkk8pXLFRd+l60Q3x7pOcPx4Lye6+1F1DU03+fB/fJKR4THAwufzUldbR2NTI/e+/jWUBLyMjQ6ycX0rtdUVBH1KUdkIV1VVLevxbrjhBu6559V861vfztn+1re8hT3PPEN5OHzK1x/vOM4f/vB0zrblst7NN5ZpocZVhntHObD3JQ7tP8qahlZEQeRf/+1fgSmOVDdcza6Xv4y1Oxr40iOfWzWOVCuBU9NWTH1AAAJBP7HYONFolNKwHSkWKNwihaIomfSrjYyN2cXqnZ2dpNMpXnjhBV588QCbN29ix45zCQRmCWMUiHymdjlpXW5q19lHcX26XVyYvZmf3V9jelTD/nmqyHBWbOa7iqJpOtFolF/96ldEo5HMVoHW1lbOOeccamqqC/U284KcESBYdoHiUgrfnbxm/2zx+FWMLImUBX1ZG+Erdk0W6jo2wj/+xn/Tfvw47Z0nOX68jxO9fQwPjRCJxvn6N7/Db3/7JGARDAWpq62lvr6OG19xLTt3bGVwsIe2NQ1UlpetiI2wYRiZ9Iflm8x+9KMf5Q9/+APHj5/IbkunVe684w5+9atfnfK1jz6S63xVWV3JjTfeWJBxnorRsTEikTHWtq2d92vUuEp8NIWeNHjphUP89Ls/42j7Mfr6+wEBn6Jw66238spbX8nf/ONfs2HrWlo3Nq9qR6qVwHHBWqlO6HMRDISAAaLRKCXW8i7UlJeHueSSi6mtrUXXdQ4ePEgsNs5LL73EoUOHWbduHTt37qSkZHmioadiYaldtjhx7vluatfZgytAXFYU07QvPNMjG3PVa0wVGk6EY7EXnZGRUf73f3+baaJnp1mtX7+ec889l9LS1REFcFywwC7sXZQAEQSwrGw/lDNNgJyKqTbCbY0VXHvpednHUqpOPKXx8gs3cfDozXR29dB1oofu3gH6+gZoP36SnoEhPvuZzwEWZWWl1NbV09BQywU7zuEV111NMh6lIlxCZabHSSGcuo6fOI4syTQ3N+d936fihz/8Ibt27UJVJ6Nvx461876/ez//+qEPz/m63zz2m5zfX//a1xXc9GA2dF3LOK3NjpbUiI8kObT/MC/tO5R1pOruPsF9b3oTiqLQ29vHOTvO4c57bmPLzs05jlSbr26bc98upyZbA1JERehA1iQhmUysyPE9Hg+bN28CYNu2rZw8eZIXXniBwcFBjh49wtGjR9m2bSvnn39+NjpebBQ6tWs2xy43tas4Ka5Pt8sZzema+U39Lgj2BcrvnxQcHk9+wq/pdJq9e/dy8OAh7BoPgY0bN3L++ecvaxg7H4jO0pAFqqouKR84nrBTsM4mAXIqptoItzVelPNYIq2RTOtMJDV2bFpDR+dJTvT0cbJngONdJxmPjLN+8zn82f/5c7AsyivKaaivo76ulrVtLdx+y434PRJeRaK8zL8kG2HTNBHk5c9LqKqq4vP/9Xnuf9Obc7Z/7Stf47prruXqq6+e9XWpxOSkXxDgda97XUHHOReWZWVruaY7UvV09XPN1a/gS1/6Is88uzfHkeq6m6/h2ldeTWV9mHvf86oz3pFqJTCN4nPBAgiHywFyTBiWsx5wuv1vc3Mza9asob+/nz179jA8PMyBAwc4dqydiy66iPXr1xVNveJ8yEdqVzI5v9SuqULFTe1aGYrr0+1yxjDfZn6maSFJM+s1CrV409XVxZNPPoWaKdqura2lpqaGCy+8cFVdqKeiKApm2kTT1IW/eEondScC4vMXpqjxTGLSRthPS+0lwCWAfT6nNDtyEk/q/Pen/52XDh/jRHc/Pb0DHDnSzt59z7PlnJ38v09/hiPtx6iprqa2ro6m+jrWNNVx/SuuoqayAr9HIBQ4vY2w7YK1MrkH115zLa+/7/U8/JVcS923ve1t7Nmz57Svv+4Vr6CxsfG0z8snjiPVWGeUyOAEn/rKF3h+7z7aj7WTTNuOVLW1tVx66ct53Rtfw11vuPWsdqRaCfTMBL+YXLCAbEPZ+MTEaZ5ZGJLJFIcPH2bjxo0Eg3ZfEkEQqK+v55ZbbqGrq4vf//4PpFJJ/vd/f8vRo0e54oorss9d7ZwutcsRJQtN7RJFAVl2U7uWm+L6dLusSpwP+FTBcapmfk741flajjpD0zR5+umnOXjwIADhcJhdu3bR2NiYsxK62hAQ8Hg8pNIptCU0I0yracfwi4D/zLhZrQSiKGTFSXUZtNa9jJuuehlgn/8JVSOR0kikDCr/9i945rnnOXHSFifP73+RXz7xK0zJw0R0gm9/99tU11TTWNdIQ30ta9bUsXvXhbS1rCHol/B5ZEI+D1ismAAB+LcP/St/eOr3tLd3ZLepqsZtt93Gx775sVO+9r77Cmu9m3WkOjHIi3sPcPjFI7QfOU77sWNcfvnL2b37Mg68cACf18dtd850pHLFxsqQSqcQmexzVCwEg3Z9haqpaLqK11M84xMEgba2NtasWcO+fft48cUD9Pf38cMf/pArrricpqamlR5iQRFFe/FytiSA+aR2TRcnp0vtcn53U7sWjytAXObNbM385qrXmN7Mz/m+EvOkeDzB448/lq312LRpMxdfvCtbL7FaxYeDKNh/VF1bvABJJe3oh8frWdHJ7JnMVBthgNa67Vx76XbAsRHWiCdVUqpFz8AQ5WV+TnT30dPbz569e/nJo4P88ZkXuOOOO/n3f/83SkvLaKiv55ZbbsQ0UjTW9bBt80aCfhm/V15WG+Ef/PCHvOzCC0mnJ6NwXV3H+cxHPguts79m7do2Xn7ZZXkbg+NINdI3xot7X+LQC0cIKiWcs+0c3v3ud6FjTTpSXX815+06l/XntvDxW/7VdaQqMpKpNEHs61Ex4fHY10fTNEkmUoQCK1MreKp7lizLXHjhhWzYsJEnnvgfxsbGeOyxx9i+ffuqjvQvBTe1qzhxBYjLrCy0mZ9TrzE1slEMH7xEIskjjzxCIhFHkmRe/vKXs3btZHFod3c3pmkuewFvPhEFEQuLdHqRvUCAVMp2wHKjHyvDVBthgLb6Ui7buQ6YtBEen0iTUk3iqTSve82ddB3vobd/gM//14MMDQ9imDpf+O8v8sEPfhBD02lorKexoY7Wxjpa29Zwwc7tBHyy7dSlyHkVJ+XhMF/44he59w335mz/nx/8D8IbgFlWCe+7774liV01rjI+HMdKWpzs6OGbX/l2riOVrLD7st1ced0V/P2H/46mtQ2uI9UqQNd1TMN2wfJ5ii8d1Ov1kUwmSCQT9kp5AW14p2Nk/i7z+eyWlZVyyy238OSTT9HR0c7+/ftRVY1LL73krBQhp6IQqV2225eArkN9PTQ0LP/7KnZcAeKy5GZ+RdgeA7CLzX/xi0dJJOL4fH5uuummrIuJQyqVRjpFfv1qQM5YVabTqYW/OHMjSmYEiM8tQC86ptoIO+x81/2AbSOcVDXGokkiE3Fk2c9tr3wF+186RG/fAIcOH2FsdAwQ+Ju/eQ/t7e3s3fsc9Q21rGmopbmpgXVtazhn8yZKS3xLshG+8ooruP/Nb+LBL315cqMF/BS4EZhynfD7fdx996vmvW8tqZEYTXLwhcMcfOEwx17q4NjRDrpPHueKq65m9+5LGRgc4pzt27jjnlvZeu5mNp6zLutIte6ymekn4+PjmKZFOFy2qPfrUhiSqSQCYIlC0dWAAAQCAZLJBBOx2LIf2xEg83U7lGWZK6+8gurqap5++g8cPnwIj0fhZS97WSGHeUYx39SueBwmJmB83P45kXDStwRKSlzBNxvF9+l2KSiFaOZXjFiWxeOPP87Y2Nic4gPs1Tavd/Wu+tu+6HbFfiKRXPR+Upnoid8tQF9VeBSJ3t6TVJRX0NpgT7LP+bN7ANtGOJnWGYnE6O4ZoKK6Dr9XZGhokL6+Afa/8CLj43Yx7StvvJ7zL7yA73/3+1TXVNHcUEtLcyNr25rYsLaVirIQfq98WnHyL//8L/zuqd9x+PCRyY2jwHPAFCOxO++8Y9bPI0w6UnUc6uKl516i4/BJLr1kN7//3e/48U9+goBFY0Mj69ev47qbrubya3ZT31rLdW94OZ7g/FdDxsbGMEzDFSBFhppJ4/N5vAiCgHWa5y83wUCA4WGL8RUQIKWlJWzdumXBHeK3bduKYRg888we9u/fT2lpGZs2bSzQKM98TNOeRzlfyaQtRkRRoLQUysuFbHqWJMFperOetayS6aTLQlnOZn7FyJEjRxkcHESSZG644Ya5Jzu6jiyvbhtNfyZtamIJzizpjHgJBoJ5GZPL8mBZFrFYjNKSmee3YyNcXuJj/Rq7oeaOddfz9tdcn+1xMjwa4Uj7ccqr6hgcHqWispyT3T3s2fNMRtAKNK9p4h/+6e958EsP4vd7WVNfT2trA+ta17C2pZmKcCDHRvh73/s+F154QW6PjW6gGqiwf733Xrv4POtINRBFMTz8/JHHePK3T+U4UlVX1bBzx05uufMmLr32ZWzZuTkvjlQWq9d84kzGcePzFEse7zTC5eUcP3Ec0zSB5a0hFEVx0T1zduzYjq5r7Nu3jz179tDa2rIi/XdWI5pmiwxHcKTTk7Ugoihk+pEJ+Hx2GpfTPmA1z6GWA1eAnAGsZDO/YkTTtKwF6I4d26moKJ/1eZZloWnagleTio1gyBYgaXURKVgZEpnGWkvpI+Ky/GT7AixwEjS1x8mm1vrM1lZuv+o8UprORFJlYGiUI8e6EGQPAa8Hj8fDsaOd/O+Tv8+sUgsoHpn/eMDuij4yMkhzYz2trfW84a/+P/77Pz6byeVUAQvrOfDW+KhqqOY7j/2Qr37pm4wcjXD86HHGJ2J8+IMf4mRXd9aRauP2DWw7fyu1TVVTHKk25fVv5wqQ4sNJBy0mh6mp+DKTdsNYvOnHYhkZGSWZTCza0Wrnzp10dnYRjUbYs+cZLrtsd55HuPqxrJnRDdPMFRx+v92R3REcznzKvZwsjNU98zoLWUwzv0BgMqqRr2Z+xcyxY+2oahq/P8COHTtO+dx169bh8xXnjW6+BEO2NaRpLCJZIXMyqGm787DbhHB14azCOk5oS2WqjXBNOMj2DWuyj11x3geyNsIne/s51t7NyFgUOQTPpp/lmHAMY9SEqH0T91yyBs8eDx7Liw8ZCYGyR3X0tRo/O/J7EFXEFh1xnUlFaSk/4js03dnEFY27WF+1ntbyNsp94by8r9kwTRNllUc/z0TUtAqWhbfIHLAclEzRYyK++JTXxZJIxInHF9+FXRRFLrroZTz++OMcOXKEiy/eteoX4JaKrs+Mbkza8Nr9QSRJyBrtOILjLP+z5QX3T1jELKSZnyxPCoxCN/Mrdvr6+gBoa2s9ZbGeIAiUlq6MjWK+EBDw+2zRsJQUrFQyCX6fK0BWGVkBsgx2u6IoYJLiO0e+yi86fkH7SDvjWgyeBqlEISCVoKRKkONB5HQQ06sg1ipYPSKWAIYApi6jqhK6kkJVTFSfiaXonBAHeaGnB/o1eEEDSQVRo8IXprW8lbXhtbSGW1lbvpa28jZay1op8S7tsxsMBOddzOuyfGRTsIrU3cTn8y3ZdXCxGIax5HO2qakJj8eLqqYZHh6hrq42T6MrfpxWAlMFh2HkRje8XlAUISe64fOd+Qu3K4ErQIqE1dDMb7Xg9Puoq6s75fMMw2BwcJDy8vJVnXrkz4w9mUosKq3EsiyS6QT4fW4X9FWGJEnU19UXJJdbNVS++9J3+fGhH3Nw+CBj6hiWBZIq40378KpeqtUGPGkflumYkQoIpDG9aWTRQr0whRZJY6oGmmwxtFnE2qkAHixTASQsQ8Iy/KAH7BlCBkEUGBE0RocG2St1g/QEiGpGnOjUBKppy4iTlnAL68rX0RpuozXcgl85vZA+3fXBZWVIpYu7BsTjsVf2dNNOwVpeG15zyQJEEAQqKsrp7+9nYGDgjBYghpErNjLaNlMgbjcYVJSZ0Y2zdfF2uXGnrcvMQpr5Qa7d7Uo281tNOHnxp5uU6bpOf/8AwWBoVQsQr9dekcOyrYcX+l40Xct2Qfd5V+/f4WxEkiSqqqqWvB/DMHi843G+deDbvDDwAiOpYQzLRNBFfGkf3rSXynQ9HtUHhjhFbFiY2PNEzZtC86ZIe9Ko3jS6x07r89wuoT1iIJbD1bddgRCWOTl+gq5IF2ndQDAVMDxgyvZ3Q8EyPYCAZchYhjyLOIGBqMbgYDdPSx0g6tmoiSDp1AfrWFu+Nhs9WRteS0t5Cy1lLXgke2Vd13VEUXQbbxYZjnlBsRZIezK1KYa+/DUguq7nxanQeQ+6ri15X8WEM6dyRIemTTYLdKIbsjwzuuFeAlYGV4AUkDOlmd9qo7S0lFhsnEgkSn19/ZzPc4TKai9ElSTJzmW3yPQ8WcANShDQMh3UBVE46/OBVxu6rhObmKAkFFrQ/25Pzx6+8vxXeKb3GQbiA2iWDqaAL2WLjbBagyftQ9JlTCwEQICs2NAVFdWbQvOkSXtTqB4VQYSQHKStvJVrW6/h/p33UxmsxDR07vjleVx1yZX8xb0fR5TscRqmQV+sj/ZIB8cjXXSMddAZ6aRzrJMT413oBgiGB0wFDEek2OLEMgEULEMBIThDnPRENHr7O3hSOgxiJqVL0hAlgzUla1gbXkuYMOsq13Fuy07awq00lTYhi+75v9KkU7b7WbHWgDjCyDTNbArkclFVVZW1XV8K8bidrltRUbHkfa0UpjkzuuFY4Tqiw++3HaqmRjeKNLPvrMS92hYIXYcnnwRBsJAkkOXJ704K1Wpo5rcaCWWKsk+cOMGWLZvnfN6kgdDqFSDO2D2yBzRIJhfuhKVnBIgrPlYfaTVNd/dJ1q9fP+f/79DwYb78/IP8/sTv6Yn1kDZVLJOM2PBRolXgSfuQNU9WbEA2KIapaJNiw2dHOAQRfKKXNWVr2N28mzed+ybWVaybc5ziLJ8xSZRoKmuiqawJWi7PeUwzNLpj3XSO2YKkI9JJ11gnHZEOumPtWKaUjZY4AsUyPGAp08SJkCNOLNHieETjeO+hjDB5Av5oCxRFEmgpa6E13EZbeSvrytfRUtbC2vK11JfU563Q3+XUZFOwitQFa2ptiqqpy3r/qKxcumBIJlOMjUUACIdnd4gsRhynT0d0qOpk7YYk2UJDkmZGN9wyr+LFnXEUCEGAdNp2olIUK3sPdEJ9pmnnJ2raZJRDUdyIRz7YuHEjhw8foqenm+HhEaqqKmd9nhMBORNSMDxeBTQW1Z1XN3QECzyKq4JXG9N7EfSP9/Ol57/Eb7p+TVfkOAkjiWWCR/XgTfsIqGWE0z4U1Tu72JB1VG8KPZNGlfKlQLTwiAp1wTp2NV7Hvefey3n15xX0fSmSQlu4jbZwG7TlPpbSU5yInqBrrIuOSAddmehJx1gnA4kTdsrW1MiJmStOLNMDuidHnAiigIrJsYjKse4XQdqbESi2OPFJCm3lbbSUZWpNyttoC7fSFm6jJlizqhcxignLskil0ogUbxG6KIp2FMIATVWX7biWZRGJRAkGA0v62+zduxfTNCgvLy/aJpzTG/2lUrlWuJI0aYU7NbpRpFl7LnPgCpACIYpw2WUCug6qKqCqtmLXNPtC4nzAEgmnIaB9I1QUOxrifHe+zoA58rJRXV1FY2MTPT3d/OEPv+eVr3zlrCJDkkTKy8NI0ur/45aUljIxEcuuHi4EXcvk6hfpDd9ldsZT43zxuS/ysyM/o/c3vbYjFSCrCt6UD68aJJSuRFG9WBY5dRsWFkgmaU8K3Zsi7U2T8qawZBNJEKnyV3Np3S5eu/21XN129ZLHKkkiQp4uYj7Zx8bKjWysnNnJOa7GOR49bkdNxjroimZSu8a6GE6OZOpNFDA9kBEqlukBS8YyBSzTC3ruLEYQBZIYHIxMcFDcB9IfJ2tOJI2Q4s8KknXhdbSUt7A2vJa28rVU+FfPCnMxkEwlsTKi2q51KE5h5zSvVZdRgJimSVdXFy0tLVRULO5aPTYW4ciRIwBccMEFRSOcNS03ujG90Z+i5Db6c7670Y3VjStACoQgQHCWptJ2h/JJQTL1Z6cmxK4bye1ULsuzCxM3a2Z2LrroIn7wgx4GBwd56qnfcdllu2dcbL1eL62trSszwDzhOLAEgwEmiC0qBUvLFCIqHtf6o1hZvCNVpkhctOw0Km8K1WNHNkzZQBQEyj0VXFRzIbdtvo07N99ZEGvat77trTQ2NOZ9v9MJeoJsrd7K1uqtMx4bT49noyWdY53sO76PQW2Ik7ETRNLjk8Xw2bSujFOXJWOZIpbpA3LrqwRRICbovDga4UXpjyA+lY2aIGqUe8toqWhlbVkbbeVractYCbeGWyn1zuxef7aTyPS48Pl9RW2RLGRsr1V1+Yq4dX1pqbKJRJKf//znWJZJVVUVa9asOf2LCsD0Rn+zWeHaTlRCjthwa2LPPNzp6zLjNAecLVSo67MLE6f3hx1NsZiYICdqMpswORsaDp6K8vIwl19+Ob/97W84evQIoVCI887bmfMcwzDQNA2v11s0K0GLxSmMjETGFvZCQUDLREDcpmzFQT4dqVRFJe1LoXs0BAHKlDK2Vm7mxvU38rrtryPkCS3Le+rt7SMYXNmeO6XeUnbU7mBH7Q47Cn2RmWk4JjCWGsvUmnRkU7s6I110jXUyoSURjOlOXdNthCXQZoqTUUFjbHiIfVIPSL/O2AhrIGpU+SttG+HytbSWTfY4aSlrIeiZZfXqLGAiUxwd8gdWeCSnRlEUBIRFRZwXi2MWspgidFVV+dnPfkYqlcTvD3Dttdct2z3vdI3+JAk8nkkrXEdwuIurZz7uv7iIkGX7KzDt2muaUwVJbjqX46hlN9exMs+3oydzpXMV8cJSXlm/fh3pdJqnn/4Dzz23l1gsxu7dl2ZX1uLxBO3t7WzbtnVVpx8JgoAv04wwkVh4d97sjc2NgKwIR0aO8NMjP+WJ409wYOBAXh2pWjOOVG/a+Saqgku3610sj/z4Ea648gp23/r6FRvDVARByFlhr/BXUOGv4IKGC3KeZ1kWg/FB250r0kXnaAcdkY5smldK1xdpIywwFNUYHuplj3g8J2oiSDq1gVrWlrextryN1nCb3YixvJWWsha88pmb6B6fiAMQCC2PMF4szoJPehER58XiND70LPA6PTYW4YknnmB8PIqieHjlK19JIFCYhrOTGRy26Ein7XmKJOU2+pNlIad2w230d3biCpBVgChOfkinYlmgaXOlc9lCRNPsYvip6Vx2852ZwuRMLILftm0ruq7z7LPPcOzYUYaHh3jFK64nFArOKOBdzTg3lGQyseDXGpoOWG4R+jLQF+vjkSOP8NSJpzgw9BJDyUEMw8qLI1VTWRO71+zm/p33n9KRygU0TeNk90nq6uoInGK1XRAEakO11IZqubjp4pzHTMukL9Zn15pEMlGTsS66Ip10RWexEc6mdXmwTAvIiJNpTl2CCH0Rjf6BLn4nHc0phhclg8ZQY0aQtLE23GZ3hg+3sqZ0DYq0uhcR4nFbgISmr8IVGY4ISC1jN3RBEAgGgwtKTWtv7+DJJ5/EMHT8/gDXXXcdZWX5S/0zjNzajemN/hwr3OnRDbfRnwu4AmRVIwiT4mE6hjF31ORsK4I/99wdlJeH+dWvfk0kEuH73/8+F198cbaB22oWIM7Yg5kVQ8MwSKfTC2ripblF6AUhmh7nZ0d/yq86f8WBwQP0xftQdT3rSKWoXqrTTQt2pFJEOeNIdS23tt1GlVbJOdvOWdXn8XJjmAbxeBzDMBa9D1EQaSxtpLG0kZe3vDznMd3U6R7vtqMmYx10jHVwPHKc9rF2uifaMY3F2gjDyYjKyd6j/EY6kE3nQlKRJWgubaat3HYPW1u+lpZwK+vCa2kobVgVNsITGQHidwooi/Sc9mYati5nEXpFRTkVFfMzNUilUjz99B9pbz8GQG1tLVdddfWSIx/ToxuOFe7URn+2Q5Xb6M/l9LgC5AxFkibt6aay0CJ4Z9tqL4Jvbm7m9ttv5/HHH2d8PMqTT/4vlZWVVFefGRaaHtmDIitousb4eJTq6pr5vVAQskXosrsstWhSeorH2x/nic4n2Dewj+5oNykznXWk8qheytN1i3akuqTuIl57zmu5suXKnBXQ0dFRenp7Vuptr1qc6GehLLhlUaY13EpruJWrWq/MeSytpzkxnrERHuugM9pJ11gX7WPt9MczNsLT0rosQwHLjpzY6V0eEEI5NsIaJh0RlY6el0Dal9Md3itLtIZbaSlrZV2m1qQ1bPc6KSYb4YQTAQkGilZ8AAQyEZrlrJszTfO056tlWRw8eIhnnnkm2+V8y5Yt7Nq1a8HnurNIOTW6capGf050w13Hcpkvq2T66JIv8l0Eb/c5WR1F8GVlpdxxx+08//zzvPDCfkZGRhgZGUHXdV72spdlbB9XJxYWJaWljI6OMD4em78AwW6mBaAo7uVgPuimzpMnnuIXHb/gub69HB87zoQezzpSeTQPJelKKhfoSFWihKgMVNJc2sxtm2/nrnk4UtmfQaFoJpCrhUILkFPhlb1sqNjAhooNMx5LaAmOR07YUZNIJmoSaadztIuh5Ik5bISVTORkio3wtB4nKQwOjyU5LD0P0p4cG+Gg7KO13O5psja8lpbyVtZmIigV/oplO7csy8oWoQf8AVCXL71poTguWMvZCf3gwUNUVJRTX18/6+P9/QP88Y9PMzw8DEAoVMJll+2moaFhXvuf2ugvnc61wp3e6G+qHe7ZUlPqkn/cGYdLlrOhCF6SJM4//3w2btzE7373O7q7T3Ls2FHa29vZsGEDO3fuJBRanQ40FRUVjI6OEFtgM0JdN8BtRDgrpmnyXP9z/Pzoz3m672m6RruIqNEcRypfupRStWZBjlR+ycea0jXsrN/JNa3XcPXaq/HJCxfAlmVlrZiLmYt2XcTGjTP7dqwUWQFSZGlJASXAlurNbKnePOOx8fQ4x6PHszbCXZEu2iPtHB87zmgqMqUYPiNSnGL4rI3w7D1OJgSdA2PjHJD2gPi7nLSuMk8JLRWt/On5f8Ktm24t6HtPq2lMw/6/BALBohYgTupeMrVw04/FYFkWqqpm+49M3d7b28uzzz6bFR6yrHDuueeyffs5cwpsxwp3anTjVI3+pkY33LUOl3zhChCX01KIIvjpwsSJoizXxS0UCnLRRRfh8/kYHBxkfDzKkSOHOXLkCOvWrWPnzp15LdYrFFMnnyUldh3I8PDQgvZh6Iu3dzzTcBypfn/y9xwZOcqoOoJlTDpSyaqf+nR5jiNVljkcqbyyQn2onnNqdnFV21XcsP5GyvLUA8KJgBQ7111zLaVF1HXZ5/XRUN+w6J4KK0Gpt5TtNdvZXrN9xmOjyTG6Ip05tSad0S66RjuJaYmZNsJOd/jT2AhHBJ3oyAi/UQ/RaGxjTUMdAZ9CwKMgivk97xwHLK/PiyxnJs5Fem47nzlrSn1OIXFqTZw6PcuyOH78OHv37iUSiTijYsOGDVxwwQUzaj2mNvpzohtTrXCnNvpzxIbb6M+l0Kyeq69L0bGUInjDsFO74vGVK4IXRZGSkhJ27bqIoaEhnn32WUZGRmhvP0Z7ezsNDQ1s2bKZNWvWrEiqxkIpLbUneJFIdP4vmtoH5CwTIHM5UnlVL96UXSRem25ekCOVLInUBGo4r/pCLm9+OTdvuJnaktqCvYfy8nJKSle2v8Z8eOA/HuCKy69i/a7rVnoogD2Rq6ysXOlh5I0KfzkV/nLOrz8/Z7tlWQwnhidrTUYzUZOIbSOcNFTbqWtKMXy2OzxCRpz4+cYXH+Ub//5zamqq+Y//+Cjf+d738EgCrU11tDQ3snF9K7XVFYT8HnyKvChxMjGR6QESLG4LXiCbGmktUwqW0/DQsiz273+Rw4cPMz5uX+cFQWT9+vWcd955hELBWaMb0xv9eb1uoz+XlccVIC4FYTUUwTuiwrIsmpqaaGpqoq+vnxdeeIGenm56e3vo7e3B6/WxceMGtmzZWrTpWZZlES6zBUgylVjQyrjTYVdaRavBCyVfjlSGJ20XiftSCJJFpbeKHZXbuHjNJdy88SbWV6xf1vcly/KqWMVX0xqqVjwpNal0ikQiSXk4vCoiSItFEASqg9VUB6vZ1bQr5zHTMumP9WdrTTrGOmgf6+B4tIuuSBeaYWXTuj75z59lpG+clGoiiSIDff0cOXqUsdExbEsFi5KSEO973/uIjI5y8kQHzU0NrG1rYuO6FqoqwgR9Cj7P3OdqPGFbiAeCuT1TihFHYC1HBMSyLLq7u+ns7OC5557DuSpJksymTRvZtm0nguAjmYRIZKYV7tRGf1OjG6vgsuFyhuOegi7LyqmK4Kenc2na/IrgpwqTqQLldPMKR4CY5uRNpL6+jvr6OiKRKAcOHKC9vZ10OsX+/fvZv38/DQ2NrF+/nubmNUVnWxsqsVfCLdMikUgQDM5TLGVcmc6UidhSHKnMUzhSlXvDrC9fy8WNF3PjhhvZXrN9xSNjkUiUVCpJXV3dio5jtTERm6B/oJ+K8vnZmp6JiIJIQ2kDDaUNXNZ8Wc5juqnTM95DZ6SLE9Hj3Lnj8pzrw8Wf/xDJtM5IJMaxzuN0dHbTPzhKTU0Vzzz7DI8/9jix2ASOOCktLeG1r3kNW7Zt4fln9tDYUMO6tWtY19pMZbgEv1cmnomAlISKP6KXXbwyCydAIpEox44d5dixdhIJOz3NsqCsrJqWls3U1rZgmh76++du9De1WPwMuby7nEG4AsSlaHDqQKbPm+dTBO/0NLGfP78ieFmWqKqqRJJmTiLD4TJ2776Uiy/eRWdnFy+9dIDh4eFsVEQQROrq6tiwYcOKipGpNxVJkvB4vKhqmlgsNm8BYlrFWZA7HwrpSNUSbuWC+vO5ft317F6ze8XFxmykUkmi0XFXgCwQ0zJX5fm+XMiiTEu4hZZwy6yP+zwyPo9MeYmP9Wuq4fILs49dfeFa4u95G4PDEY51Hqe98yQnu/toWtNET3cv3/reD0kkkjjipLyinF0vu4hzd24nFjUY2XuMyHCKdaUBymQ/fs3AoxRXMYIk2uPJd9Q4Gh2nvf0YJ06cYHR0FNMU0DQJwwhQX99Kc/NGyssrEEUB08xt9Dc1unGWZdO6rFJcAeJS9CylCF5VT1UE7yEUWoOu28eQ5ZmrRJIksX79OtavX5e9ObS3dxCLjdPX10tfX2+OGFmzpmlBTQDzTWlpKcPDQ0QjkflNSgUhm0awWuZjj7c/zqf2fIrO0c6icqRaCZarCPZMwzItRLfCtiA44qSy1M+WtfWA3UHeNC1Sms7r77iSgaFRjhzrovN4Dyd6+iktrWA8GiOVtvj+j75LrHeQCsvCU1VJycZ1/H9/8Q76e0+iq0nWr21hfVszJUEfQb8HeZYFpEIjZo45NSrkOGMtpFO5ZVlEIlE6Ozvo6OhkdDSGpkmoqoyul1BRUcv69Wvwej2UlASpqqrINvqbGt0owrURF5fT4goQl1XLqYrg7XQtJ41r9iJ4TbMYGUkiSUr2pnGqIviyslLOP/98zjvvPEZHxzh27CidnV0kEvGsGAGBysoK1qxZQ0tLKxUV5cuS2mRl8oKrqqoYHh4ilklnmA9m5rWrIQXL1E2eP7qfjoNdRedI5TI3wWCQYKB46qcMw0BcBef7mYQoCgS8CgGvQk04yPYNa7KPpdMqD3/z26R1gc9+9F/oae9k4OBROsdidJsWhmHx+S98hWOHD2d2JlBdW0NTQxNveMNrqa+tpK/7BOvWNdO2polQwEvI78m7U5eDkJnxa1M6of/Xf/0X//f//l8+97nPccstt8z5Wk3T6O3t5eTJXjo7+xgbS6JpEpomIwglVFRUsGlTCy0ta/D7fXg80Nl5kIoKmbY2wW3053LG4AoQlzMSp6fJdKYWwadSFnv3tlNX14zfH15AEbyA31/BBRfs4qKLLmJkZJT29mN0d/cQjUayDQ737duHx+OloaGBtrZWGhsbC56qVVZqT6bHxkbn/RorEx4qthQjy7RIx9Ikoyq/+/XvOfzCEY4d6eJo3xFCl9gORsXkSLUSOHVQxc4//MPfo3hWLjI4HUVRst2sXVaeeHwCnyJSElS4+LyNsL4O4WWbEErDGPX1TCRVfvDwZ+g40c3Ro110nOjmxMl++gcGSSTSfOd7j/CD733f3pki0VBbT0NjA9dcdQVXvPxSTp7oYE1jLc2N9QT9HgLepdkIO9dKx8ADYHh4mEgkwmte8xruvfdeHnjgo5SUhLAsi/HxGO3txzl2rIf+/ijptICuSwiChSj6qKgoZ+3aFlpbWwiHvTnRDTAYHU1SU1Pjig+XMwpXgLicVUwtgg+FBKqrdRobdaqq5k7nMoxTFcELeDyVtLRUsmEDpNMT9PefoLe3i8HBQVQ1TVdXJ11dnYBAOFxGbW0da9Y0UVdXt2RBIpDbBbs044Q1Ojo2r9fb4sP526zcTNYyLdS4ymh/hAPPHeTgC4dpP9TJlq1bKQ+X8bGPf4KgP8C6teu45pKr+Wbw6+hF5ki1EoRCoaIzQ5iNL3zhi1y0axetF1y50kMBoLq6eqWH4DKFSDQCQHl4pimAKAqUBr2UBr3UVW7h0vO2ZB/TDZN4UuXW6y7idXffSHvHCVucnOilp6+f7p4+fv/HfXzwn/8FsJC8Hurr6mloqOecbZu55647iMVGKQsFaKirIuT34vOc3kZ4tj4gX/nKV7M/P/roLxgejnPzza8ilbKIRlUsyy4UFwQJn8/L+vWNtLQ00NxcQ2mpMmejv4kJu9mhK5hdzjRcAeJy1mI3YhKyXZHnKoK307VmFsGrqn0Dyi2CL6GkZCsbN25l0yadaHSIgYGTDA/3kUhEGB2NEolEOHz4EABlZWEaGxtobGyktrZ2yZPJ0kwEJJ1Ooev6aS1ap1YQLGcERI2rjA9PcHj/UWrL69j7x+f51je+RU8mjc0jybSubaOkNMjLr76UnS8/h4bWOvxlPiSPxL7vPE3SSLKrYRc3bbypKBypVgLn/13sHDt2jMamxpUeRhbTNLOff5eVZzw6DkBJyTQHrNP8f2RJpCzkoyzko6F6B1devCP7mKoZJNMa8ZTGORs/x5H2Ljq7ujlxso/e/n7+8PQzXHPN9dz7xrdhqjqegJ/6unqaGhtoa2niVXffQWnQh2gZ1NaU4/cqBHx2dfekhbt9DxgYGGXt2h3cfPP91NQ0A14EAQYG1ExncZHKyjBtbfVs2LCGuroy/H5hXla4iUQCQRDwTS+CdHFZ5bgCxOWsRpKkrACZ+zn218KL4EUqKxupqGjAsmBiIs7AwCBDQ/1EIoOoapx4PMHg4BH27z+IJFmEQiVUV1dTX19PbW0t4XDZvCZJTg1IIBBAlmV0XWd0dISamrlTjgzDQM80IYTCuWDpaZ1UNE1vZx+//80fOfLSMdqPdnDyxAkM4I33voHGhia2nrOFW+++iS07N7PpnPUEKwPIXvsSVU/uivU3X/XNgox1tZFKpzAMo6jqK1YDnV2deBQPa9asOf2TXQpOJGo31SsLh/O2T48i4VEkW5xU7eTqS3dmH0upOsmULU6+9dDn2P/SYY6f6OF4dx89PX0cPnKU7Tsv4Fvf+hZ79zxDoLSEhvoGGurrWNNYz/qNG+gb9qPG4T//8xGSSZWrr35NJsIBYBGPR9i/fw+CkGJiYojPfvbjnHPOtgW/j5KSEpqbm12x7HLG4QoQl7OapTRxW2gRfDBYQkVFCZs3r8U0pwqSYQYHh5iYmGBkxKSnp4/9+3uQJBO/X6KuroKamiqqq6upqanF7/dNGUPuTUkQBMrKwoyMDDMwMDCnANmzZw9vfON93HXLrVxYVTXrvhaDoRokoyk6DnXx0nMvcfjFdvp6+rn3vvv48oNf5sUD+2mob2Dd+rVcfeOVbN2xie3nb8Nf7uPWd7xiycc/2xgeGiaZSrJh/YaVHsqqwjAMRO/ZFzErVsYzAsRppkqBzd2yNsKlfppqtnPlxduzj6VUnXhSJZnW2dRWy+9+v5ee3igTSQFFLkFVPezfn0CXAoRrFVRURNEgkRils/Mgzz//Bzo7D6Lryew+JUni/PPP44EHHuCd73zngqK1fr8f//SOvi4uZwCuAHE5q9m6dWtB9jtXEbxpTo2ahGhqCqGqa1FVW5AMD4/Q3z/A6OgYkUiUWMxkYCCOKMaQ5XYkySAU8lBVVUpdXQVVteXEpTiKPGn8XllZycjIMMNDw7OO7Rtf/zp/+a53YRoGTz31FBfedtuiGhGaukkymqKno5fBnhHW1DXznx/7NPv27SOetLsa11bVsH7jOkorQvzjv78PJShRXluGJ+hBKJBDzdmGuzK6cCxzYXapLoXDMAwm4pkmhKUr14TQNE3Gxsbo7x+lp2eUoaFxhocTiFqA5ooAlmViWBaaCbpokiBNqFTDiI3xs5/9gGef3TPnvg3DwDAM/vIv/5If/vCHfPWrX6Wpqem0Y7Isi/7+fioqKlbU3t3FpRC4AsTFZRkRxVN1gg+iqkFUtTnj0mUyOBhhaGiU/v4BRkZGiccTjIzA8PA4hw6NY1jHGGcEWTbZUNtOTXUYWRHtlK94fMYxDMPgYx//OGbGs/7EiRNTxjb3qpzjSJUe13j6yT28+OwBjh3poqO9nch4FK+k8NnP/T9qa2q56bYb2LR9I9vO30rdmmq8JV5XbBSI1dIHRBA4bT7/cmKYhntOFgnjsRhYdlO/gH95Cq01TWN0bISB/mH6+sYYGY4zPBpHV6VMsbiFKGai3F6ButpyauvKaGysoKmpisGxbn7wyx9QU1HDO97zV9x88zVcd911jI+Pn/bYv/71r7n00ks5fvz4aRcPUqkUfX19lJSUuALE5YzDFSAuZzXd3d3ouk5ra+tKD2WWIniRlpYKDKMCTVuPqkIslmZgYIy+vhGGh6MMj44yPhohlbbo6Y7TfTKOZQlAmNERja985XFKSnz4/RJff/jLnDh5LOPIZXPRrl3Zn7POLhlHqrGBKC/ufSnrSFVeVs61113LP773gwR8ftavW8+V11zBxu3r2XH+Nhra6vnra9+BKLupLcvJaoiAvOENb6SltXjqLSzT7YReLESzDljhmefyEs9tXdeJRMYYG4swPj7O0FCEgYFxYjENTZMxDSlTt2EhCBIer0RZWYjq6hIaGytobKygri6MPO2a1jukZ4Znj298fPyU4kOSJAzD4NJLL+VrX/sag4OD8/rcJhJ2JNlNwXI5E3EFiMtZjWmaJJPJ0z9xBZlaBF9a6qWxsQ6ow7IgkdJ4qfcY/f2jKPEgAwNjDA1GGR+fwLJERkfijAzHsSzYufMmzj0XbrnZYGi4l+HhXkp9EsmUDDGDJx/5A+FABf0nB/nc5z5HT2+uI9WWbZtZt6WFb/7kK1Q1VGQdqVxWDkmSkM3iv4xrWhpdN1Z6GFk2bNhwVrqmFSNZB6wZ6VfzFx+qqjI+HiUSiRKNRhkeHmJsbJyJCS3b5E/X5Ex0Q0AQPHg8CuGaUqqry2hsqKS+IUxVVQif7/THdfp/SKJ9/bvvvvtmPMcxA/H5fNx888286lWv4qabbiIYDNLW1jav95VMJvF4PG66oMsZSfHfuVxcCoiiKGhTnKBWE04RfGmZiM9fyrqKddnHvve9HzE0FCWVNHnqd3toalpLWWkVXm8IEKmrbaK2pgnBNIj0j5HsLqEjMoQkDFJS4mXX7ldSEpZZu7mRc87fQE1TBYpPmXswLitCQ0PDSg9hXnzzm9/kiiuv4GU3vGqlhwKwKnqnnC04PUDKysKTG2fJLNR1nVhsnPHxGJHoGGMjY8QmJohPTKBqKoYhoqoSui6jqTKG4UUQvEiySGlJCRWVYcrLy6iuLqG2tpTych8+n724s1Cce4YoiSSTSfr6+gBbdKxbt46/+Zu/4amnnuKGG27gxhtvJDjd232eJJPJgvT/OHjwIN/61reora3lz/7sz/K+fxeX+eAKEJezGkVR0HU921RwtTK9FqCmpoJodIShoR5+9rMvT3lEpKqqnpqaJmpqmth1wSWEQhaERKwwCF4B1aPhqy5DtQQO9kU5+NNnEGUoCXooDfuoKAtSUVFCeXmQsrIQoVDQXaFzWTVomkZvby81tTX4fW5qy0rjREDKSktJpVMk4gnifX0k+3qJmBbDisLExATpdCr7GtsC3REbCprmQ5IVysNhSktLKCkJUVlZTkVlCWVl3mxXca83P6VIjgCRJZmxMbvpq9/v57bbbuNd73oXF110Effff/+SjxMKhfJe+6HrOm94wxvYu3cvAPX19dx+++15PYaLy3xwBYjLWY2i2Kv6mqadMauivb29/P73v6eqqoq6urppj5oMD/cwPNzDSy89zbNP/4zP/tW7qS7RefmbbicSSTA8HGNkZJxoLM14NMl4LI5lwsREmlgsTc/JKJYlYFmAALJs4PNKlJR4KC31U1EepLwiRFlpKf6An1Aw5Ka7FIju7m5M06S5uXmlh7Jq0A2d8dg4lVWVKz2Usw5N05iIx5mIxYgnEoyOjmRrJ377v/+LlenJJCcS+JNJ0oEAybJSDENA0xQsy4vfX47XU0J5eYCyslLKSksoLSvB5/Pg9YDPb+Hzgd8/uxNhPnB6R3k8HhoaGjhw4ABr167Ne7PA+vr6vO4P4N/+7d/Yu3cvH/rQh/jiF7/In/7pn3L55ZdTUVGR92O5uJwKV4C4nNUEg0HWr1+/pH4gK8lsUZtnnnmGT3/603zgAx9AkiQEQZjTLcnJZQYoKwtQWVnKunW5okXTTMYicUZHYgyPxBgZjjER14jFUsQm4piGSDJpkUik6e9XsSzb01+STSTRRJIN/D6JkhIvoZCXivJS/IEAgYCfYCCIP+An4A+4ImURGIaBaZ26kaZLLkbGAc6N2uUXTdNIJJIkkwkm4hMkk0niE3FisRiJRMJumnmKOqCs+FAUSkur8XoEgmW1SHVtBIIllJbaTlCSJCCKIMsCft+k4PD5rGU1WhMEIVscXgg7d1VV0XUdv9+ft+j8iy++yAc/+EHuvvtu3v/+93P99deze/du3vnOd/Lwww/n5RguLvNldc66XFzyhCzLlJaWrvQw8sqtt97KJZdcwiM/eQQs2LlzJ8899xxr1qxhbGyMiYmJ7HOdVALBsidmswkxRRGpqS6hpjq3SNSyQFUtxmNpImNxxsYSjEXiRKNJEok0sVicRDKOnpJIJQXGxgwsK4EgxpEkA1kykSXD/lmx8PkkSkIl+AMB/D4ffr+fQDBAwB/A5/fj9/vweryrOlXOZeUxDXui6xQQu5wawzBIppKkkimSySSJRJJEIk4qnSKZTBGfmCCRTJxSXExFku3PeTAUQk2nGRgYJhSqZse5FyFJIXRDhvEYcjyGEC5DrK1GFIVsdMNJp1KUlbOgVjXV/qGAl6KRkREGBwfZsWNHXvZnGAb3338/TU1NfOELXwDgggsu4KMf/SjvfOc7ueeee7j11lvzciwXl/ngChCXs56+vj5CoRAlJSvXBGupWNOqNqurq6mrraO/v58vfelLeDweSktLefHFF7nnnnsYHx/PRkZMy0RkcmV4vggCeL0C1V4f1VU+YDKlxe4ED2kVotEk4+MpotEksViSVCpNPJ4gFpsgmUoRT2pYJiCAJKnIYgpJNmxxkomiZIMjAni9XjyKB7/fj9fnJeAPEAgGCQYC+Pw+vB4fXp/HFStFxOatW2lpbl3pYQBgZFbaz+YIiGEYpNIp0mmVdCpFMpUkHo+TiCdIplKkkkmSqSSapqMvwKRDEEV8Pi/BQJBQSYhQMITX6yMUCmY/o5blIa0KpJLw1O+eY3hEpaKyBVEqt68pHpD9An7Jwldt4ltjRzeKKUDqOCc6YrYQTExMEAwG83YNkySJPXtmNkt8xzvewTve8Y68HMPFZSG4AsTlrGdkZATLsla1AJmNsrIy+vv76enp4aqrrgLg8ssvp6enhxf2v8CvnvgVTzz+OLphIrNwAXIqnE7wgQCUh/2AHyjPdIIHVRVQNdBUSKUtYrE08XjSTtuIJ5mYSBBPJkin0sQTKpqRQkBFFg0SsoksJZCkCSTpFKugAkiSjNfjIRAI4PX58HgUW7wEAvj9PnxeX3a71+NFlmVXtBSA17/2tQQCi3MCyjc+n5eampozJuXPNE1UTUVNq6iqSiojKFKpFMlEEk3XUFWNVDJJIplA07SFT5wFu17O5/Vlhb8dxQhm0igDBAMBFEXJ+fyYJiRTkE4LJBMCYxG7C70ogigKRKNRFMWiqTFMZQV2SpXPwhPXEaIahE1Ynt6EC8KJ9hQqddeyLOLx+Cw1fC4uZw6uAHE561nVVrwIc06Y6+vrOXz4MAMDAznbRVFk57k72XnuTt71F3/Bjz72MaxkCqOAq3mTx3Y6wU8XDl40zYuqhlE1AVUFLfPdMMA0LQzDJJlMkUqlSabSxCcSqGoKTYtjmEmwVHQ9gabFEdARAEPXSeh6tqHXacmIFkWR8SgePB4P/oA/K048Xg9erxef14fH40HxeJBlyf5ZVpZ9Vb2mtmZZj7dYPvzhD3PllVfy1guvXOmh4Pf5i8r9yrIsdF1H0zU0VUfTVDRNy0Yo1HSadDqNYRik02mSySSqqqJqdo3AolfhBZBlhYDfj8/vQ5JkAk7aYyBAMBDE6/MtKPVRVSGVFkilIJWyFxlEwRYboggeBSRJwOcFWVZRlD6qqwy2bw8RDE65JsSdMRbnYoBu2LVzilwYa/JEIoFpmmfcopiLy1RcAeJy1qMoCqqqrvQw8o6zepZIJEilUnM6tEiShA4Y5so2ist2gs+mk9nfDcOe2KiaiKoG0NQgWibFy7IsTNOuR7G/7N8N08QyU5imimWlMYwkhplCV+OkVTuyks5M7FRNwzB0LNMCyxYthq6TSqbmHuwcCKKAKEq2KMmkiYkZI4CpokZRFDxeD7IsI0sysiwjyRKyrCBLEpIsocgKsiyfcqW+mCbSpyKZWX0vBhLJBIZhUBJa+OTOsiwMw0A3dHRdx9BNdF1DN3QM3UDT7J91zUDV0miqhqqqpFUVI2P4oOu6LSI01TYRyJPwFyURRVFQZAWfz4fH68Xn9RIMBvH6vPh9duQiXymKpgmptB3dSCUFUiqYhr3IIIgCkgh+n4CigN9n4fODz2tlFx8GBkfweuxGfYvtk7FSOAJEVgozhXIaGBaiB4iLS7HgChCXsx5FUUilFj7ZLHYCgQB+v59kMkl/fz+tra2zPs+Z4JpTHLGKCUmyLTX9/lxhYvcCcMSJgJYVKWCaIqYZxDRtOWOZFpYFpmXvz6PYRawetV7V4gAAmd5JREFUj/1dkS0EQSetptE0HTWdttNZ0ik0TUdTVeKJOOm0iqaq2RVo0zRzVqEt08IwbQGTTqWJxWJL/wMI9v/IETaKrKAodrRF0zREUcTj8SBKEqIo4PP6spEYURSzIkaWFSRZzOxLREDI/pzdJgrZ7YIoIgqi3TlatPflTFinfs/+PCUaN/W7aeiIov27ruuIGaHoOLNlvzP5+9THcr5MMC0TyzQxTTNbw2SZ1uTvmcdMy/5uGAaGYWIaBoZhEIlG0DWd0tJSdF0nraqZ19hiwDAMRFHMRhx0Q7dfb5pZp6aCkIm+ybKEJNpRNY/Xg6J48Hm9BIIBFMWTTRf0eDx4PF48XjutsNDRN03LjW6k1cnohiCAIoPoEbKOVD6vhd9vzdnob3h4BIDKqqpZHl25AvP5YJn2+GSpMFOosrIyysrKlrSPgYGB7CLUo48+yvXXXz/nc9/xjnfwmc98hksuuYSnnnrKTUN1WRZcAeJy1lNSUnJGFKTO1kyxurqaEydOcPz48dkFiCBk3YBWm52r0wnebt+SK06cIvhsOpcqomr2dnsVGzRdIJGw07vsniYSHsWLR7FQPBAIYv+scNoCWNM00TTNTqPR7DQaXdPRNM0WNZmVcEe4aJqOIAgYhi1UNE3DMA103chMpM2ct2QaJqZhomsaKVaXWDYNnVtvuw1BgG9/+9uIBZq0LZT+/v4lvd6OdtnCTZIkZElGURS8Xi9i5nqSE/XyTIoHRbFFpCwrKB45G+0qlomfZU2LbqTtSKQT3RAF8HlBUQT8Pguvz45yeL3zt8IdGR4GoGoV9mMRJfuC4PXlt0kg2NenfPSlqq2tZe3atXR0dPD000/PKUCef/55Pve5zyGKIp/61KeK5hx0OfMpjjuBi8sKEg6HCYfDKz2MRXG6m0VzczMnTpzIduudDedmWkhHl+UmWwQ/TZjMVgQ/GTWxMhMvgWSazKq6gAXITtTEMxk18SiTjc5EUcTr9eata7Gzkq/pWjbVxzD0bKqPkVnNHxwcRNM1wuFyDMOOxNjCxnY5MgzDfn5mhd85XwzdsCM3UyIJkIlYZI5rmhbgRB/I/rysi9OZ09set73SLmSiMqIoIEt2dMc0zcw2MRup8Xg8iKKYjaxIkj3B1zQVURCpqKjIRv8kSUKSZSRpUkxIkjT5JduRiakpc2dKETvYwjyZEkinJ6MbApPRDUkCj0fA63WiG3ZEUpYXfzKMjo4CUFlxCgFSpJNhJ2Ke78aDYKfMHj58mE2bNi05NW337t1ZATIX73znOzEMg7e//e1ccMEFSzqei8tCcAWIy1mPZVkkEgm8Xu+qbUg4F42NjQCMjo2iquqsq2pOBCSfLljFyuxF8PbPU9O57CJ4MacIXjdATQjE4/bvpkW2sNaJmjjCRFGWNncSBCE7+eU0msYwDda2rV38wZbAjDSqWVKrDEPjbbdfy+7dl/Gm/3M3kpTrlJSTxjXteyFo72jHo3hYs2ZNwY5RzFiWbY9tRzdswa3pIE2Jbng90xr9ea28NvpTVTXbAb2ycvVFQBJxu56pEAJkYmICURTzUv9x6aWX8tWvfnVOAfK1r32N//3f/6W8vJwPfehDSz6ei8tCOLNmWy4ui8AwDA4fPkxraysVFRUrPZy8EgwGCQQCJBIJ+vv7aW5unvEcJwJiFGkNyHJx+iJ4J51LsGtOtMmi92RKIJGcUhSPI0zsqImigMdjocjMmRO/GFY6XWI+gkESBd797r8iWFKCR/GseAqWItsGAGcLhmGnU6VSgv2VBizbjUoQbBHt982MbhSy0Z8T/XDq1FYTToQQwO/N/9hjsVje+n/s3r0bsK3mjx07xvr163OO8973vheAD37wg1TNWovj4lI4XAHictYjy/KqLUQXprTitbByfneoqKggkUhw/PjxmQJEECYFyFkQAVkMiymCNwwru9KcUoVMEbwwZxG8EzVZKKFQaFX83374ox9zwfnns+5l16z0UGYV4WcS6TTZRn+p9BQrXGkyuiFJM6Mby5lRNjxiF6BXzJV+ZRVvEfrU+0S+Ui4dLMtiYmIib/0/tm3bRllZGdFolKeffjpHgPzzP/8zfX197Nixgz/90z/Ny/FcXBaCK0BcXLBD6U532zON5uZmuru7Z/QDcZCEsycFK5/kvwh+ejrX6YvgV0vE7vl9+wiHl+bqky9mM2tYrThWuKnUpBXu1EZ/TnTD48lENzLF4h7Pyk7wh4eGAKisWh3n71QcASJJUt7rgNLpNGAvLOQDURTZtWsXjz32GH/4wx94/etfD8DBgwf5z//8TwA+/elPnxEmLC6rD1eAuLhgCxAnJ/lMw6kDGY+No2kayrSlduf39BnYC2WlOFURvKpOFsHr2hxF8CknnevURfB2nxMr7yuxZyqWZXHgpQM0NjZRvgqNJ6Y2+kunc61wpzf68/osu/+Gb24r3JXAsiwGBwcBqK2pPfWTi1AoOgJk+nU0H/h8Ps4999y87nP37t089thjOXUgf/EXf4Gmabzuda/j5S9/eV6P5+IyX1wB4uKCnYsci8VW9eqoZVnMkoFFSUkJHo8HVVXp7++fUXzryUxetczqm0vhEEWyfRImWXwRfH//GIKgsmFdc16L4M9UdF3HsixEofgdrBwr3KnRjVM1+vNOiW4U8/9+fHycVCqFIAqrsu7AiZQHgoG83ysKcf+59NJLAdtuN51O85Of/IRf/vKXhEIhHnjggbwey8VlIbgCxMUF24llNbqxzPdmVVNTQ3d390wBIgh4PJkIiCtAVpTFFMF7FFBVkWRKzCmCJ9MYrtBF8KsNw7TTDCW5+ATI1EZ/6bRdLD5Xoz+v145unKrRX7HipIJWV1XP7Tq4CmpAgoH8dm+3LIv9+/fT2NiY13vRxRdfjCRJqKrKU089xbvf/W4A/v7v/56Ghoa8HcfFZaG4AsTFZQqrOQJyKlpaWuju7s6mPkzFseZNuQKkKDlVEbwg6MQnVGprWZEi+NWGnnF6W+mc9+z/JlW4Rn/FiiNAamtPk35VpIyPj2NhZe3L80UsFkPX9by7goVCIbZv386+fft4y1vewvHjx9mwYQPvete78nocF5eF4goQF5cMBw8epKys7IxcFXJcVQYGB2b0A3F+VlVXgKwmhIyjkRUwqSgvXBG8x7P0dK477ryD9es2LG0necBptikvsxWwrk+mUznRjalWuIVo9FesZOs/5iNAilBtTUxMAHYNyGyug4slGo3i8XgKYku8e/du9u3bR1dXFwCf/OQnl9xp3cVlqbgCxMUlgyzLq9KK18E6RYvq0tJSfD4fqVSKnp4e2traso9lBUjKFSCrDafr93TmWwQ/NZ3rVEXwU9O5PB6Q5dxO8KejvLwCv3/lC+WDwSDr168vaMNRy5pSLD6PRn9Ti8WLcL6dVyYmJojH4yBAdXX1Sg9nUTj3CH8gf0LBsiwikQjhcLggEfhLL72Uz3zmMwDccsst3HjjjXk/hovLQnEFiItLhtXshHW6m5YgCDQ0NNDR0cHRo0dnFSBuDcjqw3E4my8zi+An07lmRE2mFcFrOqQ1ASYW3gn+yw9+iZdfeQXnXnNHnt754pAkCb+U3xXmqY3+0imBZCa6Md0K1+t1ajcK3+ivWHHSryorKgviIrUcpNNpLKy8dCqfuk9N0wgXyJnNiap4vV4+/vGPF+QYLi4LxRUgLi4Z/H4/Q0NDmKaZd3/3QjLfNID169fT0dHBwMBATq2L44Ll2vCevQhCfjvBTy2ClyUBVQ+iqzKmCXlOnV8QkUiUVCq5pEZv06Mbp2r0NzW6sYouKQVj3vUfRVyErmauk/lMlfL5fOzYsaMgtUmGYfCBD3wAgPe85z2sW7cu78dwcVkMrgBxccng8/kAezWqEHm4K019fT2CKKBpGsPDw9kUCCcCYug6hmHMeRM8fPgwP/rRj6iurub+++9ftnG7zM3g4CDxeDwnopVvTlUE76RzafrcRfAJU0IzKxlPVNBxXEJRxBUrgk8k4gvqND210Z8T3XAa/U21wvV4sDuK+4uj0V+xstoL0C3LQtM0wI4m5CtdyrKsgqUF/ud//icvvPACra2tvO997yvIMVxcFoMrQFxcMgQCAbZt27Zqi/Os06waSpJEbU0t/f39nDx5coYAAVt8zZZaoOs6f/Z//g8vPP8CYE8gXvnKV+Zx9C6LQdd1UitUuyMIZNOKJplZBJ9OgiJO4JF1/D67ZmW5i+AddF1HkudeZdY0O5pzqkZ/ojgzurHarHBXgkQiQSwWA2xb8HlRZEUx6XQaw7CtnPO1SJVOpzl06BDr168nGMyvte83vvEN/uZv/gZBEPjv//7vvKaNubgsFVeAuLhkEEXxjO8ovW7dOvr7++nu7ub8888H7PqQbDf0tDrrTeoTn/wkLzz/Au9///t5+OGv8e6//msuvuQSKsrLl3X8LrkUq2X01CJ4M2TilXspLx1gXZuBbgjLXgTvYJiTEb6pjf6c6IY5zQrXafQ3PbpRpH/2osaJfpSXl6/a66xTI+j3+fMWsYhEIpimmY3AL5Wf/vSn/Pmf/zljY2PZ8f7DP/wD1157bV727+KSL1wB4uIyhZGREWKxGK2trSs9lHmzkEmo04RweHiYRCKRFRtKtg5kpgvYSwcP8h8f/Si33HIzf/VX7+Kaa67mxhtv5H1/+7d8/vOfz8M7cFksgiCc0v2sWGhtaaW+rt4ugleWVgRvxSZ7msy3CB7s/Y9HTQQxSHePSFoFgVM3+vP5rAWLHJfZWVD6VZHWgESjUQA8XjtqnA8b3mg0SklJSd7qP5566imOHz9OIBDgvPPO48///M95y1vekpd9u7jkE/fS6uIyBdM0GR0dpbm5eVUVosOpbXgdAoEAoVCIiYkJurq62Lp1q90NXbEvBWo6txDdMAze+c530tDQwCc+8QkAzj33XP7lX/6Fv/3b93HHHXdwww035P29uMyf06XeFQPv+qt3oShzpzYurAje7mky3yJ4VbMjKYYBhlmNR1YwTQGv58xs9FesrPb6D7AXqMBu7pcPdF1nYmKC5ubmvOwP4MMf/jAf/vCH87Y/F5dC4QoQF5cpODeWeDxOSUnJCo+mMDQ3N/PSSy/R2dlpCxDAo3jA0Gf0QZEkif/55S9n7OOtb30rb33rW5dlvC5zU1ZWtioME/7hH/6Ba665lrdccOWCXzufIng7nWuyCN5J50qrdpRIkmyxEQ5XZK1wfb6z0wp3JUgkEtnowbzrP4qQSCQCkLd7g9PUsKysLC/7c3FZTbgCxMVlCj6fD0mSmJiYWDUCZKFpAOvWreOll15icGgQwzCQAa/PCxMaqfTqbcR4NuL3+1eFABkfHycSjeR1n/MtgpclK9Np3GRiYpxAILBqe1CsVnp6egCorKxc2PlaZOEoRzBUVFTkpf4qHA5zzjnnuOejy1nJ6soxcXEpMIIgEAwG7W69ZyhVVVXIsoxlWvT19QHgz9SCxCfO3Pd9JhKPxxkaGlrpYRQdsgyBAITLLEIhO4JiGBpdx7tIJBIrPbyzju5uW4DMu3FmkaYVOudOaVkpsDQTCMuysCxr1bouurgsFVeAuLhMo66ujvr6+pUexoKZby2AIAjZ93fixAkQBAKZVcmJM1h4nYnE43H6+/tXehirAl3XAQrWb8FldkzTzC50zFuAFCGqqmbPoVBw6TUgY2NjvPTSS1lbXxeXsw1XgLi4TCMUCuXdj73Y2LBhAwDd3d1YlpV1w0rE4zz99NNUVVVTVVXND3/4w1lf/+yzz9Lc3ExVVTX/9E//tFzDdpnGanHBKgZcAbIyDA4NousaiuKhsrJy/i8ssvQrx9LW6/WieJaeMjU6OoosywXpfu7ishpwBYiLyyz09/dniyaLncWkATQ2NiKKIhMTE4yMjODz+8GymIjHueiii7j+husB+Pd///cZK3RHjx7lta99LYlEkte85h4+8IEP5ONtuCwCURSzqRzFjKIoKPLK5rnrmfPYFSDLS29PLwCNjQ0LdxYsIhEyVYA4LNaGV1VVxsfHFybIXFzOMFwB4uIyC5FIhNHR0ZUeRsFQFCXrRtPR3kHQb0dADF1HVVX+4e//AVEUOHr0GN/+9neyr+vv7+dVr3oVo6NjvOL6V/CJT3yiaJvhnRWskr/9e/76PVx//fUrOgYBAY/iXXX22qsdpwB9NadfAdn7QTC09Oj46OgogiBQ7jZydTmLca/ELi6zEAqFVlUh+mJScbZs2QJAT18vojTZBX4iHmfz5k287nWvA+CBBz6CpmlEIlFe/epX093dw65dF/HFL3zBXU1eYTyKQllpWdFHQJ586im6ujpXdAzl5WG2/P/s/WdwZGm62Hf+j8mTHomE9x6Fsl1d7Xva9/TYa7gMXmnFCHE3qKC4ir36wBDFILnUpcilJC7FZQSXS+obtVIExXvFZWxcDjlzZ7pn2k37munq7nIwBe89Ekh78pj9kMgDoKtQBZMAEqjnF4HoagCZ500gkXme8z7mwnkJmI9RKpVidXUVgKampr3fsAyfz8XHURmrPPTf28bGBpWVlZJ+JR5rEoAI8QDhcBjTNDFN89HffEoVhy1alsXS0hKRzbqX9Gbg9Tf/5t8kEPAzMTHJv/yX/5K/9Jf+U+7cucvFixf43/63f30q2r+eddFolI6OjrK/qv/hhx9w6/btk16GOGYHbr9bhjY2NoBCC97D6unpobW19dD3I8RpVt7vWkKckO0DCcvdQfOQNU3zumGNjIx4hejJzVa8jY2N/NW/+lcB+G/+mz/i008/o7W1hX/z//03VFbK4Kxy4DgOpmmW/Q5IORgfH2dsbOykl/FYmfbqP053+hVsteCtrKz0PneQ3TTLslAURXaPxWNPAhAhHsDn89HY2Lij4PAsKk5CX1hcJFzshJXeCrr+6l/9q16ZQTxeyb/9t/+WhvqGY1+neLBkMsnd/rtneqeuVPL5vKRfHSPHcZiZPWQAUia/r1wu5/2NbQ9A9stxHG7fvs3S0lKJVibE6SUBiBC7aGxs9HYFToODXAVvbm7GMPxYlu11uypO+7Usi//qr/91Lx07nU6f+jSKs6Z4Qi07II9mWbZcdT5GC4sL2JaFYeyz/W4ZKhagRyIR/H7/gVtfr62tYdu2t8MuxONMAhAhdmHbNouLi+RyuZNeykMd5qquqqo0txSuThbfZNPpNK7r8tf+2l/j7V+8TU1NNW1treRyJv/oH/2jkqxZlEax9kMCkEezbAtNl6Lf41Jsv9vUdID2u2X2fC4OUqyoqDjU/aysrBAOhwkEAqVYlhCnmgQgQuxCURSmpqa87idnVVtbGwCriTWgsAPy9/7e3+NP/uR/JxwO8cd//Mf8nb/zdwD44z/+Y/r7B05qqeJbisGn4zjHfuzi/BHHcbDtwg5aMRCybRvLsryP3/nd3+Xak9e8223/mmVZO2bNHMVcE9d1sW3rxGeRPE4mJiaAs1H/MTc/B9xfgL6f+juZ/SHETrIfLcQuVFWloqKC9fV1GhrObt1DbW0tPl3HtR3Q4Kc//Sn/4T/8FF3X+F/+l/+Va9eu8eSTT/LP/tk/4/btO/yD/+4f8L/9q3910st+bDmOg+M4qKrqBSDpdBrLsnAcF8d10DWNWCyG4zgsLCx4t3EcB9d1aW5uRtd15ubnSG4ktwUTLrW1NVRXV5NIJJicmoLNr7m4+A0/fX19ANy6dQvH3Rn49Pb0EgqFmJ2dZXllGQDXtrl08WJh2CWFxg7DI8M7bqdpOpcvXQLgbn8/+fxWTYuiKHS0d1BRUcH8wjyLi0soilL4QKGyMkZjYyOmaTIxMeH9XIofxQC7vq6eXC7H/MI8qqKiqqqXUlPseKeqqvehaZq0ST2g1dU11tfXUVTlcN2eyqQGJLFWGEpbfB84SICcyWTQdV1mfwixSQIQIR4iFosxMTGBZVllnz9+0LxkRVVpbGpkNZHg+vXr/Ief/hQU+Of//J/zxhuvF75HUfjbf/tv85/+p3+JX/z8F3z++ec8//zzJVv746BwFd7e8aGqKuFw2Ev32/41x3Ho7OxEVVXGx8fZ2NjAcR3v5KeluYWqqiqaGpu8Yt+icChMLBZDURRWVldRUFBVxTs5L96Hpmr4fL4dJ+0+X2GXwO/3U1tb413lVRQFbdvfQNPmle1iEKSgYBgGULhSHIlEAXAci//1//nf0tfXx3M//k8IBAK0t3Xs+LlsTyNsbGjEcWzva67reikr4VAYt8YFd+trxrZGET6fz9uVKe4KFe87k8mQzmRwHcf7Oba2tuH3+0kkEvf9DKORKF1dXViWRf/AAJqqoaoKmqahqirt7e1omsbyygr5vImu6aiahqaqBINBDMPYsYbHqQB+YmIcgMbGJu85cVrl83kymQwANTU13uf3+/uMxWJcuXLlsXoeCPEw5X1GJcQJi8UK7WYTiUTZbp0ftA3vdl1d3fz//vhf8yd/8ifgwn/9X/91/uAP/mDH9/zwhz/kqaeu8eWXN/j7f//v87Of/ezQxz2tHMfZkT4UjRZOtpeWlsjlct7nLcuivr6eWCzG4uIis3OzO+6neJLrui7LKytoqoambV19LwYKkWiUQDCApmooqoqqqIRCQRRFoaqqioqKCi+I2L4zoigKFzcHTj5IbW3trl8LBAIPzVWvfsg8hFAoRLF/g2NbDAz009RcGESn6/pD2zjH45W7fi0SiexawGsYBu3t7Q/8WjqdRtd1zvf1ebsa269iV1VVEY1GvcDFtm3v+xRFoaamGtdxvcDQtm3vZ5zc2GAjmcS2Le/+WppbqK6uZnVtjampyc3fi4amakSjEVpaWnBdl7m5OVRNRdd0NE1H1zVCoVDZz3V5lGK7445dfh+nSXEnz+fz3deUZK/BhGmasqMmxLdIACLEQ/h8Purr60/9VbxHmZgY51//q3+F68Kbb77B7/zO7zzw+/7O3/k7/IW/8Ad88cV1/uzP/owf/ehHx7zSo2eaJul0Btu2yFt5bMvG7/dTU1ODaZoMDg5iO/aO21y5fAVVVUkmk2SzOXS9cLIRDAa9nbOKigp8PgNNU9F1fccJia7rXNpsifwgu53s27bN2NgY9fX10lnnITLZLCurKzvqEbafPD7s5FDTtIe2ni4GPcUdGcuyvPuKhMO0trbh2DaWbeHYjvd8cByHtbUEtm3teD5dvHARVVUZGxsjmUrh03V0Xcfn8xGPx4lGo5imSTab9T6v63rZXFlfW0uQSCRA4cDpV0oZ1aAvLRZa5h7mAtTk5CT5fJ7z58+XallCnHoSgAjxCGehiPJRrl69yr/7d/+OGwOFAvPdCu9fe+01lpYWj3Nph1ZMfcrn814b4aWlJTKZDPl83vtobm4hHq9kbW3N26nQNL2QWrN5RVrXdWrratF1H7qmoW+eHBZP/jo6OnZdx6N2FA4qmUoSzx9+OvNZZln5zRSqo9tZKKZZbb9Y4ff7d50lpGkaFy4UTki3F+YXA5TKyjiBYAArX/h8YWetEKhsbGwwNT214/4qohV0dnbiui6zs7NouobPZ+DbDFL8fv+xBCnjE2NAIf3q0HOUyiCoKnYH3F4HuJ9011wuRyKR8GqRhBAFEoAI8Qiu67K2tkYgECjrORgH7xxUeJPv7Op6ZABSjlzX9YqIFUUhEomQz+eZmJjANPPkra1J4dt3KkzTxOfzEQ6H0X06gUDhZKmqqop4PP7Aq8qqqlJfV3/sj3E30oZ3b6y8hV7GHbCKtTfF+htgM03twalq8XicSCSCZVnk8xaWlUfd3HVxHIf19Q3yeXNHk4CLFy7i8/mYmZkhl8thGMbmMQ3C4VDJdnknxgvdr9rPyAn3/Pw88OAdkL2kvy4sLKBp2n0dtIR43EkAIsQeTE1NUVlZebiOLkekVFc1I+EwlZWFHYDEeuK+4uCTUtzByOVy5EyTUDBIIBBgZXWV2dlZLCvvfW8kXKgRKKbUxGLBzRQVH4bh29NORbk3G9iueNXdPYE2vPsRj8epqjq57j+FnYWzk3+vququuyuapnH+fKFTWXHnL5/Pe89rTddwsy4bG0kvSGlpaaW6qorllRUWFxYxjMKOiWEYBIPBPaf3JRKJwsULhTNxxd+yLDY2NoCDpWBZlsXy8jJ1dXWnvq5HiFI7Pe+0QpwQRVGIxWIkEglaWlrK4qT820pRiA7wxBNP8OGHH4ILq2trVB1jy0jLsshms+RMk3hlJaqqMjU1VZgevC1HvqmxiUAggN8wqIrHvSu5hmF4V3FVVX1okHGWqIp6InNA9uMf/sP/x4mm00QrKh7LXaJiIL499a++rh7qCv8uBvfF1zS/YRCNRjBNk42NJGY+R0W0wttVHBwawm8YheDEb2D4/FRWxrzbjxe7XzU0Hi7d0HXLKv1K0zTC4fC+b1+cev6wZg9CPK4kABFiD2KxGEtLS2Sz2bJOwzoU1y1ctVQAFwYHBnjhhRdKfIhCupRt24RCIVzXZXh4mGwut6OLUDgUKqS8hUL4DB+Gz4/fXzjxKRb4hsPhA50UnDWNTU0Ey3yy8h/90X/D62+8zv/5yVdO5PjHGUifJoqi7Njx+3aXsWJL46KqeJxcLkc6nWZtbQ3A62g2NjbG0OAQUOiulkqlCAaDp/rK/8LCAoDX0rpor8Gs3++np6fnSNYmxGknAYgQexCNRlEUhUQiUbYByEHngGynqirRSJSNjQ3Gx8cPFYAUU7iy2SwLCwtkMhlMs5Dy4fMZXLxwAUVRCAQCRKIRDMNPwO8nEAh4Jy0Pa/UqCk7Dz2hxcZGlpeUTO37x7/asd7MrNUVRvIDf5/PR2Njofe3buye2bZNKpbx/3xu+R1dnF9FolJXVVbKZDP5AgOBmM4Y9BSYnvAsyO1toRrF9/sd2D9sN39jYwHEcr5W7EGInCUCE2ANVVamrqzt8V5cjcOj0q2+9iba2tnLnzh1yuRxra4mHzmwoyuVyJFMpctksmUyGTDZLvLKS5uZmXNclm80SCoWIx+P4N4OMopaWlsOt/zG3tpZA1zVpw7sLx3EYGx/z6hxEaXx79ySdTgPQ0NjAtWvXyGaz3uullc+TSKxjbuug19DQQH1dvdf2OhQq1GuVU4prMQXrIK9RMzMzXvquEOJ+EoAIsUdnuh3vtjf97fnKQ0ODPPvss97/u65bCDA2P+LxOOFwmLXEGnNzc/h8BsFAgJrqai89KhgMcu7cueN7LI+ZhYX5fRUKP27y+UKTAt8pai5wGk1MFLpftbW2o6rqjqF9dXV11NXVYds22WyWbDbrXYTYSCaZmpoECm2vQ8EgsXSamoqK438Q26RSKW9HZ/vOz35u29XVdRRLE+JMkFdkIfYhnU5jmiaVlZUnvZT7HLrIdvP2sVil96n+gQGefPJJfD4fk5OTrK6tesfxGwFvAnhNdQ011TUy6fcEqGr5F6GfJC8A8ZVvG97Tbm0twfLy8mb3q907BRaLubfXblXF40QjEdLpDNlshnQ6TT6XAwqNKfpv3SIYDBIKhwiHCrc9jteZ6enpwvqqqnbd+d5t93l+fh6/3y+7H0I8hAQgQuzD0tISiUTivqLEs8B1XdKpFDkz6xWiu47D4NAQly5eJBQO4/f7CycDodCOkwAJPE7OaQhAipPfT0I+X2huIAHI0RkZGQYKwwe373zsRXF4Y6E+p3DCrkzPgG3hui5VVVWk02kWFxaZc+ZQFZUnnngCRVFYX1/32gWX+vV4fLzQ0Su+zwYGhdTVNVpbW8/ce4QQpSQBiBD7UF1dzdLSEhsbG1SccIpA0UHf5BzHIZVKYa4sU72Zez02Po5tWwQDQTKZDABDg4NcunhR8ufLlKqq2Lb96G88QX/4X/4hjY1NJ3Z8vxGQIPmIOI7D8HAhAOktcccnn2HQtDl/o1hLlsvlCrNvXJfR0dFCUwu9MFA0EolQVVVVkt/14mKhXuVB7bxd191190PXdZqbm2XwoBCPIAGIEPsQCoXw+/0sLy+XTQCyH7Zts7i0SHIjSTKVxHVdgotLVNbXowLdXV0YhsHqyqp3BXB9fX3Pxeji+AWCAWyrvAOQe/eG8ekn04EqHq8kHq88kWM/Dubm5shkMvh8xpE2lFAUhWAw6HUhVBSFS5cukUwmSafTJJNJpmemqaysRNM0lpaWUBSFaDS67+5nyWSSbDYL7L/+Q9M06uvr93UbIR5HEoAIsQ+KolBdXc3s7Cy2bZfVVdUHteHN5/MkEgnyVp7GhkYURWFxYZFQKERjQyPRaJRQdQ2sr+O6rlcYWl1Tw/j4OLruw7LyfPPN17z66qvH/ZDEHjTUN5z0Eh7pp//hP5BOp3n9P/rPjv3YxXbQ4mjcu3cPgM7Ojh1dsQ5lj/Vsuq5TWVnp1eRtf01OJBKsb6wD4Df8VFRUUFtbu6dOhsX6j0cFL99+Xs3OzuK6Lk1NJ7fbJ8RpIQGIEPtUVVWFbdtlM1n526kAlmWxuLTIemKddKbQGjMSjuDWu6iqyuXLl3e8cSrLK/eFLrW1O/veT0xOksvlyrIN8ePOdV1c1z3VA9+O0vDwMIFAQNo9H4FcLsf4Zverchi4t/2CUHd3N/l8nmQySTKZZG1tzZvnsbKy4s3oeFBt0NTUFFBoFbxX+Xye+fl5mXouxB5JACLEPhmGUVYteV3XJZlOouU0KhoKaWGLC4tUVFRQU1NDLBbbcWXyvqvBD7g6XF1VDQpYVp5otDCYsH+gn6tPXD3SxyL2b35+nuWVFS5dvHjSSylL+bxFKCTB2VEYGxvD3TyRr96s1SgnPp+PeDxOPB7fEYBubGywsrrC5NQkoWCIWGWM6qpqLxhZXi4MzXxQ/Qc8eLd5fn4eQNKvhNgjeVUW4gBs22Zubo7cZrvI4+a6LslkksnJSe7232VifIKlxSVc10XXda5cuUJHRwfV1dUHSovQdb0QhLCVA3371p2yL3Z+HKmqiiO/lwdyXZe8ZUoHrCMyMjICFHYbjiTNrYT3qSiKt8b29nauXL5CW2sbhmHseC1fWFggmUyCsvdgwjRNFhcXqa+vL10amhBnnPylCHEAiqIwNzeH4zjHmu9bzHHO5XIMDg7i8/morKwkVhujJd7ivcEe6GTgWyll1dXVLC8vb048LtSCDAwOcvHChVI8FFEimqbhuI7UOjxAMVVS1yUAKbW1tUShU5RC6QfuHUN6q67rVFdXU11djW3bXgrjwMAAAOFQmEQi8dCuWsX010Qigaqq1NXVHfm6hTgrZAdEiANQVZV4PM7KysqR14I4jsPy8jIDAwP09/d7xeLnz5/n8uXLNDc1EwqGSn7yuT1f+uLFQtBx6+bNsql9EQXK5olTOc8CefnlV7h06fhTxLaGEMq1tlIrzv5oamre9+yPcqNpmvf6mUwlAaisrGRqeopbt24VdkQeora2losXL5ZVUxIhyp0EIEIcUHV1NaZpPvLN6aBs22ZiYoKbN28yPj6Oqqo7dltCoW1Bx2Fij10Cl5qaQjHl0vIyfX19KKpKNpv12vOK8qCdggDkjddfp7OjxFfJ98Dv99N3ru/UnyCXm+2zP3q6u094NaXjui7LS4X6j4sXL3Lp4iXqG+q958/s7CwLCwtYluXdJp1O47qupPkJsU8SgAhxQOFwGMMwvILFUin2n1dVlUwmQ01NDZcuXaK3t5d4PH5saTaxWAU+n4G7ObCwq7MTgJs3bx7L8cXeRKNRLpy/UNa55//of/xHvP3228d+XFVVCQQC0iGsxLbP/mhtbT26Ax1zSuHa2hqmaYJS6IBlGAYN9Q2oqorrupimyfTMNINDg8wvzJNKpejv72dlZeVY1ynEWSCvykIckKIotLS0eKlKh+G6LmtrawwMDHDnzh2y2SyKotDX10dzc/Oe2t8+qDPLYSiKQs1mO97FxSWefPJJFFVhdXXVmxIsTp6qqhiGUdb1H6ZpYubNYz/uyuoqMzMzx37cs25wcBCArq7OM5V2NDo6CrCjI1aRoii0t7dz6eIl4pWF9Nt79+6h6zrxePwklivEqSYBiBCHUFlZSSQSOdR9JJNJBgcHvY4yXV1d+5q38e05IAf2gNqO2s3gamlpkXA4TGdHYRfkq6+/Ls0xxaHl83nGxsZIp9MnvZSyk9qcASFKJ51OMzF5xLM/XPfYdz9ga/7HuXPndv0ewzCob6inrbUN2OoSODs7uyM1SwjxcBKACHFI6XSae/fuHbhFbXEoVk9PD319fVRWVpbN1ewaLwBZAuDipUsAzM7MsL6+fmLrEjsl1hOYZv6kl1F2TNN86CRrsX9DQ0PgFgqvy3H2x0Elk0nvda69vf2R37+ytoLP56O6uppsNsv8/Dy3b99mfn6+rOuxhCgXEoAIcUiaprG+vr7nPGDXdZmdnfXe7Jqbmzl//jwVFRWHWseBu1MpykMK0QsByMbGBtlslqp43DvpuHHjxsGOJ0qqmAJjOzIL5NtMMy8BSAnZtk1/fz8AfX19J7ya0ioW1cdisT01LQiHwjQ1NaGqKqFQiEuXLhGPx5menubOnTuy8ybEI0gAIsQh+f1+4vE4CwsLjwwCstksAwMDzM7Oejsm21tAlptAIEA0GgW2dkGuXbsGwMTkhFcwL05O8bnjlvFV10gkSqwidqzHlCGEpTc+Pk4ulyMQCOxpl+DQjvF1sZgC27nZbONRqquqqYpXef/v8/loa2vj4sWLGIbhtYAWQjyYBCBClEBdXR25XI5EIrHr9ywuLnL37l1s26avr2/PU3YfpWTByy6xU3G41tzcHFDIeQ6Hw7iOK7sgZUBRFDRVK+sdkH/wD/7vfO973zv24zbUNxAOh4/9uGdVcUhfX1/fmSo+z2azrK6uAo+ua1ldXWV6ZnrXi02BQMDrWOi6LtPT02QymZKvWYjTTgIQIUogHA4TDoe9XYJvc12XlZUVqquruXDhQlmdFLmPiF+KRZbFbkKKovD0008DcG94WIqfy0BDQwOR8OGaIRylf/b/+md8+umnx3pMRVGoq6uTGSAlsry8zOLiIoqq0Nvbe8RHO95hp8XuV6FQ6KGpsLZtMz09jZW3UBRl14s/xc87jkMikWBwcFBSsoT4FglAhCiRjo6O+7bvHcchl8uhKIU37ba2tiObSVDqNrxFxQBkbW3NCzba29uprq7GdRxu3bp1JMcVe1dTU1NWQe23jY6NMj0zfazHzOVyrK0lDl4bJXa4e/cuAG2tbWcuqBsdKwQgj0orW1hYwLIt6hv2tnutaRp9fX0Eg0GGhoZYW1s77FKFODMkABGiRPx+P5qmebUdrusyPj7O0NAQjuOc2mFowWDQ63NfTMNSFMWrBekf6JereycsKe1m77O+vs7E5PhJL+NMyGazjI6NAXDhwoXjO/Ax1IBYlsXC/ALAQ3d2crkc8wvz1NXW7auxgaZp9PT0EIvFGBkZkb9TITadzjMiIcrUxsYGN2/eJJfLsbi4yOrqqtcp5agc5RyQom+nYRU/F4vFwIXr139TmjWIA1lcXGRhYeGkl1FW8vk8Pr28BzSeFkNDQ7iOQ1VVFbW1tSe9nJKanJzEcRzC4fBD2wqvr6/j030Hqt1TVZXOzk5aW1vLeqdSiOMkAYgQJRQKhVAUhZmZGaampqirq6OqqurRNyxzTU1NQGHYVjGlRVEUnn/+eQAmpyZkLsgJ2r7zJgoKM0CkA9ZhOY6zo/j8rAV0xcfW2Nj40MdWW1vL+fPndxTf7+fij6Io1NbWoigK6XRaUgPFY08CECFKSNM0ampqWF1dJRAI0NzcfGzHPtQckEeoq6tDUVUymQxra1udvhoaGgoBlguff/HFwY4vDk3XdWy7fNvwPqxg96iYprTgLYWpqSnS6TQ+n7HnFrWHdkwn547jMD8/D+ze/cpxHJaXl3FdtySdvyzLYmBgwOu6JcTjSgIQIUqsrq4ORVGIRCLHdtJ11MfRdZ36+kI73tm52R1fe+655wqfn5nZEZyI46NqKpZtnfQydvVX/sp/zuuvv36sxzQMg2AweKzHPIvu9heKz/v6zqHr+vEe/Ihf16amprBtG03TaGhoeOD3LC4u3jfz6DC7F7quE41GmZ+fl10Q8ViTAESIEvP5fNTU1Bzbm0vpgo+Hr7ex4f46ECgEXMWuMF99JXNBToLPZ+Av44nfiY0EuVzuWI/Z0dFx5uoVjtvS0hLzc/OgwLlz5056OSVX7ODX3t7+wDq9fD7P3NwcNdU1DwxmD/raW1dXRyaTkRbm4rEmAYgQJTY1NXV8k4KPUbEOZH5+HudbU7efeeZZACYmJnadhSKOTnVV1THMZji4f/Mn/zuffPLJsR3PcZz7nqNi/27eLJygd3Z0EomU75yZg8hms8zNF7r6Xbp06YHfMzMzg6IoXhOOUikWom/fVRHicSMBiBAltrq6Sj6f94YPmqZ5LMc98ByQPV7Fq6qqwjAMbMticWlxx9eqq6po2qx3uX79+sHWIQ7FdV1J6di0sbHBzVs3yefzJ72UU2t1dY3JyQkALl++crwHP4bn8fDwMLjs2tkrnU6zsrpCY2Pjfalnh525pGmadMMSjz0JQIQ4Aq7r4jgOk5OT3uyMo1KyNryPOo6ieHnSszOz9339qaeeAgo50/ML88eyJlGQSqX45uY3ckV1k2maKIpy/DULZ8jt24Xdj5aWVuLxypNdzBHo7+8Hdp/9EQwG6WjvoKam5kiO39fX99C2v0KcdRKACFFiwWCQTCbjFTYuLS2dmRPDYhrWt+tAAKricW8X5LNPP5Or8ceo2J1HWvEWyAyQw9nY2GBkdASAK1cun9xCjuj3t7CwQCKRAAW6u7vv+3oul0NRFOLx+K7PIUVRDnzxp3iBSojHmQQgQpRYMBgklUrhOA61tbX4fD5mZ+/fMSg7ewgYim2Fl5aWSKVS9339heefR1EVEokE9+7dK/kSxYMVAxDLkgAECieQfn/5FuWXu9u3b4MLDY0NJ1fIf4TB4507dwBoqG8gEAjs+FoqleLO3TuFAOWIrK6u8tVXXx17YwYhyokEIEKUWE1NDS0tLSiKgqqqNDY2srq6euQdT45jxyEcDnsnJOMTE/d9PRKJcL7vPAA3btzAssq3NexZ4u2AOOUZgFx98km6u+6/0nxUcjkTo4y7gpWzdDrN0ObFgyeuPHHCqyk927YZHx8H4MqVnbUtjuMwMTFBMBCkoqJi1/s4zGut67rMz88TjUbx+/0Hvh8hTjsJQIQoMb/f7+X2Oo5DdXU17e3t911pK5VDp5ns8/atbW0ATD4gAAG4du0aoVCIbDbrtbkUR0tVVVRFxS7TgO8//o/+Y648cXyFzL29PbvOdRAPd/fuXVzHoaamhvr6+pNZxBFeTBkdHcW2bXw+332DYufm5siZOdrb2/f0unqQ197V1VUymUzJO2sJcdpIACLEEZmammJkpJBHXV1djaqq5V0Xsce1tW8GIPML82Qymfu+rus6zzzzDAA3b91kY2OjdGsUu+rt7S3botZ/8N/9A97+xdvHdjxN06QA/QByuRz9AwNAYXfgLNbQDA4OAoXaj+2zP9LpNPML89TX1x/ZAMtMJsPExASVlZVnrq2xEPslAYgQRyQWi7G+vs709DRQuLo2NDRU3kHIHkSjUaqqqsAtzP14kPb2dmKxGK7j8smnxzf/4XEWCAS8VKxyk81kSGeOZ+haOp1meHj42NpfnyX9A/3YlkUsFqOlpeWkl1PyOpBkMrnr7A+/309jYyMN9Ue3c6brOvF4/MzNiBLiICQAEeKIVFRU0NLSwsLCAtPT0wSDQZLJ5JEVNx71HJDtim+g4xPju9ylwksvvQTA/Nz86SjCP+Wk/XFBNpcjmUo+cLK12F0+n+funbvA2d396O/vBxfq6+uJxWLe523bLnQtrG/Y0+Pe72utaZpks1l8Ph/t7e1le6FAiOMkr9BCHKHa2lqam5uZn5/HNE0ikQgzMzMl3QU5rjkg27VtpmHNzc3t2mK4pqbG+76PP/5Y2k4esUwmw3pi/aSXceJMM4emSgrWfg0ODWGaJuFwmI6OjpNdzBHsEruu66VfdXV1eZ9PpVLcunXrgV39HmUvr73pdJqBgYFdd4uFeFxJACLEEVIUhfr6enp7e73uWNlsloWFhZNe2qHEYjEqKyvBhcnJyV2/74UXXkBR1c034cHjW+BjSNd1acMLmNIBa99M0+TmN98AcPny5TO5ezQ2NkY2m0VVVXp6eoCtrleBQIBQKFTS47muy8rKCoODg+i6fvJBnRBl5uy9yghRhqLR6I6t/UQiUfJakEPf3z5vv5WGtfuVvUAgwNWrhVae0vf+aGm6hm2XZxesYDBEKBQ+lmPlcrkj6zh3Vt29e9fbod1tMvhpd+PGDaBQfO7z+YCtrldtbW37Sjnby2vt5OQkY2NjxGIxzp07J0GxEN8iAYgQx8jv91NTU0MymWRoaKgkE9IVRTmRfO22tkIAMjs789CC38uXLhOLxcjnTa5fv35cy3vs6JqO7dhl2eTgj/7oj/jBD75/LMeqq6srNEkQe5LJZLh1+zZQaKFdVrsfJXpdm5+fZ21tDRR46qmngELq1fzCPA0NDQfuevXt113XdbHtwi5kLBajs7OTzs5OqfkQ4gHK6JVGiLNP0zTa2tro6ekhk8lw584dVldXT3ZRB3yTj8crqaiowHXch6ZhqarK008/DcDIyAjLy8sHOp54uFAoRENDQ1kGIH/8J3/M1199fSzHisVi0uJ0H27duoVtWcTj8fJJEyrxc7g4j6i5qZlwuLATp+s6NdU11NeVZtbJxsYGAwMD3pDDWCxGPB4vyX0LcRZJACLECYhGo4TDYTRN866+JZNJ7+rZaeGlYY0/vMCypaWFuro6AD788EMpSD8CwWCQ+rr68rqCvenmN98wMjpy5MfJ5XIsLi6eur+jk5JMJukf6Afg6aefPpOdrzY2Nrxufc8884y3S+H3+2ltbT30Y06n09y7d4+hoSGg0HhECPFo5fdOJcRjQFEUWltbcRyHpaUlXNdldHSUW7duMTMzQz6f3/d9HrgNr3cH+79922YAMj0z/ch0spdffhlFVdnY2ODmrZsHWqLYneM4rK0lHuv5F6l0mpnZmZNexqnx1Vdf4Tou9Q31Z3Yy929/+1twobGpkerqahYWFhgYGDhUkFp8rbVtm4GBAXK5HJ2dnfT19RGNRku1dCHONAlAhDghxcFXCwsLZLNZ+vr6qKqqYmFhgVu3bjE+Pr6nnYKTaMNbVBWPE4/HcR2HkdHRh35vJBLh2pNPAvDNN9+wvi4tY0vJdV3GJ8ZIHqCd6Flhmjk0TZec+z1YXV3zdqWeuvZUee5+HHJNuVyO0bHC69LlS5dJJpPMzM5QWVl5oOdIsbPV+MQ4ruuiazq9vb1cvHiReDxenj9DIcqUBCBCnKC6ujoCgQCLi4sYhkFrayuXL1+mqakJ27ZRFAXXdUkkEkeXtnSIN01FUejebGl5bw9T3i9durQZsLh89vlnZVmvcFqpqoqiKNhWeXbCOg65bA6/dBvakxs3boALLS2tZzZt6ObNm7iOSzgcpqGhgbGxMcKh8L53e0zTZG5+jjt37njpXNbm31kkEpHAQ4gDkABEiBNU7Enf2trqfU7Xderr6+nq6kJRFLLZLMPDw9y8eZPJyUnS6fQJrvh+XZ2dKKrK2traIwvMFUXh1VdfRVFV5mbnuNvff0yrPPsURUHT9Me6/iGXy+H3+096GWVvYWGBqalJUAqdr8pOCS5M2LbN3buFye5Xr15lYmIC13Xp6OjYU8DgOI53gWR8fJy5uTkikQh95/pob2uXtrpCHJKMihXihBXfyJLJJH6/3+tRXxQMBrlw4QLLy8usrKywuLhIRUWFN0yr6LjngBQFAgHaWlsZHx9naGiImpqah35/LBbjyatXuXHjBr/97W9pb2vzOtOIw/Hp+oHqh47af/IX/+J9z9ejEA6HCRywperjwnXdrZkYXd3E45Unu6AjMjAwQD6fx+fz0dvb6006f1jg4LouqVSKtbU1VlZW6OzsJBqN0trais/nQ9O0wuts5rgehRBnl+yACFEGbNtmeHiY6enpB349GAzS0tLClStX6O7u9uYcmKbJvXv3WFpaOlzx8SFTCM6dOwfAyOiol5rwMJcuXSISieA6Dr/+9a8lFatEgsFgWdY/hENhDN/RXzFubm6mWmaAPNTMzAzz8/MoqsrVq1dPejlHwnVd+jd3V/v6+lBVlYqKCioqKna9zfz8PLdv32bo3hBra2vU1NR4wUogEHjg35WkXglxcBKACFEGNE2jubmZlZUVEonErt+nKAqxWMwLQGzbRtd1FhcWGRwaZGBggIWFhf0dvARvog0NDYTDYWzLYmxs7JHfr6oqr732GiiFdJB79+4deg0CWltbaWpqOull3Od//p//Je9/8P6RHsOyLHK5nASzD+E4Dr/5zW8AON/XV9bzUhRFOfBr0+TkJGtra2iahuE3mJub2/F1x3FYX19ncnLS696nKAqVlZX0dPdw6dIlmpqaJJ1PiCMkAYgQZaK6upqKigrGx8f3nEYTDAbp7OzkXN85WlpaMAzDe0O1bdt7Iz7qugBFUejpLaTYDA8P7+k21dXVnO87D8AX16+XZCq8KEEq3hFwXffI17W2tkb/QH9ZPv5y0T8wQCKRwOczuHLlykkv50i4rstnn30GQH19PZqqeWmhKysrjIyMcPPmTYZHhllfX/d2juvq6mhpaSEajcrOhhDHQAIQIcqEoijeYL+Zmf3NMtA0jcpYJZ2dnbS1tQGFgtz19XVGx0a5eesm9+7de/juyCFP3Lq7ukEppDKsre2+i7Pd008/TSgUwrYsvvjii0MdX8Dyygo3b918LE/Cc7kchs9floMYy0E6nfZqP5566hqBQOCEV3Q0hoeHSSaTKKpCdXX1jl2eVCqFbdvUN9TTd66PixcvPjQt60G2z1s6yRboQpx28kotRBnx+Xx0d3fT3Ny859vs9iYYCoW4ePEiF85foKmxCUVR2NjYAApXCcfGxrwZJKU4YY1EIjQ2FtJ/hof3llKlaZqXijU2NsbExMMnqouH0zeLZMuxEP2oZbNZAgFJmdnNl19+iW1ZVFVV0dvbe9LL2d0hXoscx+Hzzz8HoL6uHt2nk0qlyOVyALS0tNDb20tDfQOhUEh2OoQ4QRKACFFmwuEwuq5jmuah05IURSEQCFBXV0d3dzddXV0A5PN5TNNkZnaGwXtDDA0NMTkx6QUiBw1Izm2e2Ny7d2/Pc0tqa2u9VKxff/QRmYy0mDmoYge1vTQCOGuyudyZvap/WIuLi4yMFIYOPvfcc6dnl+ghAYJt2yQSCWZmZhgcHMS2be7cuUMul0PTNPr6+ug71+c1vCjcnQQcQpQLacMrRJkaHR3FcRyvi8vDKCh7ChqKb8CGYXDu3DkcxyE9PU2WMbKq4n29v38An08nHA4TDIYIh0P3tQd+kGIdSi6XY2pqyksHe5SnnnqK8fFxMpkM7777Lj/+8Y/lZOEAir8j08wTCp3wYrbp7uqmpbnlyO6/OLPBkKLh+2zfFejq6qKuru6EV7R/rutimiZ+vx/XdRkYGCCTLVyo0DWdaDRKLpfj66+/BuCJJ56gu7v7yNYihDg8CUCEKFOtra0MDAwwMzNDS8vRnLypqkokEiFSW4O7efXYdV2qq6tIp9OsrK5iLRbqRvrO9REIBNjY2EBRlAe2fNU0jZ6eHu7cuUP/QP+eAxBd13nzzTf56c9+yvLyMt98882ZbRF6lHS98JJu2+W1A/KH/+UfHmlwoKoqly9dkpPDBxgaGmJlZQVN13nqqadOejl7Yts26cQ6GzMzpDIZ0uk0iqJw5cqVQifAyhi1vlrC4TB+vx9FUfj666/J5XL4fD4uXbp0LOuUiyRCHJwEIEKUqVAoRFNTE9PT0w/tYV+yN8HNkzdFUXZcJTVNk1Qq7bWknJubI50pTGM3fH6CwQC1tYWTAdd16evr487dO8zNzrG8vEx1dfWeDl9dXc21J69x48YNvv7ma5qamqitrS3NY3tMKIpC37m+Pe1WHae/+3f/W7773e/ynz/z5pEeR04Id8pms3z5ZaHw/MknnyRUTttiFC52ZLNZ0pkMuWwWTdeor6nFcVymZqawDR/haJSGhoYda29saNxxP9lsdluB/VMypVyIU0ACECHKWF1dHevr60xMTHDp0qUTOcEyDGPHG3pPTw+ZTIZMNks2kyGTyXhXnucX5llaWqa2ppbFxUW+vHGDl77zHQKBwJ7yzi9fvsz09DQLCwt89NFH/O7v/m7ZnUyXu3Ksg0gmN1jfWD+y+5+bmyOVSh1Z2s1p9dVXX5HPm8RiMS6cP3+ia8nn82SzWXw+H4FAgNXVNSanJrzXDp/PoDIWA0DXNXp7etEvXNjTLJCPPvoIx3EIBoNcuHDhSB/H9i5YQoiDkwBEiDKmKAodHR1YlvXI4OPAb4z7DGoURSEUCj3wamo0EgUXHMdmcXGR2ZkZbt++jeE3MHx+wuGQl5aVyWTw+3e2TVUUhddff51//+//PRsbG3z22We88sorB3tcj6mlpSUs26KhvuGkl3JspHHB/ZaXlxkcGgTg+eefP7bC83w+j6ZpqKrK0tISa2trZHM5Ly2wvq6ehoYGgsEAjQ2NBAIBgsGglz6I46AoCj6fb0+vaBsbG0xOTQLH9zhlp02Iw5MARIgy5/P58Pl8hYLxdLqspxeHw2HC4TANDQ3Mzc0xNzuHaZp0dXV5rTChkHoxdG+oUDjs8+P3G/j9furq6ggEArz00kv88pe/ZHR0lPr6es6dO3eCj+p0yWazpFKpxyoAyWZzVFRET3oZZcN13cJcHRfa2tpoaCjtc8FxHO9Ef2FhgVwuRzabJWea2LZFT3ePl5Lp8/mIRCP4jQCBgN/boQsEAoferXNdl9/85je4jktFRQWdnZ2Hfmx7JTNAhDgcCUCEOCXm5+eZm5ujr69vx+5Dqd4IFZeSJhdcuniJudk5RsfGeOaZZ+6rBenu6i6ctGyevKyvb1BfXw8UTqLr6+uZn5/n880Bhc3NzYTDYZzNK6RyFfLBfIaP/NrjMwfEcRzMfI5AQOqFigYHB1lcXETVNJ555pkD3YfruiiKQj6fZ3V1lVwuV/gwTVzH4fLlywAkEglc18Xv9xOtiOI3Al692IFquPbYSCCTyTA4OMjo2CgAL774orwmCHGKSAAixClRX1/P2toaIyMj9PWVsND4iN60m5qaqKysZG1tjYHBAZ648sS2QyrebsmD1NXVEY6E+fijj0kmk3z99ddUV1cTDodZWVlhemYaXffh36xPCYfDVFdXe+06DcN4bE9GfD4D27Gxbfu+LmUnpZCCdzSFwcX0q3KsfTkJyWSS3/z2twBcu3Zt1x1T27ZRFAVVVUkmk6yvr5PL5TBNk3w+T0VFBW1tbTiOw/z8PIZR2KWMRCL4DMMLUE5iqGE+n2dkZITR0VFwC4HOfoa3HoZ0WhOiNCQAEeKUUFWV7u5u+vv7GR0dpaenZ0e+c7m9MSqKwsWLF/nkk0+4e+culy5e2vMJcSQSIRKJ8L3vfY8//Xf/zrva+eKLLxKJRGhpbsE0TUzT9AaPQeHEpH+gHyiciPt0HZ/PR1tbG6qqei2Ei2ltp2Yg2z4Y3iwQk2AweMKrKfibf+NvEq+qOpL7DgaD9HT3lM1jPUmu6/Lpp59iWxbV1dU0N22dlM/Nz5FOpcnn8+TzeWzHprW1jap4nFwuRyKxjmH4CIfD+AwfwUDh52kYBpcvXz6ZgP4Bx3Qch5GREZaXl1lZWQEFXnrppeNfmxDiUCQAEeIUMQyDrq4uhoaGSCQSxOPxk17SQ3V2dnLjxg0ymQzDw8P7ruWIRqO8+MILfPLJJwwNDdHe3k5TU9OuV7t1Xaezo9Ob9J7P53cU8M/MzJDNbU2X1zSd1pYWYrEYGxsbpFIpdF1H03R8Pv2+DmCnQSAQoKGhoWx2PwB+9d67XLv2JOeO4DxRVdVdd9LOGtu2t57Xto2Vz6P7fFTF4+TzeT799FNmZ2dBgZqaGsYnxohGL6NpGrZlezuPPsOHz2cQ2fy5VVdX79ouu5x2El3XZXR0lHQ6zcTEBFBI9aw6ouD2Ycrp5yLEaSQBiBCnTCQS4eLFi16edUneCBVlz7nX+6FpGhcuXODLL7/kzp079Pb27nu9PT09LCwscO/ePd5//wN+/OMfU1kZe+D3qqq667yU4n0VT+Dy+Tx5K+/9HHO5HMsrK1jWVv1EZayS9vZ2TNPk3vAwPl1H39xV0XWd+vp6FEUhlUoBhQBI13VUVT2xExRd16mvqz+RY+/mk48/xu/386MjuO/Z2VkMv5/qEzgJPQzXdbEsC8uysG2bcDiMoigsr6yQy2a9r+XzeerrG6isjLG6usr0zLR3H6pSeL5XxeNks1kmJgvdoC6cv8CFCxd27PIdV4rSUVIUhaqqKiYnJ71Uy+MerihteIUoDQlAhDiFiifNi4uLWGp5Tb3+tnPnzvH1N9+wvr7O1NQUra2t+76P5557juXlZVZXV3nnnbf5c3/uzx1oZ0LTNILB4APTdWpqaqipqcF1XWzbJp/Pe0GEoijEKyu9HZVUKoXjuF53ocnJKXLm1s6Koii0tbZvnjSukUisoWlaoT2pphIMBInFYjiOQyqV8r5WquBlY2PjsdgZcF2X5eVlamprTuT4juNg27b34ff70XWddDpNMpnc8XV/wE99XT35fJ6BgQFsx95xX5cvFXYqNtbXyWSy6Hrh+RAOh9H1wm5WRUUFgUDAC4CLu1yu6/L5F1/g2DbV1dU8/fTTpze98AEXQlzXZXV1lXg8jm3bjIyOAIXUK5kTJMTpJAGIEKeU67qsra2xtL5EqD5EwHfAItwjvlJvGAZ9585x584dbt68SUtLy75PsHVd58033/TqQd577z2+//3vH8kug6Io3k5Gkc/no7GxcdfbdHV1elesLdvGsW2Cwa3fh+M4mKaJbTvYjk2sooJYLFYopt08mdruiStPoCgKExMTZLNZb66CqqpUV1cTiUS8k1xVVVFUFU3V8PkKJ6xzc3NomkZTU5N3u2LB8VlKHbEsC9uxCfh3r/9wHAfXdXEcx/u3z+dD0zSvA5vjuDiug2PbGIbh/W7m5uawbdu7rW3bnDt3DkVRuHfvHql0asexWlpaqa6qIp1OMz8/j6ppaKqGrmtewKxpGrV1tehaIdWvGGgUA4aOjo5dH8tuKYHDw8PMTE+jqAovfuc7pzf4KNr2HHVdl4mJCVZWV/D7/XzwwQfgFppyHGfb3fuWKG14hTgUCUCEOKUURaGzs5O122tMTE7Q3V6+U6AvXrzI3f5+lpaWmJyc9IYR7kc4HOa7332Tt99+m/n5eX7zm9/w7LPPHsFq9+9htSLxeCXxeOWut+s717ftKrqD49hekBAIBFAUxTv5zefzOI4DFLo/LSws7LiSHo1E6erqwufzkVhPMDA4sON4ly5eQtd1xsbGSKZShYCEQkvjuvo6quJx1tfXWVhY8FodK4pCIBDwArDJzTSf7YFMfX09Pp+PldVVstuGAiqKQrA498EfYHZ2FkXdqk1RNdWbVzI7O4ttbz0W13Wpq6vD7/ezvLLC+ma7VygEFbFYzNsJnJmdKdQ+AI5baNN8cXMi9sDAIGZ+awYNQHtbB5WVMdYSa8zNze1Yb2WsktjmRO5sNusFcIZh7Dixr6mpJe5UoakamqaiaZq3nuJu2oOoqlrSFLl0Os31678B4IknnqCqzOvC9sN1XaamplhZXaG9rZ2pqSkSiQSKqvDaa6+d9PKEEIcgAYgQp1ix6Hry60mmp6dpj7cf/Ar3EXbRCoVCXLp4kVu3bvHll1/S0tJyoKu0DfUNPPPMs/zm+nXu3r1LbW3tQ68Yl7viyf1u6urqdv1asXDYdV0vbaz4u/f7/WiaTvtmG1XXLZyYF1N2YrFKAsHA5tT6QkBT7J5VPNku7hYUP6BwQrh96vj2zwPkNue5bO/Ipm6eD/t8PtYSCVR1623HMHyweS6eSqW8AKT4OLyAZHMNxYCokMqmFQIERaUiGvV2d4o7PUWNjY04roOqqKhq4WvFn3l1VTXxyri3w7T9b8fn8z20xexudUjHyXVdPvvsc/J5k3g8zpXLV056SSXjUmgasbS8RGtLK8FgkOvXrwPwzNPPnNhA1nLrNijEaSUBiBCnXDAYpLWlleXFZRzHKavuR9tdunSJgYFB1tfXGR4ePvD8gIsXLrC0uMjY2Bgff/IJFbHYmbrqu18POun2+XzYtkUkEnlgQLrbjgxstUDe7VgP62TW2Nh4X6qaY1v83u//Pn19fVw4fx5Ve/DbTk9Pz673u1uXplQqRWNj4667DfDwQGF7mt1pNDo6ytTUJCjwnZdeOv2pV9+SzWZpbmqmpqaGt99+G9M0qays5NKlSye9tDOVyijESThbr1ZCPKai0Sjtbe1omrb/K3TH9Ebq9/u5cqUwPfmrr77Csg5ePP/yyy9T31CPbVn88p13yGazj77RY8Tv9xMOhXekNJ2kjo52qqtL36UqHA4/NPg4y1KpFJ9//gVQqBk6bV3AduW6Xsvgrq4u6urqmJ6eZmpqCoDvvHQGalyEEBKACHHabe/UlM1muXv3LhsbGye8qgc7f/48wWCQTCZD/8DAo2+wC1VVee3V1zAMg2w2yy9/+UsvlUgUAtKenp6yucL/P/2L/4lf/upXJb1Px3FYXFwkn88/+pvPGMdx+Oijj7ZSr66cndSrpaUlhkdGvC50tm3z4YcfAoUC/WLN0EmS3Q8hDk8CECHOEMMw8Pv9jIyMeLMpyomu61y9ehWAm9/cxDTNA99XIBDgrbfeQlEVVlZW+OSTT0q1zDOhWBdSDopF9qWUyWSYmZ15LAOQmzdvel22Xnnl1bJNu9yv5eVlZmZnqKyMoW/WJH3yySdkMhl0XS+LiecyB0SI0pAARIgzRFVVOjo6CAaDDA8P7ygYfqRjKq7s6ekhGo2Sz5vcuXPnUPdVU1PDiy+8CMDIyAh37/aXYolnQn//APPz8ye9jCOTyWQeWcR/Fs3Nz/H1N18D8MLzz5dFMXwpLC4uMjU9RVW8itraWhRFYXp6mqGhIQC+853veF3GyoG04RXicCQAEeKMKF6Z0zSN7u5uDMNgZGTk0alJx5xOoKoq165dA+DW7duk0+lD3V9PTw99fX0AXP/NF8zMzBx6jWeBYfjI5XKP/sZTKpPJ4Df8j1U9QDab5dcf/hpc6OzsfGjh/mmSz+eZn5+ntqaW5qYmFEUhl8t5qVe9vb1n5rEKIQoen1duIc6oB12JKwYh7e3tZXmC1t7eTnV1NY5tc/PmzUPf33PPPUdLSyu48O5777G4uFiCVZ5ufr+fXO7gKW7lLp1OEwqFTnoZx8Z1XT76+GMymQzRaJQXXnjhpJd0aMUBkT6fj3PnztHY2IiiKLiuyyeffEomk6GiooIXX3zxpJfqkTa8QpRG+Z2ZCCFKwufzEYlEcF2X2dnZR+fKH+Mbq6IoPPXUUwAMDhVa8x72/l577VUaGhtwbJtfvP02q6trJVjp6WUYBvm8WRYnTHV1ddTWlq5bleu6hMNhIpFoye6z3N25e9ebdv7qq6/i26yROK1c12VycpLx8XFc18UwDK+4e2joHkvLS6DAq6++WjbNFLaTQnQhDkcCECHOiN1ONPP5fKGzzPBw2RQlw9bMCNdx+eL69UOfKGuaxuuvvU4kEsGxbX7+85+XZSH+cTEMP47rHKrdcan8/b//93nzje+W7P4URaGlpeWh80zOkqWlJb788rcAPP30Mw+ciXKaOI7D2NgYq2urxCord5zML6+scOfubQCevPrkQ4dxCiFOLwlAhDjlHnUlzjAMuru7MU2T4eHh+2tCTvBK3jPPPIuiKsxMTzMxMXHo+zMMgx/96Ef4/X7yeZM/+7M/O9N1EA9TURHl8qXLZXGl/G//3/42b7/zi5LdXy6XO1QHtdPENE0+/PBDXMelpaWVC+fPn/SSDsW2bUZGRthIbtDR3rFjiKht23zw/vvgQLwy7tWKCSHOHglAhHgMhEIhuru7yWQyjI6Ols3MjHi8ksuXCsMJv/jii5KcVAaDQX74wx+i6TrpdJpf/OIXZbELcNxUVS2b9qxrq2slTYlbWFhgdHS0ZPdXrlzX5bPPPiOZTBIMBvnOd1489ak/q6urZLNZujq7iMV2dvD67W9/SyqVQtVUXnr5pbJ8rNKGV4jSkABEiMdEOByms7NzR6615wTf6K9cuUI4HCaTyfD111+X5D5jsRg/+P73UVSVtbU1Pvzw12UTdB2nycnJM1mQ/7gUoA8MDDI2NlaohXjt1VPdcrj491ddXc25c+eIRCI7vj49PU1/f6GN9tNPP00wGDz2Ne6HtOEV4nAkABHijNjLlbmKigpaW1tRFIVUKrXzpPyEipV1Xfc6+tztv8vy8nJJ7rempobvbQ4qnJqa5IMPPiyLguzjZJrmmauDsW2bbC575gOQubk5vrj+OQDXnrxGfV39Ca/o4LLZLP0DA6ytJVAUBcMwdnw9k8nw/gcfAHCut5fm5uYTvSgihDh6EoAIccod5EqcbdsMDw8zMjKCXQY7A83NzbS1tYELn332Wcl2KxoaGnjl5VcAmJyc4Pr16yW539MiEAiQzZ6tGpji3JizHICsr6/z3nvvgwsdHR1cvnz5pJd0YKlUinvDw6iKSih0/66G4zi888472JZFMBjk6aefPoFV7t3jdhFDiKNSfr3thBD7tt9caU3T6OrqYnh4mOHhYbp9xonXCzz33HNMz8ywvLzMwMAgFy6Upti2o6ODZDLJl19+SX9/P4Zh8OSTT5bkvsud3+9naXkJ13UPnE+//bb5fB7HcXBd1/swDANd173C8OLnodAKOuA3CAQDVFXFSayvo6pbz7OKigoURSGTyWDbNoqieB+GUXhOFo9X/HzesvD5jFOdjvQwpmny3nvvkc+bVFdX853vfKcsayH2YnllhenpKYKBIJ2dnfe103Vdlw8//JC1tTUUVeHN734XvUzqloQQR0sCECEeU5FIhN7eXkZv32Z8ZoaW1lZOsl9SKBTiqWtPcf36F3x540va29tKdpX78uXLZDIZ7t69yzfffIPjON4ckrPIdV1s20bdPJlbWVkhFouh6zrr6+uk02ls28a2bRzHIRKJUFNTQyaTYWxsHMd1cB0Hx3VQFdW7An/v3jBmfueOSkd7B7FYjNW1Vebn53d8LVYRo621hT/8v/4huu5jfGwMZdsJ5hNXngAK+f+p9M5UsZbmFqqrq1ldXWVqesr7vKIoRMIRFEXBcRzu3buHqqpe0b2qqjQ2NqLrOolEAsu2URUVXdfQNM0LmMqR67r8+qOPSCQS+P1+Xn/99bJd66M4jsPiwiLxyjjNzc0PHIh689ZNr/vdKy+/QnVVFWSzpyL96rQGhUKUi9P5yiaEuM9BUgOK3bHml1fAOfnUgr6+c4yMDLO8vMz169d57bXXSnbfzz77LK7r0t/fz61bt9B9uncCfBoUZ7homoZpmiQSCWzbxrIs8vk8iqLQ0dEBwO07d7Dtrc5fU9NTGIZBNBolnUmzsrqKqqho2s5OWZqmEYtVoGoqqlI4qVe2nTi2tDR7uxGqqqIoCn6/H4Ca6hrilYWWqsWTs+JJ581bt7l06RIXLlxA1fT7nqutra3eTgcUTl6L9xuJRGhrbd8KihwHn2+rhiAUCuE4jvez2D7rZmVlhfWNnUMuGxsaqaurY20twdT0FLqm4/Pp6LpOIBjwai0SiQS6ruPz+fD5fMdywvnVV18xPTWFoqq8+eabhMPhIz9mqRUDW8Mw6OnpRtO0B/7sZmZm+Oqrr4BCI4ric/c0kAJ0IQ5PAhAhTrnDnhgFAgHaOtpRgPzmyexJdaBRVZUXXniBn/7sp4yPjzM9PV0oSC2R5557Dr/fz9dff81XN74ib+bLIufctm1M08Q0TcLhMLqus7y8zOrqKvm8hWXlcVyH2ppampqayOfzzM7Nomk6Pl33TpSLmpqaUFC8q/6apnlfb6hvoKG+4YHrMAyDpqamXdcZje4+eVzfXMe3ObbF27/4Ofm8yXf/j38FVbv/e4rBxoP4/X7v67lcjv6Bfrq7uoHC86WlpWXX23Z2dnq7QcXgpPhz8PsNamqqsS2bfD7vBXGwOShvfGzHfWmazrneXgzDYHllBcvK4/MZGD4fhmEcOkgZHR3l5s2bALz4wgvU1tYe+L5OSjabZWxsHE1T6enp2XX3ZnV1jfff/wDcwu/ogSmRZbrDIG14hSgNCUCEeNxt5tbjuszNzbG2tkZHR8d9bTKPS3V1Nef7ztPf38/HH3/M7//+75c03//q1auoqsqNGze4ffs2lmXx3HPPHekVbtd1yefz5HI5LMv2JniPjIwU0qGcrav2nR2dVFRUAIWT+lAoVDi59/kIbv4cQqEQVy5f2XXN24e7ra0lsJ1sIb3llEttFqDv5/mgKMoDg6NgMLhroK0oChcvXPQCE8uyyFt57z4y6TRra2s7fm/FnZVkMsnq6iqG38Dw+fH7Dfx+/0NrrJaWlvjo448BuHjxIj09PXt+fOVifX2diYkJNE33Ou09SC6X45133say8lRXV/Pii6dztonsgghxOBKACCE8jY2NZLNZRkZHaG9rv29Q2HG5du0aMzMzrK+v8/Enn/DmG2+U9CTlypUrWJbFzZs3GRgYwHVdnn/++UMfw3VdstksUDjBzWazTExMkMvlcNxCZy9FUaisjKEoCqFwiFA4hGH4MTZTfYotSqurq6murn7gcfazzmRyg1QqdSYCkEw6jeHzH3ldhKIoXurVg7S0tNDS0rJj56oYFFmWTXozQCn+zsOhMD09PTiOw+zsLIZRCEqCwSD5fJ733nsP13FobGo6lbVJS0tLTM9MEwlHaG9v3/X34zgOv/zlL8lms+i6jzfeeOP+75UuU0I8FiQAEeKMOHRqgOt63bHGx8cZGx+jtbVtx9X04+Lz+XjllVf42Z/9jOmpKQYGBjl/vq+kx7h27RqqqvL1118zODiI4zj7uhpbrIXY2NhgdXWVTCZDzszhui4V0Qqv608wGCRWGcNvBLyr4cVj7JYKVUp+v5+V1ZVDdcIqF6lUinC4fNrvapp2305KZWWMysqYl/qVy20V7VuWxcZGEjNfeJ44dqGIPpPJEI1GeeraNbLZLIFA4IFF2+VK133U1tTS2Nj40OfYJ598wvLyMoqq8L3vvXUqWylLG14hSkMCECFOuVKnAqiqSkdHB5OTk9iW9egbHJHq6mquXXuKL3/7W67/5jr19fVe6lKpXL16FUVV+OrGV9y7dw+fz8czzzxz30mUbdukUiky2QyZdIZ0JkN9XR3V1dVYlk02WxiMV1VVRSAQ8K6G63ohHeUk+f1+XNcll8ud6ta1juOQzWV33RUqNw9K/TIMg/Pn+3Bdl3Q6zYcffkgmk8HnM3jjjTeZmZ0hnzdRFIWAP0AoFKKmpqYsf2/5fJ6V1RXqauu8oOth+vsHGBkZAeDFF158dI3LKQ+WhRAPJwGIEI+7B7zRK4qyI497ZXWVWEXFsc8KuXTxIrMzM8zOzvLRR7/mRz/6UcnTb5648gSqovLll19y9+5dbNvmySefJJVOUxmLoWkak5OTJNYTqIpKMBikMhbzTgrj8cqSB0alVLw6n8lkT+xE9vXX3+DKIYfpqarKpYuXSrSik+W6LtevX2dxcRFV0/jud9+ksjJGNBohk8l4H8lkipqaGgBmZ2dJp9OEw2FCoRDhcPjEZvekUinGJyZwHId4Zfy+yebfNjMzw/XffAHA+fPnT2WNy7ed9t1EIU6aBCBCnBGlTg3YPnxuemqKRcOgo6PjoR2LSk1RFF566SV+8pOfsLq6ypdffslzzz1X8uNcvnwZy7L45ptvGBwcZHFxkdbWVozubqLRKPX19TQ0NOxInzotfD4f1VXV+Hwn93L/wgvPU1Nz+K5OJz0ssxRc1+WLL75gYmICRVV44/XXqaurAwqPLxKJPLABhOH3k81mWVpexl4ozFspzkqxLMubhXLUa19YXGBubo5gIEh7V9cjg4+5uTl+9e6vcB2XtrY2nn322UcdpIQrFkKUq9OTZCqEOFq7vPH7fD56enqwHYehoSE2NjaOdVmhUIiXX34ZgP7+fqamph5xi0dzHIeNjQ1mZ2e9wC0SiXizCFZXV5mamvKCrWAwSCAQOHXBR1FLS8uJdTUD+Cf/5J/w9ttvH+o+RkZGWFhYKNGKTk6x5gjg5Zde3nOb6eqqKjo7O7l08SJ95/poaW7x5oQsLS9x6/YthoeHWVxc9BohlNrK6ipzc3PU1dbR29v7yIsR8wvzvPPLX+I6LnV1dbzyyiun9m+oSNrwClEaEoAIccodxxt6MBjkXG8vwWCQkdEREonEkR9zu5aWFvr6CkXoH3/8MenNdqz74bouq6trjI2Ncfv2bUZGR1hZXcU0TQC6u7t59dVXee2111BUhZWVFX7yk5+QTCZL+lhOgmVZrK+vP/obj0g+nydv5Q98e9u22UhunKrC7Ae5c/cu33zzDQDPPfc8nZ2d+74PRVEIBAJUV1dvpQFWxmlsKBSAz87NMjA4wNzcHFB43h92d7RYSF8Vj9PT3fPIYnModMZ6551f4joO8Xict95660zsYBVJG14hDud0v5oLIQ5vjwGMrut0dXXR2ND40IF0R+Xpp58mFouRy+X4+JNP9nRS5bqud+KtKArz8/Pkcjlq62rp7enl4oUL3lXc4glVe3s7P/zBD9F0nXQ6zc9+9jOWV1aO7oEdg42NJKNjo+TzBw8CTlIqlQI4lZPBi0ZGRvjN9etAoflBKbu6+f1+amtr6erq4tLFS7S3dXizZFZWVrjb38/s7CyZTGZf9+s4DjMzM/QP9JPJZFAUZU+/g+WVFX7x9ts4tk1FRQU//OEPD1C7JSf4QpxlEoAIcUYcKjVgj0GIoijU1dWhqiqZTIbh4WFvB+Go6brOK6++iqKqzM7M8NVXX+36vZlMhpmZGW7fucPo2Kh3Bbe3t4e+vj4a6hsIhUK7XsWtra3ld3/nd4hGo2SzWX7+858zOTl5FA/rWASDhSvlB9k5KgfpdBpN1cqyG9ReTE9P89HHHwHQ19fHE088cWTH0jSNysqY1+I2GAxSEY2yvLLC4NAgg4ODe9rBzGazDA0NsbS8RFNj055/9uvr6/zql7/EtizC4TA/+tGPdp2nIoR4fEkAIsQpd1KpAK7rks3lGBwaOrY0pap4nBdfeAGAmzdvem09txsbG2NwaJCVlRWq4nHO9Z7zdjn2kwISi8X48Y9/TH19PbZl8d7773H3bn9pHsgx8/v9qIpKNnc0tQFHLZlMEg6HT2X9wPzCPO++9x640NHRwXPPPXesjyMUCtHS0sLFCxdoay0MCXScwsWKbDa7Y05J0fr6OkNDQziOS093D7W1tXtaczKZ5Be/+AXZbJZYLMbv/M7v7L9pRZkXocscECFKQ7pgCXEGlOSEZp9vrKFQiHO9vYyNjTEyOkJTYxPV1dVHfnLV09NDIpHg9u3bfPzJJ0QiEXw+g2g0gq7rRCIRKmIxKmOxQ9cM+P1+3nrrLd59911mZ2e5fv0LksmNB84KKWeKohAMBsmk95eCUyoVFRVUVlYe+PZtbW3Ytl26BR2Tufk5fvWrd70p5y+99NKJPW9UVb2vZfT8/DxriTUqY5XU19d7Xd5CoRDV1dXU19fvOWhPp9P89Kc/JZfLEQ6H+d73vndqd6weSZE2vEIcluyACPG4O8Qbqc/no7u7m6p4FXNzc1jHNLjw2rVrNLe04DoO7/zylwwP3yOxWetRU1NDVTxesoJlTdN466236O3tBeDu3bu89977OI5Tkvs/Lie5g/Df//f/Pd9763sHvr1hGDumjZ8GMzMzvPNOIRWpvqGe1197reyKsFtaWmhuaiaVTjMwOMDtO3dIp9Pouk5TU9Oe15vNZr3gw+cz+MEPfnDwKed5C0xTBhEKccZJACKEOBRVVb0uVT6fD8uyjrxLlm3btLe14ff7sS2LqakpKo6wMF5RFF588UWeeuopAKamJvnlr355ZO1Oj0JjYyPt7e0ncux//D/+Y379618f6LbzC/NeR6fTYmpqil+9u7Xz8d03v1uWdRCaphGPx72/Hcex9x1YJ5NJfvKTn5DJZNB1Hz/60Y/21/LZcSCZhMVFlIkJlNkZcFzc8AEDmCMmbXiFKA0JQIQ45bZf1T7J/OTiCdbKygpj42NMTU0dWdpMNpslm8vx8ssv4/f7WV9f59e//ujIH//ly5d59dVXUTWNudk5/vRP/5T5zaFwp4HruieSyjQxOcHc/MGCiNWVtVPVvWt8fJz33n8P13FobmnhzTfeOEAHqOOxsbFB/8AAq6urNDU2cfnSZSKRCJZlMTY29sif+8rqKj/96U/JZrPouo8f/PAHVFbGHn5Q14V0GpaXUSanUEZGUBYWUFIpUBSUigqUhgaori7hIy09acMrxOFIACKEKCjRyXttbS3NTc2srK4wODjktVA9LNd1WVldxXVdotEoF86fp7m5mTfeeANFVZiamuTGjRslOdbDdHR08OMf/5hwOIxpmvziF7/g5s2bp6I49W5/P4uLiye9jD0zTZOcmSUSOf62zwcxMjLCBx9+4E39fuP118su7Qq2LlRomkYoGKSvr4/a2lovbTGfz5NKpxkc2v3vd2Zmhp//2c/J5XJEo1F+//d/j+qqqgcfMJeD1TWUmdlCwDE3h7KxAa4DgQBKNAo1NdDcjNvdjduyt+GMQojTSwIQIURJKYpCTU0N53rPoWkqwyOladU7NzfH5OSE13GreGJXV1fHd178DgC3bt3i3r17hz7Wo1TF4/ze7/0e9fX14MKNGzf45a9+VfZX6oOBQMkCwuOwsbEBQDR6clPc92poaIiPPvoIXOjs7CzslJXZ4ETXdVleXmZ4eBjHcQiFQnR2dmIYxo7vKw4eNXw+RkZG7nvODA8P88tf/RLLylNXV3d/2pVlwfo6zM2hjI6iTE2hJNYgb4LfjxIKQTwOTU3Q1YXb3g51dRCJQJn9zL7tNFxoEOI0KO+/dCHE0TuiYs9AIEBvby8d7R0YhoHrugcORBYXF1lYXKCpsemBQxC7u7u5fPkyAJ9+9ikzMzOHWvteGIbB97//fW+mw+zMDD/5yU9YWzveKfH7EQqHSKfTp+YkKplMEgwEyzaFqai/f4BPP/0UKHRpe/nll8su+MhmswwPDzM1PeX9PT6Mz+ejq6uLQCDA6NiY12Di5s2bfPzxx+AWgv+33nqLgGHsrOMYG0NZXkbJ5UDXUYJBlFglNDRAeztuVxc0NkJFBZT571YIcTTkL1+IU66Yi7xhbrBhbhDUg/i08ih4VRTFm8i8vLzM7OwsTc3NVMXje+7IlMvlmJ2bpaa6htra2l2/79q1ayQS60xOTvCrd9/lre9+l8bGxpI8jt0oisKTTz5JQ0MD7777HqlUip/+7Kd858UX6ezsPNJjH0QoGMJxHTKZzMG7FB2Aqqoo6v4D3dra2rJuv+u6Lrfv3OHL3/4WgPPnz/Pss8+WXYvWpaUlZmZn0HUfnR2d3t/ko2iaRmdnJ5lMBk3T+PzzzxkYGADXpb2hgVeefhptbh6ymcLOhaqCpqEEg+AP4IaCEA7jBgJnrqtVuf2OhThtFPe0XAoTQjyQ67qsZFYYWhwibIRxXRcFBb/mx9AN/JqfgB7A0IwHv2nm8zA6Crkcbnf3ka3Ttm1mZmZYWV2hIlpBU1PTnoaUzc3Nsbyywvm+vkfm09u2zXvvv8/M9DSqpvHWW9+lob6hVA/hodLpNL/+9a+Zny8UpXd1dfGd73ynrK6E27bNrdu3aG1toyoeP5ZjOrbFf/hf/t+0NDfx5Pf+Aqp2Nq57OY7DF198weDgIACXLl3iqaeeKqsTU9d1URSF1dU1Mpn0vuZ6bOc4Dp99+CET/f3opsn5tnYuX7mMomle4KH4/bjBIIRCEAxCGda+lMJqZpXV3Co1kRoaIsfz2iLEWSQBiBBngO3YLKWXyNk5clYOx3VwHAfHdXAdF8d1wAVDM7ygxK/78Wt+NMeFkZEjD0CK1tYSTM9MY9sWvT29e5rvYNv2nk+cbNvm3ffeY3ZmBk3X+d5bb1FXV3fYZe+J4zh89tlnXh1KLBbjrbfeIhwOH8vx92I/P8tScGyL/88//iPO9Z7jpf/DX9pzALK0tITrug/d9ToppmnywQcfMDs7C8BTTz3FpUuXyib4yOfzzM3N4TjOwVsvWxak01gbG3z23nssz83jKgpXrl6l53wfiq5vBRyhEJRhm+GjsJJZYS23JgGIEIckAYgQZ4zrupi26QUjxf9ajoXrul5w4roujuOgOxCdWkC3XLTec/g1/5GncNm2zerqqjc5PZ1OlzQlyLIs3n3vXeZm59B0ne9/73vHeiI7PDzMJ59+ius4qJrGc88+S29vb9mcoBavjB8Hx7b43ecv8Mabb/LX/+G/2HMAcvduP5FImNbW1iNe4f5sbGzw7rvvkkgkUFSVV1955cTmq3ybbdssLi2yuLCIoijU19dTU1Ozt9+140AmA5kMSjoNpsnaxgaffPopWTMPukrnhYtce/nlQsCxh93Ls6gYgNRGaqmP1J/0coQ4tc7GXrgQwqMoSmF3Q/fDtnMEy7HIWTmyVtYLSvJOHsc0MV2TbD6LmVrEwUFBIaAFduyY7JrCdQCaplFTUwNAKpXi3vA9YhUxmpqadnTkyWazjIyO0t7Wtq9dBF3XeeP1N3j33XeZn5/nnXd+yQ9+8H2qj2m2QHd3N1VV1bz77q9IpVJ89tlnTE/P8MILz5/4RO9UKsXY+Di9PT33dT8qF9lsFjOfIxo92hqe/VpcXOTdd98ll8sRCAR48803vefxSXMch4HBQSwrT011DXV1dQ8v3nfdQnvcdBolnYFctlCnsZlSNTY3x/VbN8kbBkplnPNPXyMUChe6VwkhxCFJACLEY0JXdXRDJ2xsncg7rkMum8KMZMixTiYYxbRNHNfBcixMy8Q1XRw2U7jUzYBED+DXDPy6H1U5XI1DKBSitbWNmZkZBgYGvKu2qqpiGAaWlSeVSu07jcnn8/HGG2/wq1/9isXFRd5++x1+8MMfHFvtQzxeyZ//83+er7/+mpu3bjI5OcHM7AwvPP883ceQ6rYbv9+PZeXZSCZ3n9twwhLric0GBuUz/2N0dJSPPv4Y13GIx+O88cYb+5v4fUQ2NjYIh8OoqkpDQwPhUGj32irThHQGJZOBTLoQhBTrOPx+FMPANvx8/NUN7s3M4FbGqaqq4gc/+AFjY2MnHjwLIc4OCUCEeIypikrQFyTgr8B1Dahsw3Vd8ttSuLJWDtPOYTs2juOQdbKks2kvncun+PDrfnyaQWBz50VX9/7SoigKVfE4sYoK5ubmmJ2bxcWlvq4eVVWJRqIsL69QW1u77x0YwzD47ne/yzvvvMPy8jJv/+IXfP8HxxeEqKrKtWvXaGtr4/333yeVSvHxxx8zMjrKq6+8sqci/FLTdZ1gIEhyY6NsA5D1xDrRSLQsCvhd1+XmrZt8deMrAJqam3nt1VfxnXDNQyaTYXZ2lo3kBi0trVRXVd3/vLbtwtTxdLoQdNj2Vrcqw7ivjmM9m+W9995jaWkJVJULFy7w/PPPY5om2Vz2yLvKnQaStS5EaUgNiBCPO9uG4WGcTAZ6e3f9NsvOb6srMclZWSzH8ordi3UlLi4qqpe2td8UrnQ6jd/vR9M01tYSqKrC6NgoDQ0N1NcdLOc6l8vxzjvvsLKygq77ePPNN2hoON4CUtu2+eKLLxgaGgJA1328/PJLtLW1Hes6AGZnZ1leWeHSxYtHXgtykBqQ9fV1VFU98R0Gy7L47LPPGBkZAQptdp955pkTDYzy+Tzz8/Msryzj8xk0NjRSWRkr/B531HFkwMwVdjgUpdAeV9MgECy0xw2FIBDw7nd8fJz3338f27YxDIPXXnttR/1NNpvF7/eXTR3TSVlOL7OeX6c2Uktd+HiaWwhxFskOiBBiT3TNh675CBtbJ4W2Y2NuK3Y3rcLOieu6D0zh2gpK/LumcBWL0V3XZWZ2BtuyCAVDbKxvUFdbd6ATIL/fz1tvvcV7773H4uIi7/zyHV584UV6enoO90PZB03TePHFF+nq7uL9994nl8vx/vvv09PTwzPPPHOs9RjhcJiFxQWy2eyxpNU88+yznOs9t+fv3+uciqO0tpbgww8/YG1tDRR49pnnuHDh/Ekvi1QqzdraGo0NjYVURdOEtbVCwJHN7KjjUIJBMPxb8ziCwfvmcRTbCd+5cwco/Ox/8IMfEI1Gvcnp1dXVBLYFK0IIcViyAyLE426POyB7VUzh2ip2N3ekcDnu5k7JZgqXoRr3BSXFFC7LslhYWGBpeQlVUamtq6UqXnXg9BfLsvjoo4+YmJgA4OqTV3niyhPHflXXsiy++OILr12vYRi89NJLx9bxyXEcr5D6OHZAbvzi3xKpiNL74g8euQMyMzNDOBwmFosd6boe5t69e3z2+ec4m7sBr776Kk1NTSeyFsuyWFpeIpfN0d7ejpvLYSeT+Mz8/XUcqopiGDvb4z6k5XI6nfbSEwE6Ojp47bXX0DQN27YZHx8nsZ6gp7uHaLR86nFO0lJ6iY38huyACHFIEoAI8bjbHoD09BzZxGLLzt8XlDwohctxHTRF82aVGJqB4iisLa+Ry+XIZDLE43Hq6+sf3uVnF67r8uWXX3L79m3gZAcGzs3P8eEHH5LNZoHC5O+XXnqpLHYASsWxLf7g9Wu88fqb/OHf+ycPDUBM0+Ru/12vpuG45fN5Pv/8cy/lqr6hnpdfevlE5rjk83mWlpZYmp9HyWaoCYVpqKhA2V7HUUyrCoa8XY69zONwXbcQZH32Gfl8HkVVePGFFzl/vrDDk8lkGB8fJ5fL0dHRcaLBYLkpBiB1kTpqw+U3o0aI00JSsIR43B3T1X9d8xHRfETYupK6PYUra2UxbRPTNrdSuPImbm4zhSsEvrCP3IbJ2NwYMwszNNU10djYuK/gQVEUnn76acLhCF9cL5xspjNpXn/t9WNvS9tQ38Cf//N/ns8++4zR0VEWFxf503/3p5zrPcfTTz99pIXOyWSS2dlZuru7jzz4ymayZHPZR37f2toaiqJQeQInvCurq3z4wQesr6+DAlefuMqVK1eOPzB1XZxUiuGvvoJMhsZIhHh1DbrhKwQchrGjjsPdZ2rUxsbGVqE5hWGZr7/+uteiOpPJMDA4gOEz6O3tLel8HiGEKJIARAhxYjRVI6iGCPq2TnIKgxR3DlHcPt09FAtiqxXMzMywML7Anek7NDe2UF9dT9AXKEx3Vx896fv8+T4ikTDvf/ABc7Nz/PznP+fNN9889sJnn8/HK6+8wsVLl/jk449ZXV1lcHCQyclJnnnmGTo6Oo4kTUrXddKZNOvrG1RWlscV7tXVVSqiFcc6qd11XQYHB/ni+nVcxyEQCPDqq68eb5OCbJbc2hqr09PURaJoPp3WeJxgUzO639iq4wiFCulVBwiKXNfl62++5saNG7iOi6IqPHXtKa5cuYKiKCSTSSKRCIFAgJbmFqqqqsqiC5kQ4mySAEQIUVYKgxQD+PWdV3bztukFJbFgJTXxGuYX50mmkkzOTLCRWSdWWYmua+iKXih41wv1JcVUrm9raWnhRz/8Ib/61a9YW1vjZz/7Ga+9/tqBu20dRnVVFb/7u7/L6OgoX375Jel0ml//+td88803vPTSSyUfeBcIBDB8fjY21ssiAMlkMmRzWerrj+/E3zRNPv30U8bHxwFobGri5ZdeOvrC/Hy+0B43kyG7usrq4hKJdBJdM6iMVhAKh4nU1BQKxx9Rx7EXKysrvPfeeyQSCQAqKyt5/fXXicfjrK+vMz8/Tyqd4lzvOcLhcNkMVyxHkrUuRGlIACKEOBV8moFPM3akcLXF2zGtHKsba0zOTDA3NYtmaISCIeJVcXJuzkvhUlDwqzuDEr/mp7q6mh//+Mf86le/IpFI8Itf/IKrV69y5fLxp98oikJXVxdtbW3cvn2bb25+QyKR4Gc/+xnt7e08//zzJe1GVFkZY3llhRbXPfH2qoZh0NradmzDB6enp/n0009Jp9OgwLUnr3H58uWj+TkU53FkNocAWhaoKkvLKyyuLuPzB6jv7aOyuQk1EsEtUSqg4zh8c/Ob+3Y9nnjiCdbW1ujv7yebyxIOhenq7JJ0q3046b8XIU47CUCEeNxtfyN13WOrCSmF4nT3UHWYxngjy0tLTM9MY2ZNVqdWCVWEqayK4aqF4nbbsUlZKZJmEodC0buhFoKRF19/ka+//JrpiWm+/upr5mbnePnlkylA1nWdq1ev0t3dzceffMz83Dzj4+NMTk3x1FNP0XfuXEnSlCoqKlhYXCCZTB5pl6NgMEQ49PCfo6ZpxzIgMpPJcP36dcbGxoBC2+dXXn2ltLterrtzHkcuC6qK7bqsbWwQDIcJV8YJRqPUdXdR1diIUuJgd2FhgQ8++ICNjQ0A6urqeP7556msrERRFLK57GbQ13ri81aEEI8f6YIlxOPOdWFoqNAFq7v7QPnl5cR1XVZXVpifnyefz+M4DrV1deiGRiAcIO/mydkmplXowlXsvFXswjU6Psatb26CDREjwndeeImejm582slNvp6ZmeGTTz4pXK0HgsEgFy5c4MKFC4cKRFzX9XL/j+qKrmNb3H7/3xMKh+h89rsP7IKVSCRYW1ujtbX1yHadXNdleHiY69d/Qz5vggIXzl/gySefLE2xfy4H6QxKOn3fPI5szmQ1lWLFzGH5Deo7OmhoPJq2vhsbG3zyySdMT08DhWD20qVLBINBcmaOxsZGGuobcMtg1+s0WkgtkLJS1EfrqQlJqpoQByUBiBCPuzMWgGxn2zYb6+ssLS2RTCaBwsl7TU0NlfE4ruJibtaVZK0cppUj7+RJrK/z+eefsbK6CkBnRweXL18mbIQLk90307f2Ot29FBzHYXBwiG+++dpr26vrPq5cuczFixePtXB7Pxzb4m/85T/gheef5y/8F3/jgQHIyMgIlmVx7tzehxXux/r6Op99/hlzs3NAoQbixRdfpLb2EG1Ut9VxKJlMYQr59qnjPh9uMMhKNsv40iK+QJDqmmqqq6qPpNtaNpstzJYZvgeb7+q1tbU0NDRgGAaxWIzKykpisZgEHocgAYgQpSEpWEKILWfseoSmaVTG41TG46RTKcbHx8lkMkxOTpLJZqmvq8PKWPh1P5WROIqi4LgOZkWOzroOvvjtF9zqv8Xk5CTriXWeee5ZIuGwl8KFS2GQom5gaH78urHnLlz7paoq58/30dPTzd27d7l58xaWlefGjRvcvHmLK1cuc+HChX3PRrEsi/Hxcerr648sFefunds0NDw4xSmXy7GR3KCluaXkx3Uch9u3b/PV11/jOg6KqvLk1atcunRp/zstjrMz4Mjnt+Zx6DqKrkMgSFqBpUwGze+nqaGBCsuiKx6noqLiSE78Lcvi5q2b3PzmJpZlAYXWui+//DLRaJRsNkssFivbAPW0UpAgTojDkABEiMfdY3I1NBQOc+HiRXLZLIuLi6wsL7Oxvl5o+2uaqKpKNBolEokQr6qiKlzND1/9EZc7L/PBBx+QSqW48cGXnL9yns7uTizX8lK4sk6WtJXGzRbSuXyKD7/ux6cZXlBSqhQuXde5cuUKFy5cuC8Q6e/v5/LlK/T29uw5ENE0jZxpsrq6eiK1AKurq6iKSmVlZUnvd2Fhgc8//5zVzV2s+oZ6Xnj+hb0P1XNdyGYhnd5Rx+ENAAwEvHkcTiDAaibD8soKqXQKn+6jJlKoedF1veSD/GzbxnVd+vv7+fLLL73AIxgMcv78ec6dO+fVLklhuRCiHEkAIoR4rPgDAVpaW2lsasLM5QgEg6ytrjI5OUk6nSaRSBCNRtF1neWlJXw+H9///vf5zW9+w+zcHPe+GWZpfIkXXnyR1oY6clZ2sz2w6aVwOY5Dzs2RMTO4ORcXFxXVS9syNoOSw6RwFQORixcvcvfuXe7evbtZYP0FN27c4PKVS1y8cPGRgYiiKFRVxVlcWKSpqenYZ3Asr6xQVVVVsuOurq5x48YNpqYmAfD5DJ555ml6enoe/bMu1nFkMpBJ76jjIBBA8fsLczhCIexAgFw+TzAYxMxmmZiaJBqJ0tHe4RV6l4ppmqRSKVKplDdAcnZ21kvFMwyDp59+mvPnz0t61RGT2hkhSkNqQIQQMDhYqAHp6jr0zIHTKG+aLCwusra6Sj6fxzAMampqMPN5VpaXCwXqwMb6OpOTk+RME4COzda44W07B7Zjk7dNslaWnJ3DtArT3YuF7o7r4DrujhQuv+7H0P34N9sDq8r+63Bs22ZwcIivvvqqUGQNKKpKR3s7V6488dBZH7lcjv6BflpaWqmuqtr3sR/GsS1+9/kLvPHmm/z1f/gv7qsBMTd/loeti0gmk3z99dcMjwwXaiAU6O7q5tq1a7vvAlhWIa0qnX5wHYeuF+ZwbH44quoVzK+vr+Pz+bhw4QKKomCaZklqO/L5POl0mnQmTX1dPaqqcu/ePdbX10kmk8zPz3udrTRN44knnuCJJ56QFKtjMp+cJ+NkaIg2UBUs7d+KEI8T2QERQjz2fIZBc3MzTU1NpJJJVldXsWyblpYWGurrmZufx6fr5GtqeOKJJ+jv7+fO3buMjY8zMTFBZ2cnvefOEQ6FCIVCBIwgAd/WMDvXdQuDFO1cITCxTEw7h+3YOI5DxsmQyqa8jlzFFK7tQYmuPvzlWtM0Llw4z7lzvdy9e5dbt25hmiajo6OMjo7S0NjAud5ztLW13Vf/4Pf7CYfCJNbWSh6A7MZ13UIb5EOetGezWW7dusXd/n5cxwGgpaWVa9euEY9X7vzmb9dxmGYh4CjWcWgaBENbU8f9fu+KdzabZWBgAMd1CAaC1DfUUxnb2unY7+NwHAfTNAkEAriuy8jICOl0GssupFNpqka8stCWeGlpiaGhIfL5PACKqtB3ro9nnnnmSArahRDiqMkOiBBiaweksxP2WcR81m2srzMyMoLruoX6kHicWGUli4uLfPH55yyvrAAQ8PtpaWmhq6uLltZWzFyO2dlZ/H4/gUAAv9+PPxDYcfJv2Xlydo6ctdmFyy60Bi7ulBRbAz8ohSugB/Cpvl3TQVzXZWpqitu3b7OwsOB9Xtd99Pb2cOnSpR07A9lsFp/PV/Ir6Y5t8Sf//H+gs7OT53/nL3o7ICurq8zOztJ37ty+C+ehUHy9vQYGCrMurj11bWumR7GOoziPI5vZWcehquAPFAKOcBgCAVAUHMchkUiQSCSwbZvu7m5c12VhYYFYLLbnYZDFIEtVVUzTZHFxkWw2Sy6XI2fm0LVCGh3A5OQkuq4TCAQIhUKFmqMbN5iYnMB1Cm/ThmFw6dIlzp8/f/TT2sUDzSXnyDpZ2QER4pDkTEMIUUg5kbzmB4pWVHD5yhUSa2usra0xOTnJxsYGHZ2d/O7v/R79d+/yzTffkMlmuTc8TCaTwTAMotEopmmysbHhFQn7fD4uXb4MFCZxa6qKYRj4/X6igSi6z1fowrUZlBRTuHJ2Dtd1sRwL0zJxza0Urq2gxE9AL/xbVVQURaG1tZXW1lY2Nja4e/cuQ/fuYVn5Qs1I/13q6+p54oknaGho8E6qHccp+SwOTdV23KfruizMLxDw+/cdfJimydC9e9y+dcurgYjFYjz99NM0Nzej5POwulbY4chmCjfapY7DDQZ3pByapsnU1BQbGxveTkdlvNLbBamvv7+Tl7O566KqKslkkkQiQS6XwzRNcrkc8XictrY2L6jx+/3EYjH8fj/BYNC779bWVlzXZXp6ms8//5yZmRnvGJFIhCtXrnCuRAMohRDipMkOiBBiaw5IR4fsgDyClc9jWRaBYJD1RKKwOwIsLiwwtTn8DaChoYGrV6/S1NSEbdvkslls26YiFsN1Xe4NDZHL5bzgBOD8+fMEgkEW5ufJZDL4DAOfrqPrOppfAw2yVhbTzu9I4SrWlbgUUrgM1fCCku0pXLZtMzw8zJ07d1hfX/eOG41GaW5uprm5mdXVVc6dO1ey1J5iDcib3/0u/9X/8M9RNZ21tQTjE2N0dXbteQL7+vo6/f39DN27h735MwuFQjx5+QpdDQ2ouWwh6LDt++s4NgMOQiHYHDpYDA6TySSqqtLa2opt24yOjhKJRohVxPD5fOQ3f9/Fdc7OzZJJZzBNE9M0sR2bjvYO4vE4CwsLLC0teUGlYRiEQqFHPsZMJsPg4CB37twhk8l4n6+rq+Opp56isbFRCp/LRHEHpDHaSDwYP+nlCHFqyZmGEELsg+7zoW+exEYrKujt7WV9Y4NwKEQsFmNpeZnFhQXm5uaYm5ujprqaq1ev0tbe7p1EKopC7+bQPdu2MXO5QvG73+8dJ5/Pk0qlyOfzuK5LY2Mj9Q0NkID58Xl8Ph+O4uCoDqqhUlkVx7RzLK+tkFcs0moGVVFAKRxPV3UCWoDqlmq+2/5dkokkw4PDjI2Ps7GxQX9/P/39/RiGweLiElefvEq8hN2cite6XNdlbm6OcCj8yBNz13WZn5/n9p07TE9NFT7pOFQFgpzvaKezrg7dcWB1ZSutyjAK7XHDIa+Oo/hzVlXVmweTM3MA+HQfhmGwtLRETU0NbW1tDA0NMTc3x/brc1efuIqqquTNwu8jHA4Tq4xh+Ayv5W1dXR11dXV7+nlks1mGh4cZGhpiZTONDwq1POfPn+fChQtUVFTs7YcrhBCnjAQgQogtsiG6L4qiEI5ECEciNDY2YlkWVj6PbdvcuHGDe/fusbS8zK/efZdoJMLFixe5cPHijnQkTdMIhkJsz+ivq6+nbjPdx3VdbNv2vub3+6mrqyNvWdiWhWVZ+BQfTRVNhba2YyuYdg7TMTEdk7yTp62zDV3XmV6YZmNzIryqKiiVCk+0XCG5nmRydJJUIoWbc5mcnGBycoJwOExXVxdt7e0EAwEURUFVC+ldiqKg6zqKouw4UX9UwJLP51EUaGpq8h5f8b+u63p1L+Pj49y5c4fE2hqqZeHPmTRUxuhuaqKltRXHhcT6Oq6i4PgM8oYP2++ntbsbFIWxsTGS09PYto3jFtKkOto7iEQi6LruBSC2bWNZlpfOpWka8XgcXdfx+XzeR/FxtbW17ft5UrS9KcDs3KxX2wGFNKtzfee4eOGiFJaXMUkaEaI0JAVLCLGVgtXe7qWoiMNxXZfE2ho3b95kZGQEe7NWIBqJ0NPbSzgUIh6PEwqFCIZCJam7KJ7A25blnVjbtk0kGsXGYm5xjpWNVbJmhmw+i+VYVFRUUFFRQTKZZHRslPWNDTLraTLpDDo6PsWHjo7fCBCPVxKLxQrF6wr0dPcQDoeZnp5maXlpx1pqa2ppampiYz3Bpz/5V+i6j+rzz6JoGqqicnmzFubu3X7MfA5cSKfThRa3y8s4ySQ+M4/PsqisqKCypgZ/KECsopLmrk5ymkb/5AQEQyibgVBx92B5eZnJzTkgiqIQ8AcIh8PU1dXh9/uxrEKhv67rJa93+bZ8Ps/Y2BgDAwMsLC4UWgRvisVitLW10dfXJ7sdp8Tsxiw5N0dTRROVgcqTXo4Qp5YEIEIIuHcPJ52WAOSI5E2TO3fucPv2bbK5nPf5SDhMPB4nXlVFNBKhu7sb3ecjb5pox3FybJtesXvOMslZhaBkfn6eZCqJ7TpMT04xv7iA4iroilZoEaz5aaxrpKWphabGJvx+vzfPAwqBUCAQIBKJkMtm+O/+2n9Gb28PL/25/xOhcATDMKiursZ1XSYmJpgaH2dhfBxrLYGez6M6Dv5QkI6uLhpbWgiEwyjhMITCqJEwvlCIlZUV1tbWSKfT5De7YDU0NNDY0EgulyOVShEKhfD7/cdaP+E4DktLS8zMzjA/N8/M7MyOnY5gMEhnZyd9fX3E41JDcNpIACJEaUgKlhBCHDGfYXD1ySe5dPky42Nj3Lt3j5mZGZKpFMlUiunpaWpqa/H7/bS2tTE6OkomkyEYDBaKmf1+quJx/IEAjuN4KVCHXpdm4NMMImzVYliORVO0CdMpBCdX+i6TzCSZmp5idHSUldUVMlaW1ek17kzfRVc0/Jqf6spq2pra6G7vprq62guefD4fyY0k0UgFGxsbVMQqUYBvPv2UqaEhsssraLaNoij4dY2G1hZa2zto7O5iw7bJqRpJVSGXy5FZmKcz3IkPMPMmjuNQVVVFMBgkFAp5qUt+vx//tnqao1QMOCYmJpienmZldWVHwFFcT3t7OxcuXKCqqkoKyoUQjz3ZARFCbO2AtLWB5J8fi3QqxcjICMPDw94sEQD/5lDEyspKIpsT1nO5HO3t7USiUWZnZ1mYn/e6LBl+PxXRqNddqzh34rCKKWSaphGORjA3d0oyZob55Xmm52eYnZ1lcXEBuzivZHNmScDnp6GmgZp4LfVVtSTu/Jbk8jK+eBv5xAaplWU2q+NxNYWq6hoq6+sJ1dTgBIKcf+oaKAp3794lZ+bwG4XHGgwGqa6uPrbg4kFyuRyra6tMTU6xuLTI4sLijk5mUKgjqa2tpa2tjcbGRgk6zpDiDkhzRTOxQOyklyPEqSUBiBAChodxUikJQE7IyvIyw8PDDA8Pk97WhhWgMhajsbHR+3Ach2QySc40MTfnTVTEYjQ1NZFOpRgcHETTNO/DMAw6u7oAWJifx3XdQlvfza8HQyF0vdCid8fbgesyNjZGNpulr6+vMLRvO9fFVV3SZpqJ6QnGpyeYmZ9hbX0Vy7ZQ8zZ6zkTNZgjMjqEqKm5tO7ruR1d8VNU10NzdS1734YvF8G/uYBh+g4b6BhRFwbIsNE079pN313XJZDIkEglWV1dJJBLMzc2RTCa9aeTb6bpOVVUVzS3NtLW2ScBxhkkAIkRpSAAihJAApEw4jsPs7CzTU1PMzs7u2BkpqorHaWxspK6ujlgsRkUs5g3zs/J51tfXC924bBvHtkFRaGlpAWBocJDs5jySop6eHiLRKDMzMyzMz+84VjweJ5lMouv6jvkUUCjuvvrkk+RNk6+/+Yb1lRVya2uklhfJJdZwnBx5bGzFxVIcbBXyPh+mrmP6fdibAY2hGsRCMWLRGPGKOFWxKgL+wjTwYDBIIBAgGAziK1FtkuM45HI5stks2VyWXLbw70w2w9LiEolEglQqteNn9G0+n494PE5LawutLa0ScDxGJAARojQkABFCSABSpnLZLHNzc8zOzjI7O8vq2toDv684gyQWi1FRUUGsspJYRQXhSOSB6VjF1r6ObaP7fKiqSjaTIbetQB7AMAxc12VgcBBNVdE0jVQqRTKZJJlMkl1ZwVpfRzdNNMvCVdVCWpWiEInFqG5poba9nb/0X/xf+O7v/Zg/+Iv/EQsrCyytLjG7OEsqlSq03cXdkcKlo6MrhY9iFy5N0wiHwgQ262CAHXNVApttgk3T9HZyFEUpPE7HIZ/Pk8lk7kuXehi/3091dTVVVVXEYjHi8TiVlZXSJvcxNrM+Q548TRVNEoAIcQhShC6E2CLXI8qKPxCgvaOD9o4OALKZjBeQLC0vs55IkDNNUuk0qXSamdnZ++5D17Qd8yx0nw/fthkXmqZhWRamaRamfts2+c1/Fz+czeeFls+jm2Yh4DBNVEXBUFWMQIBIbS2xujpq29upbW9nPZ8nlcnQ1d3N1OISqqtxte+qty7XdcnmsyyuLjK/PM/iyiKpXIpsLsvGxgbpTJpcLkfaTOO4DpqtsZpfRV/XvfbAmqId+Gerbf5c/H4/0WiUQCCApmnU19dTWVlJZWWlt7MkxLfJjpcQhyOvrkIIcUoEgkE6Ojvp6OwECifxZi5XmJ2xvk5ifZ1E8d+JBI7rYtk2lm2T2Ry0tx+KbaObJn7TJOS6RMNhglVVRCsqiMXjROJxovX1GPE4hEKgaeRyOSYmJtjY2KCxsXHXEzVFUQgaQdrq22ir3xrul7fzm22BC0Xv2XyWjJkhk8mQzqRJZ9KYua1dDp/iw9AMDMXA0AxUV93aTdmsdwmFQgSCAQL+AIFAAL/ff+QtjoUQQuxOAhAhBMjVvFNJURT8gQD1DQ3UNzTs+JrjOJi53I6djPzmpPbtn7MdZ2uXRFXx2zZ6Po9h2/gA3TDw+f34AgEUTWNkbo6U60JjI/7GRlyfD2czjWt+fp7Z2Vl0Xae7u5tYrJCiEgqFCsML98Cn+fBpPiJGxPuc7dg7gpKclcO0TRzXwXEcHNfBddzCxHMX/LofQzPw6378mh+/7kdVJOAQQohyITUgQggYGcFJJqG1FU6wxak4Zq4LmQyk04X/ZrOFbleqCpqGomkQCBR2N8Jh8PuxN+deLCwseB2hent7iUaj3ucaGhrQtK30qJGREWpra4lGo7ut5ABLdzFtk6yV3RGc2I69FZRs7oI4joNP9RUCkm1Bia7KNTixP9Pr01hYNMeaqfDL9HohDkpefYUQ4nGSyxUCjs2gQ1EK8zjQNJRgsNCEIBwuBB3BYCEY2aZYJ1FbW0s2m8WyLILBIAB1dXUPPOQ//af/lB//+Mf88Ic/LNnDKAwuLAQS2xVTuLJW1gtKLMcqdL9yc2RyGS8o0RTN2y0J6AHv30I8ioLsGgtxGBKACCGAwgmdbIieQfn8joADx9na5fD7UXy+QrBR/Nhj4bWqqntOq/rTP/1T4vF4SQOQ3ewlhStrZTHtQh2J5ViYlsmGuXFfCtf2oERSuIQQonQkABFCSA3IWeI4OwOOfH4r4NB1FF0v7GwU06oeg5aymqoRUkOEfFsBk+u699WVbE/hSttpUvkULoXdEkMzdtSVBPQAmnrwLlzidHJdF9n8EOLwJAARQojT7FF1HIHAVsARChVqOiTgLMwO0QME9MCOz5u2eV9QslsKl67q+DU/hm54dSWSwiWEEI8mAYgQQpw2xTqOzcBjex0HgQCK378zrUpazu5ZcacjylbBvOVY9wUlpm0WBhy6eXL5HOu5dRzXQUG5Lyjxa36ZG3HGyO9TiMORAEQIsUVqQMqTZRUCjlTqwXUcur5VOL6POg6xN7qqoxs6YcLe5xzX8XZLtnficlwH27FJWSmSZtLrxvXttsB+zS8pXEKIx5a8SwkhJCWn3Hy7jsM0Cy1xi3UcmrZzh6PMWyf/rb/1t3jxxRdPehklpSqql8IVozDvxHVd8k7+vqDEdgt1JVknS9pK42bvT+EK6AH8mh+f5jvhRyYexkUu0ghRChKACCHESXNdyGa3go5v13EEgzvncZyyOo6+vj5qa2tPehlHTlGUrRQu/+4pXFkrS97JF4ZFuuZDU7gCegBDMyTlp8xIG14hDkcCECGEOAmmuZVSlckUTmfOaB3HX/krf4W//Jf/Mn/37/7dk17KidgthevbdSW7pXDhbtamfKuuRFK4ToYEg0IcngQgQogtUgNydIp1HMW0Ktve2uUwjEIdx/aAw3d2UnFs28a27ZNeRllRFZWgL0jQF/Q+V5zu/u2gxHIsXNe9L4WrON19e32JpHAdLZmVJERpSAAihDhV6TynhuNstcdNp3fWcWgaimEU2uMWi8fLvI5DHL0d0923PR0sx9ox2T1n5bwUrpybI2NmcHMuruuioHhpW8WgRFK4Sk9+nkIcjgQgQghRCtvrOIrzOBSlEHCo6s46jlCoEHzISYzYA13ViRiRHdPdiylc24vdTdvEcZ0HTncvpnAVi939ul+muwshTowEIEIIcVCmuWMeB65bSKvStEJ7XMPYmValSc6+KI29pHAVg5PidPeskyWdTXuDFIspXNvbA+uqnBYIIY6evNIIIbZIfvPD2fbOeRyPUR3HYZw/f56urq6TXsaZt1sKV97O76gryVrZB053d10XFXVHXUlAD+BTfZJytMnFlQ5YQpSABCBCCLGb7XUcmQzkcoU6js1uVV4dRzHgCAROesVl6e233z7pJTzWfJoPn+bbkcJlO/Z9xe45O4frug9M4fp2sfvjnsIlQYgQhyMBiBBCahG2+/Y8jm/Xcfj9W4XjUschTilN1QipIUK+kPc513UfGJQUU7jSdpqUlfJSuIozTySFSwixX/JKIYR4vEkdhxBAIYWrON19u7yd31HsnrNzD0zhchwHTdEKXbi2zSwxNOOEHpEQolxJACKEKHhcruQX6ziKQYdl7azj0LStYCMcljoO8dgrpnBF2Zruvj2FqxicmLaJ4zjk3fyO6e7bU7gCesDbMTmNdSXFVsence1ClBMJQIQQW85iEbrrFgKNYuH4t+s4gkGp4xBinx6VwrV9x8Rxna0UrnwKx3VwXXdHClexPbBMdxfi8SABiBDi7O1+bJ/Hkck8uI5j+zwO9fEtphWiVLancMWIeZ83bXNHXUnWymK79s4Urs3p7rqqF4YnSgqXEGeaBCBCiNMvn9+ZVuU4O+s4fL6tlCqp4xDiWBV3OrancFmOdV+xezGFy3TNHSlcCsp9QclJpXC5nMFdYiFOgAQgQogtpyUF62F1HD7fzjqOUAgMuYIqRDnRVR3d0AkT9j5XnO7+7U5cjutgOzYpK0XSTHopXA8KSo4jhUtRFGnDK8QhSQAihCh/xTqOYsCRzW4FHMU6jkBga5fD7z97aWVCnHG7TXfPO5tduLYFJZZj4bpuYbq7lb4vhWv7hHefJo0khCg3EoAIIcrzZD2X27HLoSjKzsJxw9g5j0PqOIQ4cxRF8VK4tk93357CVQxO8k7eS+HKmlnIcV8KV7HY3dAM6WQlxAmSAEQIUR52q+NQ1Z11HMUPXV6+hHhc7SWFK2tlC3UlD0jhwt2sTdlM4Sq2B37UdHf3tKSpClHm5B1cCHEybHsrrSqd3lnHoesoul7Y2SjuckgdhxDiIXZL4TJtc0ddSdbKetPdv53C5VN9XuetYnvgB013l90TIQ5HAhAhxJajvLr3qDqOQOD+eRzyJi+EOARFUbx6kO0pXHk7f1+xezGFK+fmyJgZ3JyL67qoqF5QspHfIKbHdj+gEGJPJAARQhzdiX6xjmMz8Nhex0EggLJ9HkcoJHUcQohjUZzuHjEi3ue2T3cv/reYwmU5FqZlkjSTVIerpQuWEIckAYgQonQsqxBwFKeOf7uOQ9e3UqqkjkMIUUZ2m+5eTOHKWlliwRjN0WZJwRLikOTdXwhxcI6zs3DcNAszOIp1HN+ex+H3P/o+hRCiTGxP4arwV5z0coQ4MyQAEUJseVQNiOtCNrsVdDxqHofUcQghhBDiWyQAEUI8nGlupVRlMoXMZ6njEEIIIcQBSQAihNi5S1Gs4yimVdn21i6HYRTqOLYHHD6ZMiyEEEKIvZMARAhRsLZW2OkIBAq1G8Wp44axcx6H1HEIIYQQ4hAkABFCQCQC0SiK4+ys4wiFCsGH1HEIIYQQokQU1z3KyWNCiFMjkymkX4VChfoOIYQQQogjIAGIEEIIIYQQ4thIuxohhBBCCCHEsZEARAghhBBCCHFsJAARQgghhBBCHBsJQIQQQgghhBDHRgIQIYQQQgghxLGRAEQIIYQQQghxbCQAEUIIIYQQQhwbCUCEEEIIIYQQx0YCECGEEEIIIcSxkQBECCGEEEIIcWwkABFCCCGEEEIcGwlAhBBCCCGEEMdGAhAhhBBCCCHEsZEARAghhBBCCHFsJAARQgghhBBCHBsJQIQQQgghhBDHRgIQIYQQQgghxLGRAEQIIYQQQghxbCQAEUIIIYQQQhwbCUCEEEIIIYQQx0YCECGEEEIIIcSxkQBECCHE/7/9OhYAAAAAGORvPYtdZREAbAQEAADYCAgAALAREAAAYCMgAADARkAAAICNgAAAABsBAQAANgICAABsBAQAANgICAAAsBEQAABgIyAAAMBGQAAAgI2AAAAAGwEBAAA2AgIAAGwEBAAA2AgIAACwERAAAGAjIAAAwEZAAACAjYAAAAAbAQEAADYCAgAAbAQEAADYCAgAALAREAAAYCMgAADARkAAAICNgAAAABsBAQAANgICAABsBAQAANgICAAAsBEQAABgIyAAAMBGQAAAgI2AAAAAGwEBAAA2AgIAAGwEBAAA2AgIAACwERAAAGAjIAAAwEZAAACAjYAAAAAbAQEAADYCAgAAbAQEAADYCAgAALAREAAAYCMgAADARkAAAICNgAAAABsBAQAANgICAABsBAQAANgICAAAsBEQAABgIyAAAMBGQAAAgI2AAAAAGwEBAAA2AgIAAGwEBAAA2AgIAACwERAAAGAjIAAAwEZAAACAjYAAAAAbAQEAADYCAgAAbAQEAADYCAgAALAREAAAYCMgAADARkAAAICNgAAAABsBAQAANgICAABsBAQAANgICAAAsBEQAABgIyAAAMBGQAAAgI2AAAAAGwEBAAA2AgIAAGwEBAAA2AgIAACwERAAAGAjIAAAwEZAAACAjYAAAAAbAQEAADYCAgAAbAQEAADYCAgAALAREAAAYCMgAADARkAAAICNgAAAABsBAQAANgICAABsBAQAANgICAAAsBEQAABgIyAAAMBGQAAAgI2AAAAAGwEBAAA2AgIAAGwEBAAA2AgIAACwERAAAGAjIAAAwEZAAACAjYAAAAAbAQEAADYCAgAAbAQEAADYCAgAALAREAAAYBP7V/DLs1iCYAAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from mindquantum.core.circuit import Circuit\n", + "from mindquantum.core.gates import RX, RZ\n", + "from mindquantum.io.display import BlochScene\n", + "import numpy as np\n", + "\n", + "%matplotlib widget\n", + "\n", + "t = np.linspace(0, 1, num=100)\n", + "arr_theta = np.pi / 4 + 0 * t\n", + "arr_phi = np.pi / 3 * t\n", + "states = []\n", + "for theta, phi in zip(arr_theta, arr_phi):\n", + " states.append(circ.get_qs(pr={\"theta\": theta, \"phi\": phi}))\n", + "states = np.array(states)\n", + "\n", + "scene = BlochScene()\n", + "fig, ax = scene.create_scene()\n", + "\n", + "start = circ.get_qs(pr={\"theta\": np.pi / 4, \"phi\": 0})\n", + "end = circ.get_qs(pr={\"theta\": np.pi / 4, \"phi\": np.pi / 3})\n", + "scene.add_state(ax, start, pointcolor=\"red\")\n", + "scene.add_state(ax, end, pointcolor=\"blue\")\n", + "\n", + "state_obj = scene.add_state(ax, states[0], pointcolor=\"yellow\")\n", + "anim = scene.animation(fig, ax, state_obj, states)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 习题\n", + "\n", + "## Exercise 1\n", + "\n", + "我们定义 $[A, B] = AB - BA$,$\\lbrace A,B \\rbrace = AB + BA$,$\\vec{\\sigma} = (\\sigma_1, \\sigma_2, \\sigma_3) = (X, Y, Z)$,验证\n", + "\n", + "$$\n", + "\\lbrace \\sigma_i, \\sigma_j \\rbrace = 2\\delta_{i,j} I = \\begin{cases} 2I \\quad & i = j \\\\ 0 \\quad & i \\neq j \\end{cases}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "\n", + "写出 $R_x(\\theta), R_y(\\theta), R_z(\\theta)$ 的矩阵形式。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 3\n", + "\n", + "证明 $XR_y(\\theta)X = R_y(-\\theta)$" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + }, + "vscode": { + "interpreter": { + "hash": "fe23db6dbd04142dcf620a84033ad5fbdd1968100e6cb68cefa531a9613914d5" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/lecture2.ipynb b/solutions/lecture2.ipynb new file mode 100644 index 0000000..feb22b0 --- /dev/null +++ b/solutions/lecture2.ipynb @@ -0,0 +1,213 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise 1\n", + "\n", + "对 $|\\psi\\rangle = \\frac{|0\\rangle + (1+i)|1\\rangle}{\\sqrt{3}}$ 分别使用 $\\lbrace|0\\rangle, |1\\rangle \\rbrace$ 和\n", + "$\\lbrace |+\\rangle, |-\\rangle\\rbrace$ 进行测量。" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "state: \n", + " 0.5773502691896258¦0⟩\n", + "(0.5773502691896258+0.5773502691896258j)¦1⟩\n" + ] + }, + { + "data": { + "image/svg+xml": "
\n\n\nShots:\n 100\n \n\nKeys: Measure in |+> and |->\n \n\n\n\n0.0\n \n\n\n\n0.174\n \n\n\n\n0.348\n \n\n\n\n0.522\n \n\n\n\n0.696\n \n\n\n\n0.87\n \n\n\n0\n \n\n\n\n87\n \n\n1\n \n\n\n\n13\n \n\n\n\n\n\n\nprobability\n \n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": "
\n\n\nShots:\n 100\n \n\nKeys: Measure in |0> and |1>\n \n\n\n\n0.0\n \n\n\n\n0.124\n \n\n\n\n0.248\n \n\n\n\n0.372\n \n\n\n\n0.496\n \n\n\n\n0.62\n \n\n\n0\n \n\n\n\n38\n \n\n1\n \n\n\n\n62\n \n\n\n\n\n\n\nprobability\n \n
", + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from mindquantum.simulator import Simulator\n", + "from mindquantum.core.gates import H, Measure\n", + "from mindquantum.core.circuit import Circuit\n", + "import numpy as np\n", + "from IPython.display import display_svg\n", + "\n", + "sim = Simulator(\"projectq\", 1)\n", + "\n", + "sim.reset()\n", + "sim.set_qs(np.array([1, 1+1j] / np.sqrt(3)))\n", + "print(\"state: \\n\", sim.get_qs(True))\n", + "\n", + "# using |+> and |-> to measure\n", + "circ = Circuit()\n", + "circ += H.on(0)\n", + "circ += Measure(\"Measure in |+> and |->\").on(0)\n", + "res = sim.sampling(circuit=circ, shots=100)\n", + "display_svg(res.svg())\n", + "\n", + "# using |0> and |1> to measure\n", + "circ = Circuit()\n", + "circ += Measure(\"Measure in |0> and |1>\").on(0)\n", + "res = sim.sampling(circuit=circ, shots=100)\n", + "res.svg()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise 2\n", + "\n", + "画出下面几个单量子比特在Bloch球上的位置。\n", + "$$\n", + "\\begin{align*}\n", + "|\\psi_1\\rangle & = \\frac{|0\\rangle + |1\\rangle}{\\sqrt{2}} \\\\\n", + "|\\psi_2\\rangle & = \\frac{|0\\rangle - |1\\rangle}{\\sqrt{2}} \\\\\n", + "|\\psi_3\\rangle & = \\frac{|0\\rangle + i |1\\rangle}{\\sqrt{2}} \\\\\n", + "|\\psi_4\\rangle & = \\frac{|0\\rangle - i |1\\rangle}{\\sqrt{2}}\n", + "\\end{align*}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/zhuyk6/.pyenv/versions/3.7.5/lib/python3.7/site-packages/mindquantum/io/display/bloch_plt_drawer.py:50: MatplotlibDeprecationWarning: \n", + "The M attribute was deprecated in Matplotlib 3.4 and will be removed two minor releases later. Use self.axes.M instead.\n", + " xs, ys, _ = proj_transform((x1, x2), (y1, y2), (z1, z2), renderer.M)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAJOCAYAAABBWYj1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5BkZ3rf+X6PTZ9Z3leXbd+NBtANbwfADDDAzJAaDqUgpdVKsXdXod1YxYq7MozQH7rkxsa9oWWIQWlCuqsgtbrivaLuUuRwHAZuYAYe6Eajvavq8t6nzzzm/pGV2VVd1V1Z1ZlZpp9PRAXQWZnnnHKZv3zf531exXVdFyGEEEIIsSF1uy9ACCGEEGK3kOAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkIIIYQQRZLgJIQQQghRJAlOQgghhBBFkuAkhBBCCFEkCU5CCCGEEEWS4CSEEEIIUSQJTkKIPePq1av883/+z7l69ep2X4oQYo9SXNd1t/sihBDiXrmuyzPPPMO5c+d48MEHef/991EUZbsvSwixx8iIkxBiT/jjP/5jBgYGOHv2LH19ffyH//AftvuShBB7kAQnIcSuNzMzw+/+7u/y7//9v6e7u5t//+//Pf/kn/wT5ubmyn7u559/nueff/6ejvFv/+2/RVVVxsfHS3NRQoiykeAkhNj16urqmJ6e5pvf/CYA3/rWt5icnKSmpmbbrslxHP7lv/yXHDp0CK/XS3t7O//z//w/E4/H19z3e9/7HgA/+clPKn2ZQohNkuAkhBBl8A//4T/kd37ndzhy5Aj/6l/9K37zN3+TP/qjP+K73/0ujuOsum9LSwunTp3iRz/60fZcrBCiaPp2X4AQQuw1Fy9e5F/9q3/F97//ff7Lf/kvhdu7urr4B//gH/Bnf/Zn/PZv//aqx/z6r/86v/d7v0csFiMYDFb6koUQRZIRJyHErpbJZDBNE0VR1v34/ve/X/Fr+k//6T/hui7/0//0P626/b/9b/9b/H4/f/qnf7rmMb/2a79GOp3mF7/4RYWuUgixFTLiJITY1bLZLH/yJ3+y5vZ/+S//JWfOnOG73/3ums85jrOpwvGamhpUtfj3mV988QWqqvLoo4+uut3r9fLggw/yxRdfrHnM0aNH6e3t5Uc/+hE/+MEPij6XEKKyJDgJIXa1QCDA3/pbf2vVbf/4H/9jzpw5wx/8wR/wd//u313zmKGhIbq6uoo+x82bN+ns7Cz6/mNjY9TV1eHxeNZ8rrW1lY8//rgwUrbSr/3ar/Enf/InWJaFrsvTsxA7kfxlCiH2DNd1+Qf/4B/wwx/+kB/+8If89//9f7/u/ZqamnjrrbeKPm5TU9OmriORSKwbmiA36pS/z3rB6Q/+4A/44IMPeOGFFzZ1TiFEZUhwEkLsCY7j8Pf+3t/jT/7kT/jjP/7jdUea8rxeLy+99FLZrsXv9zM1NbXu51KpVOE+t9M0DQDbtst2bUKIeyPBSQix69m2zX/9X//X/Of//J/50z/9U37rt35rw/tPT08Xffz6+vpCqClGS0sLly5dIp1Orxl5Gh0dpa6ubs1oE8CPfvQjIpHIPTfUFEKUjwQnIcSuls1m+e3f/m1+/OMf85//838uahXd8PBwWWucHnnkEd58800+//xznnnmmcLtqVSKs2fP8uyzz677uL/6q7/i1VdfxTCMos8lhKgsCU5CiF0rnU7zgx/8gLfffpu/+Iu/4LXXXivqceWucfobf+Nv8L/9b/8bf/iHf7gqOP27f/fvSCQS/M2/+TfXPOby5ctcu3aN3/u939vUuYQQlSXBSQixa/3tv/23+elPf8rf+Tt/h/n5+TX9kb73ve8RDofXPK7cNU7Hjx/nf/gf/gf+9b/+13z/+9/n1Vdf5fLly/zRH/0Rzz333Jrml5AbbTJNk29/+9tluy4hxL1TXNd1t/sihBBis1zXJRKJEI1G1/28qqpEo9F1i7BLKV+P9N5776263bZt/vAP/5D/4//4PxgYGKCuro6/8Tf+Br/3e7+3bmfwJ554gkgkIg0whdjhJDgJIcQ9uFNw2oyJiQlaWlr44Q9/yN//+3+/NBcmhCgL2XJFCCG22Y9//GMg18dp15P34mKPkxEnIYS4B6UYcbIsC9u279g0c8dxHMhkIJtd9V83HgevF2XfPthE+wYhdhMpDhdC7DqXLl3CMAz279+/3ZdSErqu77wtVhxnTTAim8VNpcCycp9fft/tqioYBigKyswMNDRAILDNX4AQ5SEjTmJPGYuOoSkauqqv+dBUeQe8V9TW1nLs2DHef//97b6U3c11b4WilSNH+X+7bi4gsRyOdD0XkExz9X8VJXe8ZBJlYgKlqwvKXJQvxHbZYW9xhNi64cVh+qb7qA/U4+KCAoqi5D5QUBUVXdMxNGP9YLUcuCRg7Wy/+tWviEajXLt2ja+//poTJ05s9yXtbPlwdFtActPpteFIUXJBSNchFFodjlQpiRUCZMRJ7CEjSyMkkgnaIm24rovt2liOtebDdmxs18ZxHRzXWTdgGZqxbsDS1FujWaoiLyTb4fHHH+ezzz5DURSef/55fvnLX273JW0/181Nn90+rZZOQzqd+3z+Q1VxNS0Xhm4fPbrXcCQjTuI+ICNOYk9SFAVdyQWcu3Fdd91wZdkWKStVCF+5g64OWJqqrRuwbp8qVPLTGOKeRaNRbty4AeR+dp999hmnT5/m5MmT23xlFZIPR+tNq9n2rXCkKLfCUSCQC0X5gFTOom15Hy7uAxKcxJ7isrknbkVRCuHnbhzXWX/0yrJJZBLYbm4UK3fQ1QFLV/X1A5a6OmCJjf3+7/8+s7OzhX8nk0l+93d/lzfffHMbr6rELGvtarX8tNrKcAS4+Wk1n2/16NF2F5rLmwWxh8mztdgzFMr3ZK0qKqZmYmprd7RfyXbuMD1o2aQz6ULAUlAKAUtV1FUBLj9qZWjGmtGr+7n+6le/+hU//OEPV93mui7ZbBbLsnbeqrS7se31p9Xy4WjlirV8QbbXu3pabTd9vULsIfKXJ0QJaaqGpmp4uHM/njvVX9mOTcbKkHSThRqsjeqvbh+12sv1V//oH/0jEonEmtvff/99Xn311Z036mTbd17OvzIcue6tcOTxrB45Mu4+EiqEqDwJTkJU2L3UX+UDV77+ynZtXHftCsKV9Vd3as+wm+qvPvzwQ7788st1P+e6Lu+88w5ffvklp06dquyFrdfrKD+1dnuvI03LjRLdvpR/5XJ+IcSOJ8FJiB1qK/VXq6YKLavo+itdWz9Y5acNtztgpdNpfvu3f5uhoSEAhoeHMU2Tf/Ev/gV/+Id/iG3bJJPJ8pzcddfvkn2nXkf5GiO/f/1eR3tZvjj8fvhaxX1L2hGIPWMsOkY0EaU90r7dl7Ij5UPV7dOEK2+/vf4qH7BM3bxjsNqO+qt/9s/+GV6vl3/2z/5ZaQ64shHkenVHd+p1tHK1mvQ6gngcZWoKpacnV5MlxB4kI05C3Cfy9VcbWTNytfyRtbKk3NRd66/u1mB02+uv1ut1lB85uluvo2CwtL2OhBC7mgQnIcQq+YCzlQJ3y7FIW2kSbuKO9Vd3azC6lfor13VxHAct359oZZfsjXod6Xpu5CgYXD2tJhvUCiHuQIKT2DMUlE33cRJbU2yBu+M62I5NKpNiYWmBuYU5luJLpNIpHMUhk82wFF/Ctmwcx0FRFEzTxMrm2gt4dA9+r59IKILi5mq+IqEIp049iBeVj37+c1JLSzjpNGGPh3Q0SjadxrIsrEwmF9aWw5BimigeD4ppYvj9BKuqCAWDBEMhQoZBIBhEldEkIcQGJDgJIUrCsixmZ2eZn59namqKaDRKPB4nlUphWdadH7g8IoUKiq6Q1bIkkgksK42TToGdRbUssLPoto1m2aiAslyeqaGCqqOYHnSPF9X0Ynj86FVVqJqJaZj4PD7i8TiWZeEmElhLS6QHB1fFbAUIBALU1dVRX19PU1MTtXV1EqY2Y3kkT4rDxV4mwUkIsWmu67K4uMjk5CSDg4PMz88TT8RZmURM08Tn89HQ0EBjUyMBf4BQKIRhGDiOQzAYRHVdpkZHycbjZOMJasJBwl4fV86eZWlxgaVYmmxWwUXH1UxMvx/H0Jkfu0rMytD68JNEMyniyTjpbBrbsXCsJRQ7isc2CQaD1EXqqG2upa26DVM3UV0VxVUIh8IszC0wNzNPKpkklUihojIzM8PA4CAAqqJQU1tLa2srkXCY5uZmvD7frWlBIcR9R4KTEKIo8/PzXL9+nZGREZaWlnCWV5mpqkooFKK7q5u2tjYaGxsJBAIoikImkyEZjxPx+VicmWH8Rh+KZeFRFUI1NRiKSnBxgUQsRnRqhrPzcyzGYzi6jubz0XBgPw1tbdQ3NxMOhxkYGMDj8fD//eFXGIbJr3/nNwvX57ouqVSKubk5BoYGmJ6dZnFpkZG5EYZuDGG7NqbHJBQO09LeTHNLM6ZhEmwJEFKChfqrHq2HTDrDzNQMs9NzLC4sMHp2BBUVUzepqaqhvX0fDz74INGlJRRFwR8I7K7O5UKILZO/dLFnKIqCdNcoHcdxGB8f59q1a0xPTxOLxQDw+Xw0NzfT0tJCa2srVVVVqEA6FiMbjxPMZpm6eIG5iUk0y8KraYRbWwlaNr2hILppohgmi8kE10eG6RsdIZpKgWHQ2NHOwaZmmpubqa2tXVUgPjk1iaqqtLW1rXu9iqLg8/lobW2ltbUVgKGhIUKhMIlEnKGhodxU4sICQ3NDDH09RCAcoL6hno6uDoKREI5rYzs2mqZR11RHdWN1rhGpbTE1NcXo2CiXxy5zaeISH53/kKaGJqoiVZi6id/r59CBQ1gZC8VVCAXDMjIlxB4kwUkIUeA4DsPDw1y/fp3R0VFs2wYF6mrrOHrkCPuamwl5PIUeR2oiyeTVqyzNzOA6LqFggGBTE1WOS3VrK3q+CaRhoBkGKcfhxuAQ/ZcuMTMzAwo0NzXzQE8P7e3tGHfZYqSuto7amlyYqqmrwTTuvm8g5GqWpqen2L9/fyFMOY7D9Mw0Y6Nj9PX1MXBjgIEbA+i6QWdnB62trbS3txdqm/INRlsjrRzvOU4qnWJkdISbwze5OXQTy7YIV4Xp6urGN+8jthRjfmGebDaLz+uju6Mbj+FF17R1NnreGQ1GS0beuIj7gDTAFHvGRGyC+dg8HVUd230pu87i4iJnz55lcGAAJ53Go6rUhcN0t7ezr6kJA3BTKeKxGIlYjHg8juHx0Lavg6V0CiMQwBMIoOT3WrutoHp+foGLFy9wc+AmruMSiUTo6emhq6uLQCBw12uzbZvBwUE6OzsLYebML3+MpmqceP61uz7WdV2uX79ObV0dtTU1694nHo/T39/P2NgYM7Oz2JaFqmm0trRy7NhR6urq7hhsMpkMN2/e5NKlSywuLWL6PBw4tJ/Ozk4UTSEaj+LxephdmGV8Yhxv0EvQHyQUDqFr+poNnlVFQ19n/0Ftt2zwHI2izM6i9PbmWjsIsQdJcBJ7xkRsgrnYHJ1Vndt9KTtfNoudSjHS38/1ixeZnZhAzWapDYbo7e2hrbUVVVHIZi0WE3FUj5fqxgaGJyYwgwECkSoC4fCGIyVTU1Ocv3CB0ZERFFVlf28v+/fvp6ampuhRlvHxcbLZLPv27Svc9v/8p/8jhmHyO7//Bxs+Ph6Pk0qn7xicVnIch8HBQa5cucL0zDS4UFVVRWdXJ709vfj9/nUf57ouIyMjXLp0icnJSTRd5+CBAxw9ehSfzwfkQlY0GmVuYY76xgZs22J2cRaf34fpMXOtG5a7t99tg2ddywWpOwWsbd3gWYKTuA/IVJ3YMxT2yHRHqdzWJVvJZHGzGeLz81w6d56xsVEcy8br97G/pYUDx44RqKrC1XVcXefa8AhpK0uktpbq6moIBmkvIny4rsvo6CgXL15kcnISwzB54IEHOHToEN5NbsORSqWYnZvj4IEDW/0uEAgE8Pv9ZDIZzA1ezFVVpauri66uLlKpFDf6+hgcGODsV2c5+9VZampqOHToEN3d3avaFCiKQnt7O+3t7czMzHDp0iUuXb7E1WvXOPHAAxw+fBjTNKmtraW2thbI7b+XSWRYnFki6sbo2LcPv99fqNVbvT2Ojb2iwah9lwaj+Q2e7xSu8gFrz0wPClFhMuIk9ozJ2CSzsdn7a8TJslZ1yVYy2eUu2elbXbIBXJd4JsPla9e5MTKEo2pUNzRw8NgxOnp6sCyLxcVFFhYWCAaDNDc3E4vFCqvjijU2Nsbp06eZn5/H5/Nx5OhRDuzff9fapbu502jRZkacABKJBDcHBjhy+PCWAsPs3BwXL1xgZGQUy8oSDAY5dPgwB/bvv+NquoWFRb48/SVjo6MEAgFOnjxJR0fHuudPJBJ4PB7i8Tjj4+PU1NRQVVW14fctX391a4ucWwHLduy7bvCcD1i6Ztx5enCz9Vcy4iTuAzLiJMROZ9ur9la7FZCWw9FyWwBcN7eFiKbjer2FouyldJovvvqK0dERAFoOHOTUyVMEg4Fc8Tdw/cYNQsEgDQ0NhEIhAILBYNGXeHtIePLJJ+nq6rqnVWWWZeHz+datgVI0BU0v/th+vx+PaTI3P1/UlN3tamtqePbZZwtTeRcvXuTLL77gzJkz9Pb08OCDD64ZTauqivDSiy8yNjbGF198wQcffEBjYyOnTp0qjDqtvD6g8L1fWFhgcnKSzs5O/H4/ruuu+71UFRVTM2GDb0U+RN3aGicXsGzLJpGJ35oehDUBS1f1jQNWvv5K3oeL+4CMOIk9Y1ePODnO6s1n8+EonVodjhwnt7eabuAaOhgmGHru3b2ur+rYHI1G+ezzzxkbGwWgpaWVRx95BE3TmJ2dZWlpiaamJurq6nBdd0sjMalUinPnznHl6hU0TS9MS5ViGf7Q0BBer5eGhoY1n7v86duoisrBx14o+nj5hp0H7mHaLy9f03T27Fnm5+dRVIWDBw5y+PDhQvhZyXEcrl27ztmzX5HJZDhy5AgPPvjgXXs/2baNqqpEo1GGhoaoqqqirq5u09Odm7F2c+flgLV8u+3auW2N7rTBcyKFuRBFPXAA3eNbHbCU4jaZFmKnk+Ak9oyp+BQz0ZmdG5wcZ83ms0rWyoUjy1o1coSq5sKRaYBugGkURpA22s4ik8lw+vRpbvTdwHVdWlpaOfnwSfx+H6ZpcuPGDcKRMDXVNVueQnMchytXr/L12a/JWhl6e3p56KGHCoXQd5PflDf/1KPrOtlsFtvO1ey4rouqqty4cYP29vZCCPN4POi6TiwW48/+X/87pmHy1/+738Hn85FIJAoNORVFIRAIkM1myWazhRd4XddZikYJBgKoqoqqqoXP3YvZ2VnOnz/P0PAQuNDY1Mjjjz1OJBJZc9/8z+b69etEIhGefuaZokbAstkss7OzzMzO0tPdXQhP21GntHaD51vTg+7SIszNke5qx9G1TW3wrK0YzdrWAnchNiDBSewZOyI4ue76I0fZ5Wk21731oaq5aTXTWD1yVEQ4Wv/ULleuXOXMV2ewLYvu7m4OHz5MKpVifn6euro6mpqaNnVMx3GwLKsw+uHxeBgaGuLLL78kFotRU1PDE08+iaqoLC0t4jgOjuPQ1ta23EZgCMd1cB2HhoYGGhoauHDxIo5joyoqfr+f7u5uxsfHWVhYXH6RzU0T5oNPXkNDA+FwmL6+Pq5+9g6KovDwC9+jqamJsbEx4vF44b779+9nbn6e6amp5W+3S3t7G7quc+PGjdzX5jrU1uS2U7l27RqZTAZFVfGYJr29vczMzLC4uFgIWc3Nzbiuy/z8fOG2QCCAz5fbBy+RSHDhwkWGR4YA6O7q5pFHHsHj8az5vo6MjPDRRx+RyWZ48MSDHD16tKg98fIbIc/OzjIzM0t9fR3V1dU7Zz+9pSWU+Xno7cXV9dtGr2592I6NQ64+C7hj/dWavlfK6qlCKXAX20GCk9gzKhacXDcXjFbUHSlZK1dzdHs4UpRb02r56bR8OCrhi93c/Dwfffgh8/Pz+P1+Hn/8cVpbW+nv7ycQCFBTU1NYUZbJZMhkMmSzFrZtUVtbSywWY3Z2FsuysCyblpZmfD4fl69cRlU1dE0nEgkzNTXF1+e+xtBNDh8+RHNLM40NjSQSCVLpNKqioqrKqi1X8iEj/1GMWCyGaZp3XAW32eLwvPxKuaNHjqx60c2PduVHwjweD+l0mnQ6jeO4OK5DJBzGtm3m5uZwHAfbtgmHw0QiEW7cuJH7fjq5mrGxsVEmxidQNY2W5hY6Ozvo7OwknU4Tj8fRNB3Hsfn663OMjAzT0NDAk08+STgcLurrcF2XaDTKzMwMiWSSw4cO7Ywu5YuLKAsL0Nub+x0vQr7Afb1wtVGBe77+KuKNUO2rLt/XJcQKUhwu9hSXEr0PcN21y/nz4SidXjNy5KpabuQoGLw1pWaaJQ1H68lkMnzyyScMDg2iawb79+8nHImQTqdRFAXTNInH48zPL+D1eujq6mJmZibXwNIw0HUd13UxDINwJIKh62iahsfjQVVVjh87jqIozM3P8/FHHzE3N0dHRwePPfbYqlobv9+/bo+jrdTjpFIpvF5vWfZ+83q9eEyTpaWlVVNp64UOj8ezZrRI07R1R+16e3tX/fvY0aNMTU3x+eefMzIyzOTkJKl0mn3t7aRSKbLZLJZlcerUSVpbW/j8iy/4qx//mMOHDtHV1UVtbS2Li4uFn6FpmmvaH4TDYcLhMJlMBk3TGB8fx1ke2dvqFGzJbGIkKF/gbmp3X4W3tv4q95FIJZiKTXG08SgB8+7NVIUoBQlOYs/YUh+nfDhab1otv5x/eeSoEI4CgVvByDCgwu/0s9ksiUSCwaFBzp+/gG1ZNLe0UFNdjWEa6JpG9XLdTDAYQtNUDMMojN60tLSsOabX61035DiOw8WLF/nq7FcYusGzzz5LZ2dnWb++4eFh6urqqa6uuuN9Hn/iCTR9a6E0EomsCU7l0NDQwHe+8x0GBwf5/PPP+fKLL+jv6+ORRx9Ztd9eKBSisbGJ999/j0uXL6HrOjU1NYXpv0w2i6qoHDp0kNnZWZLJJB6PB9M0CYVChZ9rXV0dU1NTXL16lbr6OpoaNzctu9Npaq643MPqMJuyUozHx7fpqsT9SIKTuH8tLMDQUG76bHnG2tUN0HVcn+/WtJppVjwc5SWTyVwvo1SKVCpFT08Pi4uLnPnqDBPjE3g8Hg4dPMiDDz5YWLK+cgrqbuFjI0tLS3z00UdMT0/T1tbOE088XlTx971IpVKkMxmqqu4easbHxzG2OCJVXV1NOp3e0mO3oqOjg/b2dq5du8758+d44xdv0NrWxjNPP41pmiiKQlVVhFdffZUPP/yIc+fOEYvFeOKJJwojYfmKCp/Ph+M4ZDIZlpaWCAQCRKNRpqam8Pl8+Hw+urq6SGcyQG4lYSgU2jk1UELsARKcxJ6yqZK96WlcRYGGhlv1R9vIcRxiy/vAOY5Da2sri0uLZNIZfD4fVVVVzMzM8P7775NIJGhoaKCnp4fm5uaS17eMjo7ywQe/wnVdnnrqKbq7uytSiLuwsEBNdfWG5xocGMAoYpPf9RiGgaIoZLPZik1pqWpuxKinp5uPPvqIoaEh/vzP/wuPPfYoPT09het6/vnn+Prrrzl37hzRaJTnnnuu0E0c1p8SDQaDqKpKKpUiHo/j9XoJBgJcv34dy7Kx7WEaGxupra2tTICqcMF2/m9eCsVFpUhwEvcvTYNQCO6w/1glWJZFJpPB7/fT19cH5KZu8kXC+ekW13X56quvuHDxApqm8+STT9Lc3LzhBrmb5bou5y+c5+xXZ6mqquL5558vumC5FKqqqiryAjgzM4PjOOtOW5ZTLhw9z/j4OL/61a/46KOPGBkZ4dSpU4WC+gcffJBIJMKHH33Ez372M1586SVqqu9c+KxpGqFQaFX/KMdxaGzMFe0vLCwyMzOL4zoYhkkkHC5fIbksNRL3AQlOYs/YTe84E4kE09PTRKNRamtr8fv99Pb23nE7jnfffZfZ2VnC4TDPPvfcXV9ItyqTyfDhhx8xMjJMZ2cnTzzxREWLjDOZDIqirLt8v9RCoRDDwyNUODcVNDc38xu/8RtcuHiBc+fOMTwywoMnTnD06FEURaGrq4tQKMQvf/lL3vjFG3zrW99c0238blRVLRSP54vZLcvi5s2bDA8PEQ6FaW5uLl8zzV30tyjEZsnEt7i/bVM3jpmZGbw+L4cOHaK5uRlYP/iNj4/zV3/1Y+bm5zh06BDf+973yhKa5ucX+NnPfsbI6DAnT53imWeeqfjKrJmZGebn54u6b1t7O61trVs+l9/vx7JW94mqNE3TOPHACV599TUCfj9nzpzhJz/5CdFoFMgVe7/yyisYhs4bb7zJ9PT0PZ1P13V6e3tpbGgkFosxMTGBbduFxqG7VclW0gpRJAlOYk/ZyU+iruty8+ZNstks+/bto7Gh8Y5L7m3b5osvvuCtt98C4NVXX+PRRx8tS43K4OAgP3/952QyGb71rW+t6XFUCa7rMr+wUPRKt86uDvbta9/y+RRFobW1beM7VkBtTQ2//uu/zokTJ1hcWuSnP/0ZQ0O5JprhcJiXX34Zj8fkzbfeYnJq8p7OpSgKTU1NHDx4EF3XWVhcpK+vb3O1gTvUllbVCrEFEpzE/avC4WBhYRHbtjfsTzQ7O8vb77zN5cuXCQVDfO97393SxrTFuHT5Mu+//z7VVVV85zvf2bYl7MlkElVRi1619+EHH/LJx5/e0zmrqytTT1UMRVE4ceIE3/3O9wgE/Lz33nt88MEH2LZNKBTi5Zdfxu/z8dZbbzMxMXHP5zNNk7a2Nmqqq0mlUvT19ZVm9G0PBDAhNiLBSewZO/0dp6oqhQ7V60mn01iWxekzp5mcmKS5pYXvfe97JS8Ah1vF5l9+8QVtbe1861vfKst5imWaJu3tlR0BSqfTXL12bUeNtuTbErS1tTMwMMCPfvQjFhcXCQaDvPzyywQDAd56+23GxsZKcj7XddF1A8MwuHrtGnNFTpVuaIcEUiHKQYKT2FN2cngKh8P4/f414clxHMbHx7l06RI/+tGPmBif4OGTJ3npxRfLsvrJcRw+/vhjzp8/T29vL88//1xZunRvRiaTqXhwyzeOrGRPp2Lous4LL3yDxx57jEQyyU9/9jMGBgbw+/28/PLLRMJhfrm8WOBe2LaNoig0NNSzb98+erq78Zgmrutua+3XZkk7AlFpEpzE/a2Cow2KotDe3o5hGAwNDTEyMsLi4iJXr15jdnaWS5cvk0wleeqppzi2vLqq1CzL4t333qOvr48HHniAJ554YtubI2YyGfpv3tzUYwzDxDTvrXhdURSCgQDxROKejlMuBw8e5Ne+9z2qIhE++OADfvnLdzEMgxdffBGvx8Pbb79dKCTfjEQiwfDwcGG0rba2FkVR8Pl8hYaaV69dY3FxsQxflRC7nwQnsWfkg0bRUy/b+A61sbERgOGRETKZNOfOnQfglZdfKTRELLVUKsVbb73F6MgIjzzyKA8++OCOeJe+tLREOBTa1LW8+tqrfOvll+/53FVVVVvuQF4J4XCYV155hY6ODkZGhvmrv/orXNflxRdfwrYd3n77bVKp1F2P4bpu4T6TU5PcHBjAMA0O7N+/bmgOh8N0dnQwOjbG6OjojprKFGInkOAkRIUtLS3Rf/Mmuq5TV1vLhYsXMQydEydOMDU9zdDQ0D1Pw9wumUzyxhtvMDM7w7PPPsvhw4dKevx7sbS0RCi0uSabP/npT3j9F6/f87kjkciqxpE7kaZpPPfcczzxxBMkkgl+8pOf4rgOL7z4DWLxGO+++y6WZRXunw86CwuLDA4OcvHSJW7eHMBxHOpq6zhy+DBNjU13nZ4NBoMc2L8fr9eLouRq84qzHLJ2QCAXolx27lstIfagickJ5ubmaW1pIR6P884vf4mu6bzyyiuEQqHCthn5GpPx8XHi8Th+vx+P10t1VdWmp9byI03RWIyXXnyp0Ddqp6ipqSUY3Fx9k2PZ2EqxL+Z35rouV65cZf/+3m2v89rI/v37iUQivP/++/z85z/niccf56knn+LDDz/kl+/+kqNHjpJIJHAch4MHDwK5ANTU1LSlpqK6rlNbW4tt21y5epWG+nrq6up2xCjlSi4uiqLs6PpGsbfs7GcKIcpMcSuzS0QikcDr9VIVqaK+rp6xsTHee/89DN3gtddeK4x6eL3eVd2c6+vrCQQCJFNJYtEo1VVVzM3PMzkxicdj4vV6qampwePxkMlkCpvG5qXTad566y0Wl5Z46cUXd1xosiyLcHj7NqFVFAXD0InH40X3kKo013XJZDJomkZdXR0nT57k9OnTfPzxx+zbt4+HH36YM2fO4DE9PPTQQ4W97DbaKLlYmqbR093N0NAQ0WiUjo6O8m3ZIsQuIMFJ7Bn5d5wubpHvPsv/DtV1XWZmZpicmqK7qwu/378cmt7HY3p49dVXCQaDd3y8ruuFrTPyqquq8Pt8pFJp0plc7Uo2m+VGXx+2baHrBvV1dUQiEX7xi1+wFF3i0UceJRKJYNv2jnrRm5mZwXXdbQ10+WC6HcHJdXOjJel0mmQyhWVlsSyLuro6UqkUQ8PDWFYWXTdobmqmqipCMBjkhRde4LPPPmNoaAjLttm/fz/Xr1+ns7OzLHsLer1e9u/fz+TkJI7j7KjfISEqTYKTEGXiui4DAwNks1n29/bi8XgYGRnhl+/+kqpIFd/85jeLbvi4kqIoK0ambr3YHz1yBMdxyGZzL77vvPMOi0uLHD92HMMwGB4eLuxPdu36dQxdxzAMIpEItbW1zM7NgeuiaTqGoRMIBApL1ss1IrS0tLSl0PTiSy+W7Jr8fn/JWhI4joNlWWiahqIoLC1FsW0Ly7bwmF6qqiIMDw+TSCTIWhaaqnH48CGi0ShLS0uYpolu5J6WfT4fPd3dGIax6mttaGgA4Nvf/jYfffQR/f39NDY2Ul1dzYcffUR1dXVZwlO+63j+97qmpqaiG0DfiRSvi0qT4CREGWSzWQzDoLq6pjAVNTMzw7vvvYfH9PDSSy9tKTRtRFVVNE3jvfffY3pmmmefeZbOzs5V93FdlwP792NZVuE6AWzLKjThVFWVQCDA9PQ0U9NTy8fW2N/bi23bjI+Po2kaqqpSVVVFOBxmamqqELIMwyAcDpNMJgvhK7/k3XVdbNvGtm3S6XRhamkzzp8/j64bPPzC94p+TH50x3EcHMfBdV0cxyEcDuM4DvF4vHC7x+PB4/EwOzuL4zjYjo1hmNTW1DA1NVW4r7082jM3P8/o6AgAmqbT3taG3+9nfn4OXdfRdb1QL11TU0NtbS36cnCF3L50dXV1a675biM7iqLw9NNP09TUxMeffIyhmygovP/++3z7298uW82WoijU1tYyODREY0PD6rond/uKw3da7ZXYuyQ4iT3Hdd3iZ+FK/G7VdV2mp6eZnpnh0MGDhTqTpaUl3nzzLVRV5ZVXXtlSWCiGbdu8++67TE5M8vTTT68JTZB7gTFNs9AAMi8/krFSU1MTTU1NhZCg6zq2bVNfX49tOziuU3iBzt/HcRxMj0k4HGZxaZHoUnQ5pLgcOLCfxcUlRsdGcR0HF5elpSihUJCLly4Winyrq6tpa2ujv7+f5PJSek3VOHToIDMzM7S1taOqKhcvXaJzueamr78fyP0M6upqaWps4sqVq2Sy6VwYMr0cOnSQiYkJ5ubmYDnM7e/tZXh4uBAYVVWltrYOj8dDMpkshMH8C7PP58MwTDRNLQSb6qqqdQv3u7q61nxPS93os7e3F6/Xy7vvvYuqaszPz/P555/z5JNPlvQ8K4VCIfb39nLz5gA+n++u081C7DWKK+OcYo9YSC0wMj9CR6QDTd24BkMZGsbNZHBbSlNfY1kWQ0ND2LbNvn37CiuZUqkUb7zxBtFYjJe/9S3q6+tLcr7bua7Lhx9+yM2bN3n88cc5cOBAWc5TKvkRoPz/5z/yNE3DsiwcxyncZpomtm3zR7/3TzANg//bP/rnGIaBoiiFlYj5oKNpWmEZfT7Q3GlU4saNGzQ0NOyIqaetGh8f5+133gHAdRyefPJJent7y3pOx3FQVZWFhUUCAT9GNIoSi8GhyrW7iKajzKZn6a3txdTMjR8gxD2SPk5ClEA+BASCAXqX65kgF6Zef/11lqK5VW3lCk0A586f4+bNm5x48MSOD00A169fJ7HctXtl2Ml/QK44Pj86lh8h0zSNTDpNOp3B4/EURoPy9zEMo/D4/LHyU4V34vf7SaaSZf6Ky6u5uZmXv/UtdE0HBT759FPm5xfKes58IE2lk1y/cSPXaLPCU2bu8rpYaUcgKkWCkxD3aHFxkf7+flRVpbGhsfAC7TgOb775JtFolEdOPUpTU1PZrqGvr4+vz35Nd3c3Dxx/oGznKZV8fdPK1gubsf/gfvYfKN1oisfrxcpaG99xh2toaOCVV15B03Rcx+H9999bNWJXLk2NTTQ2NjJw8ybJ5N07mQux20lwEnvGynYERbuHmep8PdPI6ChNTU1rRjQ++OADZmZmOHbsGIcOHdzyeTYyMTnBx598TGNjI0888cSuKJKNx+N4vd4tr4wLBcMESlhXU1NdTWtra8mOt52qq6t47dXXUDWNpaUlPvnkk4qct7amhtbWVkzDkJVuYk+T4CTEFiWTSebm5ujt6VlT8NvX18fQ0BAdHR08/PDDZbuGhYVF3v3lewQDQZ5//vld1V+npqZmy489c/o0Z8+cLd3FkAuge+UFv6oqwne/8x0UVaGvr48bN25U5LyhUAhV1+jv76/YJsH5n9lueMMg9gYJTmJv2cxz5xafaC3LYn5+Ab/fz4EDB9ZsZzE9Pc3Hn3xMfX09zzzzzJbOUYxUKsUvf/kOigIvvvjilrbV2C7hcJja2trtvowCRVGYn1vYcMPc3SQSifDqq6+BAh9//DGjo6MVOa+iKDQ2NjI0NMT8/HxFzilEJUlwEmIT0uk0N270kUjEgbXvcjOZDO+88w6qqvHMM8+UrXGkbdu89957xBMJXnjhhV21Gsx1Xa5du1aR2pvN8Ho9pFKlaYS5U9TW1HDy5CkA3vnlO8zMzFTkvMFgkJ6eHkZHR0vWXFSInUKCk9gzVi5tL4dEIsH1Gzeoq6tdtx7GdV3efvttMtkMzz/3XFl725w+fZqpqSmeevLJdfsv7WTJZBLHce8pVHr9PvyB0jYQ9Xq9hS1s9pIjhw/T2NQILvzijTfKO4W24m/P7/dz+PDhQj+scpIVdaKSJDiJ+1uRISvfTbpj3751OzwDXLhwIVcMfvRYWQuNBwYGuHLlCocOHaK7u7ts5ymXRCKB339voeebL32T555/vjQXtKyuro662vV/truZoig8/dTTaLqO49i8/fbbhTYQZTph4X81TcNxHG7evMnU1FRZTiftCESlSXAS968ia5zm5xfo6+tDVVVCodC69xkcHOSrr75i3759PPTQQ6W8ylUWFxf56OOPqaur4+TJk2U7TznZjn3PK+J+8pMf84vXf1GiK8rRNK3sIyPbJRAI8PBDD4MLiWSCn/3sZxWbQlNVlZ6eHqamppidna3IOYUoJwlOYs/ZVDuCDczNzzM6NkpLS8sdV+3E43E+/OgjvF4vTz31VNlW91iWxfvvv4+qqDz77LO7agXdSo0NjdTew4o6AFxwndJvlzMwMLBnVtbd7uDBA0QiEUzDJJlM8vOf/xzLqkzvKo/HQ09PDwsLC3v2+yvuHxKcxJ6xpaH6uzyJZzIZJiYm6OnuvuPecq7r8sEHH2DbFt/4xjcKm7aWw6effsrCwgLPPvvMrt0bzLZtRkZGtvsy1qVpGoqqFrZu2WtUVeWRRx4hnU7T1tZONBrljTfeKG2R/l3+nnw+Hz09Pdi2TTweL+EpJYiJypLgJMQ6EokEpmly6OBBfL471+PcvHmT6elpDh08VNbtVK5du0Z/fz/Hjx/f1Y0aE4lEaabDFDbXeqJIHtPc06vAWlpaaGltZXxinKNHjzI7O8unn35a2vCxwYhrKpWiv7+/5HVW0sdJVIoEJ3H/usMT7eTUJIODuc1677byKxaL8emnn1FXV8epU6fKdZXMzs3x2eef09jUyIkTJ8p2nkpIJBN3HL3bjNde+w4vv/JyCa5otcbGxsKeeHvVI6dO4Tg2qVSK48ePc+PGDc6ePVux8weDQdrb2+nr69tTfbPE/UOCk9hztvru2XVdJiYmmJ9boKen+641RK7r8t5772HZWZ588qmy9WuyLItfffABHtPkmafL1xeqUtKpNN67jOAV6/333+OjDz8swRWtFgqFyjrduhNEIhEOHzpMX18f7e3t1NXVcf78eQYGBip2DVVVVbS0tOzZYnyxt+3uZ2EhVrjXoXrXdbEsi56e7g1HHS5evMjc3BzHjh6jqipyT+e9m7Nnz7K0tMRTTz1VkpGa7dbe3k5NdfU9HycWjRGLlq5OJm9xcYnBwcGSH3eneeCBBzBNk9NnTvPNb34Tr9fLrz78kPn5hYpdQ21tLdXV1czPz2Pb9paPI+0IRKVJcBL3t+XRqdm5OSzLoq2tbcMRh1gsxldnzxIOh8vaemByapJLly6xf//+XV3XlGfbNnNzczu6FsU0DTKZzHZfRtmZpsnxBx5gcmKS2dlZXn75ZVRV5b333r23r38Lo72xWGxPr2YUe48EJ3H/UhRQFGbn5picnCzqIa7r8smnn6IoCs8//42yhYBsNsuHv/qQQCBQ1vqpSkomkzu+j49pmmQymfviRfzg8j6LX5/7mkgkwosvvEA0FuXNN9+8t5V2m/ybaGtrw3EcJiYmtn5OISpIgpPYczbTx2lpaYnx8XG6u7qKKgq+ceMG42NjPPjgg2Wdojt9+jTxeJynnn5qz9TcpFKpu65Q3IwTJ05w/IHjJTnWSrquE4lE7ovgpOs6R48dY3JikonJCZqamjjxwAnm5ub48F7qxzYZnBRFobOz874JrGL3k+Ak9gwFZUsjQF2dnXi93g3vZ1kWX355Gq/Xy5HDh7dyiUUZGxvj2rVrHD58mKbGprKdp9KSyWTJglM6myabLc+U2r59+3Z9EX6xDh08iMfj4dy5c0AukLa1tTMwMMCFixcrdh2GYdDR0YFlWZsuGM+HrZ08BSz2lvvj2UGI2yQSCWZmZwiHQwQCgaIe88UXX5DNZnjiiSfK9sKaTqf56KOPyl4/tR0aGhqIREozSnfl0hWuXL5akmPdbmJigqWlpbIce6fJjzpNjE8wOZWbrn7++eeoqqriq6++2nyx+D2OGMViMfr7+yvW0VyIrZDgJO47qVSKvr4+jE3064nFYtzou0FDQwPt7e1lu7YvvviCZCrJU089ha7rZTtPpeVXLO6GaUfbtu+r/kL5Uaevv/4ayHUYf+mllzB0nXfeebuiIaa6uprq6mpu3ry5qWk7GW0SlSTBSewZ+SfPuz3hZjIZ+vr6aGlpIRwOF33szz7/HFB4+umn7/Uy72h8fDzXHfzY8bJ2Id8O6XSaoaHh7b6MopimuWe3XVmPruscPXp01aiT3+/nscceI5FI8P4HH2zugPcYYpqbm9F1vejO4qXcm1KIYkhwEvcVTdNoaWmhtra26McMDw8zOjLCoYMHy7ZHnG3bfPrppwSDQY4fL33R83ZLJlN4vZ6SHa+mrobaunvcKPgODMMs7f5tu8DBgwcxDJOLFy4Vbuvq6qKzs5PRkRGuXbtWsWvJF4v7/f6iWyNIDydRSRKcxH3BdV3GxsawbZvqTTRgdByHTz75BMMwy1pzdPHSRaLRKI8++uiemqLLS2dSRRXgF+vkwyd58MSDJTveSlVVkbJOx+5EhmFw8OABRkaHiUajhdufeuopAoEAn3/xxarby01RFNLpNFevXr0v+mqJ3UWCk7gvTExOEIvF1oaSDeooLl68SCqV4tSpk2ULNNFolK+/PkdbWzttbW1lOcd2C/gDJSsMB3jrzbd4551flux4KzmOU5iyup8cOHAAYNXokqZpfPOb30RRFN5///2NR+JK2E7A6/VSV1fH0NDQXaffpYWBqDQJTmLPyA/X317zsLCwwOzMLF1dXatXw21Qi2HbNleuXCESidDb21vy6837/IsvUBSFRx99pGzn2G7BYHDXbBmjKAqTk5P33XRdMBikvW0f165dX1UQHg6HeeTUKebm5vjkk082PlAJC7WbmppwHIf5+fmSHVOIeyXBSex5qqrS1dW16RVdFy5eIJlMcurUqbKt2snXT5144IGy1U9tN8dxuHDhQlFBxHVdXNfFcRwcxyn827btwkf+OJqurbo9f678ffKP3yxFUdA0/b4qEM87fOQQ2WyG/v7+VbcfOHCA5uZm+vr6KrqXn6IodHd3bzi9LqvqRCXtvWIKIZZZlsXc3Bz19fV3fmK9wwurZVlcvHCJYDBIS0tL2a7v888/JxwOc+TIkbKco1j5gOE4DtlsthBAvF4vuq4zNz+PuxxEDMOkqirCzMwMqVSq8Nj29nYWFhaZnZ0pBJ7W1lay2SwuLleuXsV1XWpra2hqbOLatWuk02lcXAzd5PDhQ4yPjzM9M134eR3YfwDLsrh582bhWpuamlA0hePHj3PpUq6YORAI0N3dzcjICAuLC4X7Hj1ylMWlJYaHh4DcC2xbWzuRcJjLV64UbquKRGhtbWVoaIhkMolj2wwODnLgwAEWFhZZWJhHURRUVaW+vh5d15mZmUFRFVRFxefzEQwGWVpawnVdVFVF13V8Pl8h1KmquuNf4BsbGqmurubKlSvs379/1fU+//zz/MVf/AUfffQxzc3NRXXaLwVd18lkMgwNDdHd3X3fNCcVO5cEJ7Enua7LzZs3CQQCW3qxunDhApaV5dSpp8r2YnfhwgXi8Tjf+ta30DRty8fJj8homobjOMRiMWzHwbFtfD4fgUCAsbExstkstm3j8XhobW1lbGyMubk5HDcXiI4eOUo8HmdsbBxVVdA0jYaGBoLBILFoFFVVcx/L16ppOl6vF0VRUJZfzHw+byGoKoqCx+MhmUoR8Adoa2tbHs3JPb6npwegcF+AlpaWdYPq7SsNv/vd76EqKgdvu33fvn3sY9+q22qqq6muqip8r/LnOnjgQCHg5V+MGxsbc32c0mn05ev0ej1EIlU4rgOue+tnpYBjO1iOha7nRjOXlpbIZDI4joOu63R2djI9Pc309DSO66AoCgcPHCSbzTI6OoqmaaiqSm1tLZFIhImJCRRVQVM1TNMkHA7nwqXrous6mqaVNXwpisLBgwf59NNPmZycpKnpVud6wzB47vnnePPNNzl9+jRPPPFE2a7jdoZhoGka4+Pjaza8lnYEotIkOIk9Y2Ufp5GREVRVpbm5+W4PWPdmy7K4dOkyoVCobKurotEo5y+cp7Ozc9WLU36aKpvNYlkWqqri9/uZnZ0lnU5jWRau69LR0cHU1FSuFsd10FSNnp4eFEVhZmYGTdPQdb0wKuDxevF4vWiqhmHk/uwbGhqor68vvBgrikIkElm3iLujo2PNbdXVVWtu83g8eDyr2w7omkZVdfWa2+8lLL7+89fxeEwOPvZCUffP/26sDB3rTd3mr1HX9cJImtfrXXdF4Hrb4axX3N/U1ERTU1MhpCmKgq7rtLe3L08zOng8ntznVAXHdshmstiOTTgcZmZmhsWlJRzbxnEdjh87zsLCItPTU+i6jq7r1NXV4fF4WFhYQF3+GZumuaVRoe7ubk6fPsOlS5dX/W7mv+aDBw5y9epV2tra1vx9KGXKMIqi0N7ezpUrVwiFQmt6sEk7AlFJEpzEnpMfQejs7NzSu/Or165hWVkeffTZkr27z3fOzmazZLPZ5S7NCs3NzYUtJhobGwkEAly+fBldN9B1jUgkUiiq1nUdj9eLsby6r7a2ltra2jVTQPmRnJVqa9b2PKpU24NSrqbLy2YylHOgYX5hHtuySzpNu3JkTdO0dYvlGxsa19zW2tpaGGXJB69QKIhpGliWhWXbhaCXSCRyt1kW4UiYxoZGrl69iu046JqGz+ejvb2daDRKJpNB13UMw8Dr9RZG3XRdZ//+Xi5dvrTu/oInT57k5s2bfPTRR/zgBz9Y5/eoPCEmP4J3L4FbiFKQ4CT2lEwmQ4rUmuH8YlmWxdmzZ6mrq9vUMWzbLkynzM7OkslkyGQyaJpGW1sbIyMjLC4tYeg66UyagYEBDh06RHV1NbpuYBg6Ho8HXdfXbYC5XsPO3fICMjg4SFNT05oRp51M1w3SqfR2X8Ya+eCVH2m63XojpL29vYXQnh9Fs22HRCJBNpslk8nS3d1FKpViZHQUQ9fx+nzgQv/Nm7S1thZGr/IjmU899RTvvvsuH3/8Mc8++2x5v+gVgsEglmWxsLBA1YrpVyEqSYKT2DMcx2FkdARPg4e6SN2WjnHhwgVsy+LEiROrbnddl0wmQzqdJpvNEgwGURSFgYEBMpkMruvS0NhAY0Mj2WwWVVMJhkJ4l8NCW1sb7csvem+99RaGYXLixIldFSa2wnVdlpaWdl1/Kl3T9syqOk3T0DRt1e9aVVWEqqrVI4G6rtPT3Z0L/dkskUiEgZs38Xm9ZDJZstkMkUiEffv2YXpMGhsbGRgYoLOzk3379t1+2rJxHIehoSE8Hk9hNGynF92LvUWCk9gzJiYmMDSj+O1UbnuydV2XK1euEAgE8Pp8jI+Pk06n6ejoYG5ujonJSTymicfjwe/3F4qsTdNE1/XCk/ftdSG5U+U+Nz4+zvj4OA+fPLnnQxNANptFUdWSj449/sQTaHr5Vlf5fD6q15ne3MtUVV1Vo9bT28uZ06eprq6hurqqUKMF4DG9HD16lLm5eT799FNaW1uZmZ0h3ncDj8+P5jGpq6tD0zTclQX1JWCaJk1NTYyMjBT6q0lwEpUkwUnsCbZtE12K0tzSvKkn0YWFBRKmSTKZZG5ujkwmQ29vL7FoFI/XQzgSwXVdampq1g1kgUCg6HO5rsvp06fx+/0cOniw6MftZtlsFv9tNTKlMD4+Xqj1KgfTNKneZN+vvaa7q4szZ05z82Y/1dUPr6rRyo9YPfroI3z00Ud8/vnnPProo0Sa46QdmyS5MBOPx+nr78PQDXw+Hw0NDQQCAVKpVGFF5lbU19czPz9PMpks4VcsRHEkOIldz7ZtVFXl4MGD9M/3r3sfx3GYnZ0lmUySTCYJBoO0GgaZTAZFVaipqeX69et4vV4efvjhsvSKGRgYYG5ujieffHJP7ke3nnx/pVIbHBjAMMrXR8h1XS5cuMCxY8fu29EMv99Pc3MLfX19PPTQQ+t+H3p6erhx4wbXb1xn//791Pt8+E2TquXVrKFQiBMPnCCdTpNMJtF1HcdxuHnzJtlsFq/XS21tLXV1daTTaUzTLOr7rSgKBw4cQFEUFqOLJf/ahbgb6SQmdjXXdRkYGMg1I1x+ws1ms8zPzzM6Osq1a9eYm5sDIJlM4vV6aW1tLUynNdTX09TYhO3YTE5O0tvbW5bQZNs2X331FVVVVWUJEjvV/PwCiURiuy9j0/K9qVZuPXI/6u3pIZlMMjExccf7PPPMM6iqxqeffrpuobaiKHi9Xqqrq/F6vWiaxpEjRzh27Bitra2FOqXh4WHOnTvHtWvXmJjMne9u3eYVRclNoY9PSDsCUVH3x9tesWdNT0+TyWRQVZXh4WHSepqMkSE+H8cf8NPc3Izf70dV1bUFrCve2Z45cwYUytbB++q1a8RiMV544YX7qvPx/Pxc8TVnO4y+vO3KZrfq2Uva29vRdJ0bN27csSea3+/noYce4vSXXzI2PkZbZ1dRx9Y0bdU2Q729vdi2TTweL3RbHxwcJJlMEgqFCAQCVFdXrxqRCofDLPYvEklE4P4qSRPbSIKT2HVc1yUej2MYBmNjY0CuVsnr9xJ34vh9fhq71/bDuZNUKsXExDjNTc3rNjq8V5Zlcf7cORobG7fcJmG3SqczZSmCb2tvL/t0ZzgcKuvxdwNd1+nYt4/BoaFCd/r1HD50iCuXL3P6iy9p3rdvy1MZmqatam7Z2dlJMpkkGo0Si8WoqakptPvIh6nGxkbGx8c52nr0vp1WFZUlwUnsGolEgunpaRYWFjBNk+7ubg4ePFgoMs3YGZZmlzZ93KvXruI6Lg8//HAZrhquX79BOp3mxIkT99UTu+u6ZK1MWfY06+zqQFXKO3JXrj0Kd5uOjg76+/uZnJy84/dEVVVOnTrFFz/6EefOn+fBzs6SnFtRFPx+/6pmoT6fj3Q6zfDwMJZlUd1Wje3mNnbeLb3NxO52/8wZiF0pmUwyMjKC4zhYloXX6+Xw4cPU1dUVuhrfHkY2s3eVY9tcu3qNxqbGskwpOY7DxYsXqK+vp7Gx+FGwveLA/gNlmZr88IMP+eTjT0t+3JVm5+ZYWJDC4+bmZlRNY2ho6K736+jooLqmhuvXrxOLxcp2PX6/n5aWFg4fPsyhQ4fQ9FxYunDhAsPDw6RSqbKdWwiQ4CR2qFgsxrVr17hx4waqquK6LuFwmMbGRlzXZWxsbM202qYLRBWFiYkJkskk3V3lKdju7+8nkUhw/Pjx+2q0CVjVqXo3ymYypNKy3F3XdVqaWxgeHt7w53nq1KlC241KyNef1dXVYZom6XSaGzduYNt2YV9HIUpNgpPYMVzXZWFhAcuy0DSN+vp6jh07RktLS2EI3nVdhoeHaWxsLEk9Ut+NPhRVpauruILWzXAch/Pnz1NdXX3f1TYBLC0tMTMzs92XsWWapmFb9nZfxo6wb187yWSS2dnZu96vKhTm4MGD9PX1FVbGVYKiKLS1tZFKpTh8+DCapjE+Ps6VK1dYXFyUACVKSoKT2BEymQw3btxgbGyMbDab69x82woayIURj8dDQ0PDPZ8zm80yMzdLU1NTWQqNh4aGiEaj9+VoE+R+pqanPL2WDMPENMu72k3T9fu+HUFeW1sbKLmWARs5cvQouq7zqw9+VbHAoqAQCoXwer3Mz88DuWtuampidHSUwcHBilyHuD9IcbjYdpZlcfXqVerq6mhqarpjyMgPva+3kSnc2nah2CfrwcFBcFyOHT26tQu/C9d1OX/+PKFQqKL7eO0kmUyGiK+qLMd+9bVXy97WobqqiurljWTvd16vl8aGRoaHh3nooYfuel9zeR/G06dPc/ny5bK1+FhPR0dHYXRaURSqq6uJRCKkUilc1yWVShX6RgmxVTLiJLZVKpVC13WOHDlCc/Pdt0sZHR1lcnKyZOceGBgg4Pevu7fcvRodHWV+fp5jx47dV32bVqquriYQ8G98xy34yU9/wuu/eL0sx86zbVuKw1dobWtjYWGBpaWNV64eP34cv9/PV199ddcmlqVmGAapVGrVlKKqqvj9ftLpNNevX2dxUX6m4t7cn8/oYkfIZrNcu3aNTCaz4TLiaDTK0tLSHZvwbdbS0hJTU9M0NDaWfBotP9rk9/vp6ekp6bF3C9d1CYVCZWlFAOBYNna2vPVHtm0zNj5W1nPsJvuWR3qHR0Y2vG++PUG+WLucbh9hVlWVkZGRNdOsXq+X7u5uBgcHZQpW3BMJTmLbzMzMUFVVteGLq+u6jIyM5LoYbxCwil1Zd+HCBQB6ekq/mm5qeorp6WmOHr1/R5ts2+bSpUvbfRn3RNM0HFuKw/PC4TChUIjx8fE732lFiOnp6aG6upovvvii7KNOK//OvF4vkUhk3YUJwWCQSCTCwsJCWa9H7G3357O62BHym+1uRFEUent7qdqg3iQfmjbq45Tf3y4UChFa0aW4VC5fuoyuG/T23p+jTZCrb9rtW5VomobjOrIia4WmpiYmJyfvHoSWR3AVReGBBx4gnU5z7vy5Cl1hTmNjI9FodN3P7du3j7q6uopej9hbJDiJbVNfX79hcLIsi8HBwZKuepudnSWVStHVs9yCoIQvjPF4nKHhIQ4c2L/rg8O9yGSyZZumA3jxpRd5/hvPle34kHvh7+zoLOs5dpumpiZsy9qwLUFed3c3wWCQ8+fOF/afK7X13ij5fD56e3vXvf/CwgLxeLws1yLuDxKcxLYJhUJYlkU2m73jfcbHx3M71ZewDim/NLm3d3/Jjpl3/fp1cOHAgQMlP/ZuomkqoVD59no7f/48Fy+WfyrQ7/fLiNMK+YUU4xN3ma5bQVEUHnnkEbLZLJcvXy7bda03RZ/NZunv71/188tkMgwPD9+3U+iiNOS3R2yrhYUF+vr61i3WTKVSzM3NbbogfKMXuuvXrxMOh0u+oa9t21y9epWW1tZVG5Xej0KhUFmnQ6Ymp5iemi7b8fP6+/tlC48VfD4fVVVVTEzcobnlOn97nZ2dNDQ0cP78+YoWZedX2OWn7LLZLH19fdTX10tLAnFPJDiJbdXc3EwoFOLq1askEolVn0ulUjQ3Nxc95VXMqNTS0hKJROKOvaDuxcDAAOl0miOHD5f82LvN2NhYWfcrqxRN08o2xbRb5eqcptb/vqzzN6goCg8//DDJZJKzZ8+W/wJXnLexsZGpqSlc18W2bWpqasrSfkTcXyQ4iW2lKAqtra2FHk6WZWFZFrZtU1VVVZIO4Svll0bv31/6abqrV68SCoVK1jJhN4vFYnuiW7qmaViy7coqTU1NuI7D9PQdRvzW+bm3tLQQiUS4dOlSyUed7jbCHAwGSaVSDA0N5Zp4lqH9iLj/SHASO0JNTQ0+n49oNMqFCxe4dOkSc3NzJT/P2NgYPp+PmpqaW0/wJahhmZ6eZmZmhoOHDskTM5DJlrc4fP/B/ew/sH7xbymFw+Gyb+2y2zQ2NoLCnafr7uDRRx/Fsiy+/vrrkl/Ten9z+b3qIpEILS0tJT+nuH9JcBI7Sn5DXMdxGB4exrZtbNsuqkB3o3YEmUyG6ZnpsjSlvHLlCpqu03ufNrxcyXEcFEUpy/5/eaFgmEARrSzuVW1tLYFAoOzn2U08Hg+1NbWb7uLf3t5OOBzm+vXrZenr5LouS0tLjI3lmpYGAgEOHz5MW1sb165du+siFCE2Q4KT2FEcx2Fqaoquri6OHz+OpmlMTExw6dIlxsbGSCQSW17l1N/fj+vcea+7rUomkwwMDtDT3V3WUZbdQlVVjh45UtaRtzOnT3P2zNmyHT9vZmZm3UaK97u6ujqmZ2bWCUB3/9s8efIkiUSCgYGBkl2Li8vs7CwXL15kdHQUwzBwXXd5tNBEURSCwWDRLRSE2IgEJ7Gj5GuewuFwYclwS0sLnZ2dOI7D4OAgruuSSCSIRqObeufa39+Ppmm5qYYS6lsOZAcOHizpcXerVCrF3PIO9bud7dhkMpntvowdp7a2Fse2WVhn3zf3Lnm5o6MD0zQ5c+bMls/tOA7RaJTR0VFu3LiB67p4PbntVA4dOkR9ff2a0F5bW8vs7Ky0lhAlIcFJ7Bj5ofZIJLLqdkVRCAQCtLW1cfjwYVRVJZ1OMzo6yvnz5wvtDBznzl2eXddlenqa+ob6Wz1cSlTjdLO/n9raWmqqq+/pOHtFPJEgdoeuzbuNpmoV3aR2t6irqwdg5k4F4negqioHDx5kaWmJicniaqRc1yWZTBY2Fx4cHGRsbAxVVQu1S8FgEL/ff8dRzkAgQCQSkZ+lKInyFSEIsUlzc3PMzs6uCU7rqa6uprq6mmw2SzQaRdM0ZmdnuXrtKg2hBqwai+rq6kIrg/n5eWzbZl/7vpJe8+zsLPPz8zzyyKMlPe5uls2Wf7sVr9+HpwLTopqmS7PEdUQiYTRd39L014kTJ7hw8QJnTp/h1VdfXfN5x3GwbRvDMBgeHmZhYQFVVamqqiIcDtPZ2bkqICnZjaeEFUWhra1NRpxESUhwEjuC67pMTk7S1ta2qccZhpFbIUeu7qK7qxs1kxuRchyHeDzO6OhoYel0a2trSa+7r68PRVXo6uos6XF3Mytrlby56O2++dI3UdTyr16srq6iurqq7OfZbRRFoa6udkvByTRNujq76L/ZTzQaLRTf52sYk8kktbW1tLW1UV1dTWNj46rawa3WzlmWxeXLlzl69KiEYXFP5LdH7AhLS0uo6r1v0+HxeKiqqqK9vR2Px4PP56O5uZnp6elCoajjOFy7do3R0VHm5uZIJpNbOpfjOPT399Pa0lb2oLCbNDQ0bLgh8736yU9+zC9e/0VZzwGQTqelqPgO6mrrmJufW92X6S4jOrZt4zgOmUwmN8XmwgcffMDMzAyqqmKaJs3NzRw7dqzwBioYDBa14KKYMKXrOl6vl4WFhQ3vK8TdyIiT2BHC4fBdaxS2SlVVgsEgi4uL1DfUU1VVheu6NDc3k5qcJJ1Mk11awhcM0t/fD4DX68Xr81FTXY3rune8ptHRUTKZDL290oJgJcsq/4gTLrhO+addrOUNbWtra8t+rt2mrq4O3Nw0eH19feF223FIxeMEAgGWlpaYnp4mlUqRtbLs792PaZpUVVVRX1/P9PQ01cu1gaVudrue2tpa5ubmCqPUQmyFBCex7WKxGJZllWyU4vY+TrOzs9i2TXtbrg2BoiiEQiFCjgPpNO7yE3ZLSwupVJp0JkUmkwZy4WhhcRGPaeLxeAo9pjKZDNev38A0zU1PL+51/TdvcmD//j3RmkFVVWxbCopvZ1kWfr8fgOHhYerr63Pb7Fy9ih0Kobe10dvbi2ma1NXV4fV6CyO+kAtJp06d4vXXX+fcuXOcPHlyy9dyp75t66mqqiKZTN71DZEQG5HgJLbd2NhYyd7Rr7dL+sjoCJBbCr32Abfu7/V6l0dKbhWnt7a20tjYSDqdJp3JoKoq8XicoeFhRkaHqa+r59q163g8uReIUCjEwsIihqFjmia6rt9XT9CO4+A4dtmLw1GWP8pM0zQc9/4KTq7rYllW7mt3HObm5shms6TTaSKRCLW1tVy/fgNVVdB1g9nlDv+1tbU0dHdj1NVDc24/uFt/U2s1NzcTDAa5du0aDz/88D39naz3d78eVVULb37up79LUVoSnMS2isViZDKZsg6dz87MEggEtlQ/pSgKhmFgGAb5PtXhcBhN1cDNNfQLBoNkMlkMw8BxHObn58hkMmSzWUKhEB0dHYyNjZHNZgvHqq+vJ5vNFlYPaZpW2i96m2SzWTSt/GHxtde+U5HicMMw6O7qKvt5KsF1XVzXRVVVEokE6XSGbDaDbds0NzczNz/PxMQElpVFVTU6OzrweDxYloVpmgQCQXy+XAg6fPgQAINDg6RTKSBXX6jo+qYC7aFDh/jyyy+ZmpoqeX+1O0kkEgwODnJYNuMWWyTBSWyrxcXFsm686bouo6OjNDU13fkcW1ii3N/ft2oT4uVZCwC6VrzQ5pc/RyIR0plbL1SQK4ifnJrCsrIoKPT09KCqKhMTE+i6jq7rBINBgsEgsVgMTdMKt+/Ud8uqqlZk9/n3338PwzA4+uS3yn6u/M9rJ3IcB8uyMAwDy7KIxmLYy5tkB4NBAoEAN27cIGtZ2JZFMBikq6uLxcVF0ul0Ici7rksoGCTQ3Y1hGKtWnd1tn7eqSBXXrl/f8tTXoUOH+Oqrr7h48WLFgpPP5yObzZLJZPbEdLKoPAlOYlu1traWvLfKyuPNz89jWdb6T8pbDB/RaJTZ2VkeeuihDe+bfzEJBAJr9jyrra2ltrYW13VxHGe5nsYmEqnCsrKFVUgAU1NTZDJZLNvC6/HQ29ubqylZDlSaptHe3k4mkyn0tVJVjUDAj2EYpNPpwv0URSlb8DIMg9oKFN7GojEMozIven39fTxw/IGyfM/yo0CKohQaPeb2Z3QwTYNAILD8s89gWRaqqrJv3z4mJieYnprGcR00TWd/by+O47C0uLgqXCuKQnNzM7qurxrZbG5uXnMtW5leDYcjOLZNLBa7NaK7ie+TaZo0NDYwODRYGJHdrM0+fyiKQjgczi0YWVHULkSxJDiJbTM5OYnP5yMcDpfsmLe/uI2PjwOl7d80ODQEwL59pWmmqShK4QVN1/V1+wZ1d3cX/j//QlFXV0ckEsG2bSzbRlXVQn1KOp3Gsix0PReWbt4cwHZsHMemKlLFvn37GBgYIJ1Oo6oqhmHQ2dnJ4uIi0WgUVVVRNZWa6hpUVWVxaQlVUVFVBY/Hg9frLbRxUFW1MBo2PT1NJpMpeb+s7ZIPH9lsttDKwjRNbNsmlUot13S5+Hy54ufZ2dncba6DYZjU1tQwNTVFIpEobFbd09PD3Pw842Nj2I6Noih0dnTi8/kYHR1dDr0q4UiEQCCApml4vV5UTcNY3ji5rraOutq6QhDO6+zsXPM1BMu4GXJVda4ecGlpacutRB44/gDjY+NcuXKF48ePb+kYmw21tbW1sumv2DIJTmJbOI7D5OQkBw4cKOt5pqamQKGkNVQjw8NUVVUV1eG8HPIvEqZprplq8Pv9hdVOK+VrUuBW8GppaVmzVY1hGHi9XmzHLiz3dxyHeCy2HBIcIlVVeL1exsbGyGSyOK6DxzTp7e1lfn6eZCrJzOwMiqJw6OAh0uk0Q8PDuRCCQmNTIzXV1Vy7dq3w9QQCAVpaWpiYnCARTxSutaurqzDCl79vfX09iqbSs7+7sFlsMBikrq6OsbEx0uk0ruuiaRodHR3Mzs2xMD9fGN1pa2tDUZTlfQ9z34+6ulrq6+u5evUq2Wzua/J6vIXfzytXr6CquZByYP9+0uk04+PjqKq63AyyDtM0SaVSudCpqqhKbrrL5/NhGCaqeisgV0UiRJb3Y1w5Lbbe38N6Cyd0fWc8dVdFqgCYX1jYclhuaWnB6/Vy9erVLQenzcqHPFldJ7ZiZ/z1ifvOwsICPp+vLP1+Vi5PTqaS1NXW3b1T8CaG+hOJBFNTU5w4ceJeLnFbbSV4rTe61tOztn+Vz+ejpqYmtwns8vSjruemkvJTkvnpmPwLbT7kAIRDYXxe3/LtuWN6PB6qq2tWhbsHjh3H9HiILL9wezy5ryMUCuH356ZE1eXi8WAggLFi6iq/LL69vb3wvchfU3d3N4qiFAIRQHNTMzU1NasK+A3DYP/+/Wu+/vVaU6w3ErNXFgPk2wwsrbPZb7EUReHAgQOcO3eOhYWFTbcl2Uw7gpUGBwcJh8OFPlJCFEuCk9gWqVQq10CvxFYuS3Zdl+mp6fXbEMCWapyGhoYBaC/RNN1eY5hGbnXViunHfFi53e01X8C6oc3j8eDxeFbdls6mcVxnzbTmeiFlvcff6Vzr1dhIHczdVVdXs7gyOG3h7+rIkSOcO3+OCxcu8PTTT2/68cW2I1jJ7/ezuLgowUlsmmy5IrZFS0tL2Z+wotHocrF16abUhoYHCYVCVJd5S5Hdqqmx6Z63zSnGlUtXuHL5atnPA3Djxg0SicTGd7xPhcNhFhYW72mRh9/vp7amlv7+/sKCiHKLRCIsLt7bdYv7kwQnUXFjY2MV2S9qYmICgOaWtSuItiKVSjExMUFHR4fURdzB8PDw6r3L9oB8bZdYX6Sqimw2s+U9H/OOHj2KZVmFrY/KzTRNampq9tzvqyg/CU6iohzHYXp6Gp/PV7Zz5N9B5oNTXe0GU4JFvuMcGRkBt3Sr6fYa13WZX5jfczvP51crivWFl0cYo7Holnqi5XV3d6NpGlevVmYkEaC9vb38Xe7FnrO3nuHEjjc/P08gEFi35qQUVo4EJRIJwuHwnVcgbXLUaGBwMDelIBu+rsu27eWWBeV/Wqmpq6G2rjIbtfp8vj0XBkspEMi1O4jH4rkbtjgam+9RNTMzs+lRoK2OAKdSKW7cuLGlx4r7lzwbiIqyLKusxbYrn0BLuat9JpNhfHycffv2yTTdHeT2N6vMepOTD5/kwRMPVuRcra2t6xayi5xAIFdkH4/H7/lYBw4cwLbtQpuJcjNNk1gstqO7w4udR4KTqKjGxsaK9D9Kp9Ok0+mSTQlOTEzgOo5M092F1+vl0KGDFTnXW2++xTvv/LIi55qeni5JKNirTNPEMMySfI+am5vRNK3Q46vcVFXF7/fLz1dsigQnUTGTk5O5hpRl5uIWis9L1fJgbGwMTddlafpdpFIpYrHYdl9GySUSCdKZzHZfxo4WDAaIlSB8qKpKQ2MDU1NTRY8CubhbakeQF4lEpEBcbIoEJ1Exc3NzZS0Kh1v9XObm5oANOobnp9yKKGgdGxujsbFxzzQuLIdYLLa6n88ekd9HTtyZz+8nEY/fU3F43qGDh3Ach8HBwRJc2cYaGxtLurOA2PskOImKSKVSZLPZsu6btVJ+6L0U++AtLS0Ri8Xuuku8AMu2KrYViKIpaHplQqyqqrjSjuCugoEAsXssDs/bt28fuq4zPDxcgivbmOu6Fe0fJXY/6RwuKiKbzeb2GKtQYXU8Hsfn85XkhXxsLLdRcEuzBKe7sS173Q7h5fDd736vsBdcuTU3N8uCgA0EAgEsK0s2m+VeF/drmsa+ffsYHBzEtu0NR3nvdTRQURTS6TSJRKJib+zE7iYjTqIiQqEQzc2laUS5Edd1mZqaKtmL+NjYGIFAgEjk3kev9rKampqSjPAV4/Wfv87bb79VkXNlMhnS6XRFzrVb5Vcdrtyg+V60tbVhWRZDQ0NF3f9eg20wGNyT9XmiPCQ4ibJLpVL09fVV5Fz5J9BkMln8EvK7vGN1HIfxiXEZdSiCrusVayaYzWRIpypTsL2wsMBSdKki59qtAsHc31oqdW/dw/M6OztRVbVizTCDwSCpVKoi5xK7nwQnUXbz8/MVm8KB3LSgZVkbtz0oIghNz0xjWxatra0lurq9q7+/f0+++Ehx+Ma8Hi9AyUbm9OUVrJOTkxX53ldVVdHZ2Vn284i9QYKTKLv5+fmK7kAejUUBStL8cmx0DBRoamq652PtdZZtV6w4vKIUQHLTXeV3AsikM/dcHJ7X1dWFbdvMzs7e9X5uCX44iqIwNTVFNpu952OJvU+Ckygr27bxeDwV67ysoBCL5moVSrHEeGxsjPq6+rJtEbNXuK6LXcFVdY8/8QSPPv5IRc4VDoUrVru1W3k8HlBy9WClkh8BKqYtwb30ccpbXFwkkShNjZbY2yQ4ibLSNI2enp6K1gfNL8wD3HONUyaTYXZ2tmJF7btdbU1txfZ0Gx8fZ3J8siLn8vl8Ze8/ttspioJpmKSzpQtOfr8fv9+/4fYrpQhNkPs578WpZlF6EpxEWQ0ODlb8XVx+Zc+Go0QbhLnp6Wkg1yBP3J2iKBWtAxscGGBwsLgVV/dqenqa8fHxipxrN/N6vSUdcYLc397i0mJFptC8Xi/JZGmK28XeJsFJlI3jOBUvDAdIppPoun7Pox9TU1OglG7blr0smUxWbGPWSpPi8OJ4TDMXnEo4utzT0wMujIyMrPv5/M+lFCPa1dXVsghEFEWCkyibWCxWsiaUxVJVlXQ6XZKwNjU9RU11TcWW2O9mlmVtuN+XZUE2W5JdOcQOZHo8JR9xamlpQVEVxsbGSnrc9WiaRjKZlJAsNrQHl8CInSKTyWzcEqAMFEUhUrWJ867zROk4DtPTM+zv7S3hle1dlrW6w3MmA+m0QioNmbRCMuWSzeYWqKGAaYJpKhi6i26AaYBhuBgGFLMdYFt7e8UCucfjqVjt1m7m9XiIljg46bpOU1NTxaZKh4aG6O3txev1VuR8YneS4CTKZrumuBLxBHq4iF/tuwzvz83N4dg2DQ0NJbyyvcd1IZ2GpahKLOZneEQlmXSx7dznXNfFMFxM0yVfq+84kM1AMqkQtXL/VhQFFAVVyQUnj0fBNHKhyjDA0HOhKj/419nVUbEtV2RFXXE8Hg8z6TSu65aoXDuntqaW8bFxYrFY2bdE8fl8JJNJCU7iriQ4ibLIZrNMTEzQ3t5e0fO6rks6k95wf6uNTE5NAVBfX1+Ky9oTHCcXklJphUwaUuncv3MhKYKmh0mlHLxeF9MEj5n7753zaW6kz3VzU3hZC7JZJff/GYVkMje9lw9VCrlQZZrw89cv4jFVDj3x1zH03HkMo6TlNQWLi4uk02kJ0RswTQPXcbFtu6QvLN3d3Vy4cIG+vj5OnDix6nP5Hk6lWlnn9XplZZ3YkAQnURbRaLTk9Q7FsCwL13XvuW/U9NQUfr//vt3007JyoSidyYWkZCr3b8cF13FR1dz0ms+XCy3p1CIer0IoGNr0uZTC1B3c6jR5a/o0H6osKxeqrCykMyaW42FszEVRcy+bym1TgIYJhr65KcD1vxeW7FVXBE3LvZw4Ja4Rqq2tRdd1RkZG1gSnUqupqcFxnLKeQ+x+EpxEWSwtLW3LFEf+3eK9BCfXdZmenr5vRhiyWUilFNKZXD1SKu2SydwKSZqWGz0KhcA0XTwm3F5etLQYRVG8UIaceWuK7tYLclVoFl032NfuFEaqLOvepwDvRAqGN5Yf5bVtu6THVRSF+oZ65ufmS3rc9Xi9XglOYkMSnERZJJPJbdmmJD8yUFRoW35Rvb04PBaLkUwmqd9jwcl1bxVtp5f/m0y6WNZt9UiGSzgMHk8uJBVTF21ZVmHEoRJ03cA0DTQtF4i8npU/w61PAZqGgr48QpWfAnRRZIPnIujLwWmj1ZVb0d7WzvjYOPF4fNWbolK2I4Dcgpbr169z7NixkhxP7E0SnERZHDp0aFvOm0lncHExPVtvR1BofLmLg5Pj5EJSKq2QTkMmo6xbtO3xrB5J2urrj+3YqFrlwsUrr7yCot79fFuZAozGlML36NYUYC2mWcvIaGmnAPcarYzBqa4+t9BkdHSUAwcOlPz4eYZhkM1mcwXuEpbFHUhwEiUXi8WwbXtbWhFkrVyHYf0eRj9mZ2dRVLWiGxPfC9u+VY+UTuWKtlOp1fVIhu7i9bp4PLeKtkuprbXtngvyN+Pnr/8cwzTYf+q5LR9jvSnA/P/b9q2Rqlg0RTxhYduhkk8B7iX5ESfHLv1UV31dPSi5RpjlDE6qqqJpGtlstuKNe8XuIcFJlNzCwgK6rm9LcEqnclN199LjZ25+jprq6h3Zu8eycqEoV7Sd64+0sh5JVcFjQjCYawHg9aytRyqHTDaDX/eX/0TLHNvGzpbv57NyCjCbTWBZMVpbclNE+SnATPbWaNVmpgBN41ao2kuDGoURJ7e0NU75Y4eCIWZnZ1fdXupVdZArRhfibiQ4iZKLx+PbtjFufpqgqOCUf9VaUePkui5zs/N0dOwrx+Vtyp2aSLrkQpKu36pHyk+1bde00dDQMPt7e3dk2Cy10k0BlmcV4HbR9PKNOEGuNcjNgZvYtl3W0U3ZdkVsRIKTKCnXdUkmk/j9lRt9uP38sPURp3g8Tjabobq6ppSXdVf5JpLpTK4eKV+0facmkh6Pi2kUV7S99WvK9eOx7NxWKrblYFlZLNvCtmyy2Vv/bzsOExMTZNLp3H1tG9ux0TWdTDaDZdk4joPrOqiqhus4pNPp5dtcVFVFVVUymQyu6xZ+hpqm5c6xYpWWrum4uLkVjwr8+X/5czRNQ0HBsnOhWVEUVFXF0I3COSA3DWOaJq7r4jhO4by6YaBpGrZto6oqiqJgGDqmYeI4Dlkri23bLCwu4PF4CsfXNR1dX/lhoOkquq7jMQ18XnVFnczaKcB8qNrsKkBznVWNO4Gmlq/GCaCjo4P+/n5mZ2dXr3gt8ajd9PQ0qqrKyJO4ox345yd2u8OHD1d0f7qV8t2kt7q/3Px8bslzTW156pvu3kQSIBeSim8iuZrrumQyGdKZNFY2138olU6RTmfIZjM4toNt28TiMaysVQg6ruuSSqfIZq1c2NjCkuyJ/LYYCihKrlYkf935sGEaJqqqFkKKpmnouo62vCmzouRWsCmqgmEY2LazqhWAaebCkLKY63sQrqlF17Xl4JXNfxNAUdBUFcu2cJaP4TgOuqEXvgfZbDYXoJa7XWeymeX73RpFsm27MJg0Mrz+RrN3tPx9yH2duSDn9/tRVAVVUdGXw1kgEEDT9eXvmQdV86GpHmxbJ5v1oKomtq3s+CnAcrUjyMuHpcHBwbK2CnGWg70QdyLBSZRUKpXa1tUoS9ElgC1PGc3NzwFQXXXvwWllE8l0Ktcf6W5NJL0ed1UxsWVZpNIp4vEMyWSSZCpJJp3BsiyWokuk02ky6UwhAKQzaWxr4xctJT/Somvomo7H48Hr8+EPBFAUBV3Xci/yAT+qoqJqGrquYRomhmGgLT9OVTVULReIYtEYdXV1y2Gp/D////j1x+iawa9/4xtlP9fK0TfbtrFtG8d2cRy7EMyy2SzpTJps1sKysrhOLqjFE3Esy8a2rEJ/oGQiuWIkzsZ13A2uAFRNRdW8mLofFx0wUFUvhuHD4w1i6CYej4nP58E0TUJBDz6/XtEpwPzfXKkbYOYFAgEMw2BycrJwW6nbEUDuTVc8Hi/Z8cTeI8FJlNT09DRer3fb9nqyslZh5KJoK57o52bnCQaDm15Rc3sTyXw90q0mki4e08Xvt7GtOLaTJJ2OMz+fJJFIYNs28USCeCxWeAG+26iPpmsYhoFpmPh8Pnx+X270RtPxer2Ypgefz4vH68EwTAxDL9y/HHVIwUBlO6xPT02j65VZspYLrFmqNrNx9CY4jkMmmwvA2axFNpMhnU6TzqRJJpKF/89PeSYTCdKZBVKpLPGYvXwMBdtWsG0Vy9awbRUXA001MQxPIRyHQ350Q6Mq4iUc9hEK5f7r9aj3PAUYi7qcPbuPj4erOfIk/OA3ILT5RvJ3VV1dXRgVLpf8dK4QdyLBSZRUIpGgpqZy9UG3y1rZ4oPBOuFqfn7urvVNK5tIplb0R7IsyGYt4okkmXSUdCaK66RwnATJxAKpVOKuI0K6YeD1eDAMg0AggNfnJRQM4fHmRhB8Ph9ejw+P1yxb+NmqRDLB2NgYvT29230pZZFKpYnHYmULTqqq4vV48Xo2/2YjP9KYTmVIp1MkkgmSyRS2bZFKpohGoySTceKJBeIxh/lZG9tWsZ1cuHJcFQUXXTcxTQO/30MgYFJXGyIY9BCO+KiK+Kmq8uP3G3ecAvz0U/jtvx6mOfMgN61qrL+Ef/pP4C//Ep588ta1xuNxQveQphoaGpiamiKZTOLz+bZ8nLsJBoP37VZLojgSnETJOI6zrYXhALhbn6bLZDLEYjF6enuAW/VI+aLtWNRidi5GNBonGosRXYqRzcaxsjFsJwVuEl13Vr24mB6zUNtSXVNDKBgkFA7h9/nx+Xx4vB58Xt+OCkKbZdv23m4WuIObIaqqis/rw+f1ARsHO8dxSKaSpFNpEokEsViCZDLD7NwS0WiaRHyJiUmL4eExbEcDFxTFRVFA103CYQ9+v04o5KG6KkB1dRDDCPGDH1SRTSpk0EGBRCJ3vu99z+bv/t3/lfPnP+Hs2bM88+wz/F//v/9ry19va2srFy5cYGFhAZ/PV2hHUEqWZTE7O0tjY2PJjy32BglOoqS6u7u3LQREo1E++eQTLl+/TMgN8YPf+EHR725tG8bGF4jHvczOeXj7nX4WFpIkkimWFpdIppJAGl2zMXQLXXcwTPB6PVRX+QlHGgiFQni9XkKhEH6/H7/PX9GmkNvFsd2Kf509+3swKjRVt5eoqkrAHyDgD9x1ZNi2bRLJBNFogvm5KPMLCRLxDEvxFFcHF/mqz2Zo1MfsRAOp0WpMO02QJCo2jnvr79+yHAYHH+N/+V+e4uGHH77n0eiqqioAJiYmVrU8KWUfJ9d1mZyclOAk7kiCkygZx3G2bYj7ww8/5NVXXyXjyZC203zx9hf803/yT/nLv/xLnszPFSxLpx2mp5eYGp1h8Ww/42lYdDSWlqLYlo8vPruGplvouk0k7KGp0SQQ9BMJNxGpihAJR/AH/HhMz44diagkVVPKNm1yJ6FguGJhLRwO33dTN/mGk7G0y0fXp/noixgXz3uY7evAXKrBxEInS5gsVSzl9vPDRiGLA4W6wWzaYHa2gzOnrzEw8BXV1QHCYR/19VU0NFRRUxPC41GLXgXo9/tRVZWpqamyfu3lWhko9gYJTqJk8k9mLS0tJT/20tISv/M7v0Nrayv79+/nwIEDPPTQQxiGQTQa5dVXXyUajeaWjhu5WiuAX/u13+SnP32bpaU0U5OLzMzGicdTuA64tk1kYQY14iPUWkswoJBMRnn2maeIRCK5ZeL3wYjRvQoFQ4SCJa4C3sDZr75C1w2e+95vlf1cK3tL7WWL8RQ//3iQdz+Z4+J5jYkbtWgzjXhoRyeLRoZGHGAecLEwyeAhi0EaAwcVD+Oo2OR7OHh8NicfDrCvo5ZEPMPAwBSppJXvGIGi5oOph4b6Khoaq2hoqKaqKpBrDHrbKkBFUQgEAiwtLZXt+6AoSuFnLm+MxHokOImSSafThMPhshw7EAjw4osvcunSJX76059y/fp1fv/3f59/82/+DZcuXSKRSAIecD2g1IGqg62TiNm8+lv/HY3djbQ01nGwq5Mnj5/iYE8HdVV+qudm0OvqIRzm3ffew2OGaG9vL8vXsFctLCzi4lK9PI2y1ywtLZFKpfZUR+lUxuKtzwf45aeznP3aZeRKDe5EMx6a0anDIEM9NrCAAmTQyeIlgUFacdFbR+k4vMDDD2o89WAj//jv7SMVW9H4cjlv6LrK//KP2ggG2wqfymQyzM7OMz29wPx8gtmZRWZmZxgfn8BxVFxHQdM1gsEAVZEIDQ3VNLfUUVcbwfQoaFoNMzPjZLMurlL6QKsoyrZtUi52BwlOomTS6TQej6csx9Y0jd/6rdzogm27TE4ucvPmGL/1W/+Qf/fv/iP9/R8DCjgKqO3gsUDJgJIltRRn8KvLDLpZPnGy/J/2v4ZAhuoGP6eqqwh1d9B17AGy0SyPHHqkLNe/l6XTqZJ3b95Jdvtok2U7fHhuhDc+muSrrywGrkTIjrTicRoxqEEnQy0WsIgCZFGx8JDCII2C2zhO28E5HjgBLzxWy7ce78TvObzqHI3/Af6b/8rGzFhggc+f62z/Z38Gt89ymqZJc3Mjzc2ra4gymQxz83PMzswxOxtlfHyG2dkZJibhzFcqoBMMRECBpUU/n302S6Q6xLytYyZVkoFcU9B8E9B7bQQqI07iTiQ4iZKJRCIl799kWRCLZRkenmJgYIKxsdyTaiaTxXXBMFSampoxzSyZzCIoabAGIWWAZoJmgLL8/4oXUAEFXJf5CZdrI1mi52/w0x9dAjvLv3X+I2o4S1VjkMa2Rvbt6+DYoaM8fPgkjxw+hd+zjSsGdyjHcSreKd7j8+Kp4O71u+UF1HFcvr4+xc8/GuWz0yluXgkRv9mCJ1uNQRADizAZVKIouFhoWJjE8ZHGwKqdpLF3hgePWXzj8Wq+/eQ+asIHNjzvo4/Cz34+z//7/3GeJ+pqOPxImF//9bWh6W5M06SpsYmmxqYVX4/D4uICMzOzLCwsMDExyezcAqGwwhdfvIGj6tg+lcm6WVobOqmtrcM0jeUO9Lkg5fEoq8JU/uNus/ADAwN0dXVVvHZP7A6Ku9vfTok9I9cfCeJxi+HhKfr6RpmeXmBubh7HcVFVl3DYpLm5lvb2Rtrb66mtjRCLxent7SUWi0IAMIDF3DENj8k3/843GR4aYnxknNnxJdwFFRQTVJ0u12RR1VnSTXLDJgrL2+iiOBkU1wInA7YFbgatyqa6KURTSxPdPd0c2X+ER489yoO9D2IalXsh30lGR0fxer0V3dvryqe/RFEVDj5a/s7h8UQc27YJh8ozDX0vbozO85NfDfHpl3GuXvKzeKMRMxnCg4VBFo00+TVuDgrWck1SBp1MaJ6animOHE/x5MkQ3322g7b6rX+NU6MjfPYXf8kjf+2v0Xxg47C1VYlEgj//8/+LxqZGTK/J1fFreLMevKoX11WpqqqntraZurpmqqvrcV09tzm2mwu/qqost1dYG6ryI1Y3blyhra3tvlsUIIojI06iJOLxOJOTk3R3d29431tNJCGVglTKZXR0ltHRCcbGJpidnUXTHDTNpqEhzBNPdNLWVk9zc+O6U4GhUJC//Mu/5K/9tb9GxsyQcdL4llff/Nmf/RmPP/74qvsnUgm+uPIFn3/9MbOffsGVqXFujE0xPxmDmAmqkRupUk0cxQDDD0YuVDlpl6lBl5mBKBd+9QU/dj8G+98AGYxql+rmCE2tTRzo3c+xA8d49OijHOs+tqv7NG2kHIsBNvLz13+GYZgVCU4Bf6Ds5yjG5FyUn/xqiF99vsil8x5m++sxFmsx6cRYjkONy3VJDmBjkiJABp20N0GkZ4Lew3GeOOXn20+3caSjDWjb4KzFyzd31fTyLqjw+/3ouo6iKDzx5JN0xbtp9DUSm48yMjLK7OwM/f1n6e8/CyjU1FSzb98+2ts7CYWqsazcBsvZbP6NGth2LlTltgNUGBoyyWQcamtXB6rt3AtQ7BwSnERJ3GmPukITyfTqoJRKZRkbG2dkZJjZ2XEcJ4Vh2DQ0RDh4sJl9+9pobm4ueuuTJ598gr6+Pn73f/2nXO6/wl//1m/y67/+19Z9x+j3+nnuwed47vjT8PgN3HCEqxMTnD79JS9+60XO3zzP6UunuXT9MkODg0wOT7E0k8yFKs0oTP85qge04PICIoV00mWiz2Gqb55z737Inzvvgp0FLYtZ7VLTXE1bRysHeg9wfP9xHj32GPvbend9qIrGong93k1vU3NPlreyqYTp6WlcXBrqy7ex7O0W4yl+/skg7306x4VzyyvcphsxaUenCZ00DStWuOVWtnlz/9Wz+PaN0nk4yqMPe/j2My2cOtiEqpa3L1HWym2yXIn+Wn5/gOhSrPBvr9dLbUcNHR0dQK5eamxsjKGhYSYnJzl79ixnz57F4/HS3NxMV1cnbW1thc3AXTff/R+yWZdMJoyu68RiNpal3FoFuMEUoGnmarvE3ibBSZREOp3GMLwkErlwlAtJLqlUru7CdcG2s0xODjMy0sfi4hSKksE0FXp7G+jsPExnZyd+/9ZrCoLBAM8//w2aO1v4W3/rv9rUY6PRJVRNpaG2gZfqXuKlR15ac5+ZhRk+u/QZpy+e5lr/NYYGhpgcHic+m4Xkipoq1cDRfKDfWqKfisPYdZuJa5N8+cYIOL/IhSoji7daoa61lvbOdnq79/Pg4RM89cBTtNWXbjSgnGZmZqirq6tscKog5y57BpZCfoXbu5/lVrgNX97cCjetZYzOI/M8/KDGS0808PzD+9C1ym97ZC2POOlG+YNTTU0NoyMjd/y8aZp0dnbS2dkJQDyeYGhoiJs3+xkaGmJg4CaqqrFv3z46Ojro6Ni3vJ9j7vGRyMpNvl1sOxeqMhm3MFqVSLDpKcAKlwKKMpEfo9iS/DB3fhRpcFBF03wsLjq4Lmiai2mC3+8wNzfGzZtXGR8fxnUdDMPkyJFOent7aGxsLOmIi9/vx3UcHMfZ+Lj5ETLXJRqLEQqG7loEXFdVx2tPvsZrT7625nOj06N8fOFjvr78Ndf7rzM0MMTM6CTJWQeyRiFQoZprQlUiCkOXLUYuDfOJ089/tH8KThY8Gfy1Og1t9ezr3MeB7gM8fORhHj/+OA1VlRv92EhR3+tSy5ejVfJ8JVCKFW6tB+Z54ITLNx6v4VuPdRL07oyl85aVa0dQ7qk6gEhVmIGBLJlMBti4eD8Q8HP48CEOHz6EbduMj48zMDDIwMBAIUQ1NTVx5Mhh2tvbuXlzgMbGRgKB3GIQTct9rLf2xXHcwkhVLlzdmgK0LGV5pCoXrFQ1F6JMU1kz/SdTgLuHBCexoUzm1ihSOg3JpLv8Tis3kqTrLk1N9Xg84PG4eDyQSMS4dOkiN270kU6nME0PHR0dHDx4gObm5rK90Ob3yctms5tqjRBdWiJyD32IWutb+c1v/Ca/+Y3fXHW74zj0j/fz+YXPOXf1a671XWdkYITZsQnS8y7YJmg6qCZoJo4WBH155R8usXmIzWYZ+LqfD5wrYP8F2BkIZAjVeWlsa6Cjs4ODvQc5dfgUjx1/nEigskXMjl354PTKK9+u2Eo3XddRtvD13WmFm5mtxiSEQfbuK9xqJmnoneHEMYvnH6vitac7ilrhtl2sbOWm6vILMRLJxKZfxTRNo62tjba2Np588gnGxsa4evUaIyMjjI2NEggEqampIRAIFILT3agqy899az+3dgowv1IYmQLcxSQ4iQLXXT2KlA9Jtp17EQAwjNxIUjB468lCUWBsbIxQqIH5+QU+/PArRkaGAairq+Oxxx6jq6uzIl2489MqmwlOLi7xRLwsjS9VVaW3tZfe1l5+++XfXnOtlwcv8/mFzzl/7TzXblxnfGScuYkFsrMKkFv5lwtVBo4euhWqXJfFaZfFySw3vrzCO845cP4T2BmUcJbqhiANbQ3s6+jg+MFjPHT4YR498khZ2ik0NTfhMcvTv+tOfvWrDzAMg8OPv1j2cxW7WvDOK9y6McjiI0OAJJAsrHBLEiKDRja0QHXPBEePpXjyVIjvPN3BvsYuoKusX1sp2csjTpVoTVFdnZuKXFpcwqzd+hSxqqqFEGXbNoODQ1y+fInh4SGGh4doaWnl1KlT1NVtbcWootwKP2vlnlszmVujVdlsfqRq4ynAlSNWMgVYWfLtvk85zupRpFv1SLmQlHv34+L13gpIpnnnoeSbNwf48ssvmZmZQdcNDh48xLFjx4hEKjv6kQ9L2Wym6Mek02lcx8Xnr2yPJlVVOdp1lKNdR9d8zrItvr7xNZ9f+JyL1y/S19fP+Og4CxNLWPPacm+qXJG6qxq4RoTC/JXlMjPmMjOS5Mon53nTOQP2H4ObQY1Y1DSFaWxtpLOrk2MHjvHI0Ud4+MDDW26n4Pf5Kz7iFI/F0Su0ye/8wgKapq5qR7C1FW7+3Ao3T5Jwz3huhdtJP68+W/oVbtvBsixUVa3ISGB+0cfC4gINtaWZttY0je7uLrq7u7h06TJTU1MMDAzw4x//Fa2tbTzwwAM0NzdtfKBNnRN8vtzH7WQKcOeS4HQfsKy1q9rS6VtF26qar0eiEJSKre9cXFzio48+ZGJiAl03OHHiBMePH9+2QmHvcnBKZ4oITsvPJqnlfe18JW7eeS90TefkwZOcPHhyzedSmRRfXv2SLy+d5uKVCwwODjIxMsHCZAxn0VjRTsFY204h4zI15DIzGOPir87wM/czsP8tkEWvtqlprqKppYmenm6OHzzOY0cf42j3UXTtzk8V165d48CBAxVvglkpE9NzfHRxni8uZDa/wk2z8O4bpfPwEo8+bPLK0y08ergZVd05NWqlYllZdE2ryKu03+8HBZLJJABKiQvejhw5zJEjh0mnH+fSpctcuHCB11//OS0trTz11FOEQuXv71TsFGC+YH2zU4D5gCVTgJu3N5/p7mP5dyW31yPlQ1K+aDsUyv1Ber1376B7J47jcPbsWc6dO4/rurS2tvHiiy9s+4unx5cLP9lMtujHpNJpAHz3sKKvkryml6ePP83Tx59e87mlxBJfXv6SM5fOcOHaRYYGB5kenWZhKo4bXV75tzz9d3s7hUzSZaLfzbVTeO9T/tL5AOw/BDWLWZNrp9DS3syB3gM8cPABHj36GAfa9+O421AcXiapjMU7Xw7yziczK1a4NeGhDn15JOmOK9xw0VpzK9weOqHx0hP1PPfQPkyjeqPT7glZy67IijrIjdb6fQGyxbxB2oLx8QlqaqrxeDw89NCDHDt2lDNnznDp0mX+/M//nAcffJATJx7Ytt/7lVOAawfKZQqw3OTbskvd3kQyH5Isa3U9kmFAJHLrnUsp/s5jsThvvfUm8/PzdHV1c+rUKXw+77aHJrhVmGrbdtGPSeRHnPbA9gphf5gXTr7ACydfWPO5uaU5Pr34KWcunuFq/1UGbw4yNTJBbCazop3CilCl33pXnWun4DBxbZozb43xZ86buW7qegazCurbamnraGN/zwFOHD7BE8cep7Ops2xf5/Hjx9Hu8ffNcVx+dW6ENz6a4MxXFgOXI2RHWvA4DRhUr1jhtrTOCjcVt3Fsx65w2w6ZdBq9gt3zdV1ndm6O3jIce3FxkUgkUvi3YRg89thjHD58hE8++YSvvjrD6OgI3/jGC0UVkFeaTAGW1/a/0okN3amJZL5oO/fu49ZIktd793qkezExMcmbb76Jbds89dTTHDx4gEwmQyqVJhjc/l8n0zBwcXPbrxQplcoN9/t9O+8JsJRqwjW8+sSrvPrEq2s+Nz47zicXPuGrS19xvf86wwPDTI2MkpyzIXNbN/V1elQNX7EYvTzGZ84Af2r/LNdOwcy1U6hvrWNf1z72d+/nwcMP8tTxp2isubdmjOlsGsMtvr+S47ic75viZx/eWuEW62/GzFZhElyxwi22J1a4bYdMOk3YU7ng5PN5WZrN7a1U6ue6O23wGw6HePnlb3H16jU+/vhj/uIv/oJXXnmF+vq60l5AGW11CjCbXd1dXVHyta/KqiAViez96b/tf6UTq9j26lGk25tIqmouJPl8q4u2K2Fubp633noLXdf57ne/S3V1FZAbgVpaWiQY3P6tKfKdgFOpdNGPSSfT6IZRkVV/O1VzbTPff+77fP+576/5XP9YP59d/KzQo2pkcISZ0eV2CtaKdgqqsaKdQk5sAWJzWQbP3+RXzlWwf5Rrp+DPEqwzaWitp7O7k4M9B3no8EM8cexJqkNVG17vtSvX0HWDl+/w+f6xBX78qyE+/TLG1Us+Fm40YibChRVuXjL4SQGpDVe4feNkHb2tbRjG7lnhth1SqRR1ZmWm6iDXPTw9nilLg1LbttG0O7/6Hzx4gNraWt544w1ef/31Vc+Hu9lGU4C3t1aIx2FmBhIJhVQqNw34zDPKpjZ33o0kOG2j25tIplK5X8bb65GCwVtF29s1G5bJZHj99dfRdZ3XXnuNcPjWiEM2m90R03RAYaVVvmj0rpbfUSaSCfx7YJquXLpbuulu6ea3vvlbq253HIdLNy/x5kdvMjozyvW+64wOjTE/vkBmXgHn1ijVmnYKuCzNwtJUlv4zV/mlewHsP8u1UwhlqWoIFNopHN1/hIePnuTRI48Q9K59Rp6ci/LTXw3xwReLXD5vMtNfj7FQh0kHBll0MjTisNUVbv03+0kmk4VQLtaXTKXwBusqNn8TjuSeg/IjxqV06NDBDd9I1dXV8uqrr/LTn/6UN954g9/4je/v6d+R/Jv6ZDL3epXJ5H7OoZBCbS14vcodm4TuNTvj1W6Pc91cSNqoiaRpQjh8ayRpJw2AfPbZ56TTKV577TurQhOAbVtod1l1VUmqqqIZOslUoujHpFNJ/DVb69NyP1NVlf1t+9EfMzh08OCqz1m2xfkb5/n80udcuHah0E5hfmIx106B29opaN5bocp2mR13mR1NcfXTC7zlfAX2/wlOFjWSxVsFvQ0WZsDPz/7+KJkb/w2z146hOqtXuCm4ZEqwws11XRT1Pi3mKFI2m8V1HIwKrqaNhKty597EQpBiuK5LLBanqiqy4X2rq6v45je/yc9//jPOnDnDY489VtJr2U75N/TJJMuNO/PF5Ao+n0J1dS4k+Xz3XxH5ffbllt+9NJHcqTKZDNevX2ffvg4aG9e+yFRVVVesi/NGFEUhGAiiKkVOsisKyVSaat998DapDBzXQV3nZ69rOg8dfIiHDj605nOpTIoz18/wxcUvuXTtIgM3bzIxMsn8ZBRn4VbDzzXtFBwVPW3AuElsWkV3FALdMf7v/+O/QFVtklqChYyHsYUqBqebGJ2vI2V1093cw0tPNm95hdud6l3ELcnlUR/vJrr13yvTNHFxSWcyJW1HYFkWw8PDRQUngKamRlpaWrl06TInT57cMaPvm5Hv67dyNClXGqIsv6FXCiHJ693Zr1eVsPt+wjtIfuhy5ShSbp53a00kd6rp6WnA5cCB/et+3uv17KgXFtMwWFoqrjjcdV2SyQSte7wwvFxc19303mRe08uTR5/kyaNP3jqO4zBy7kP63/8ZF898yODIGFNRnUnHy1LWQzIWQM94cRQdFA1DVbFUB0+7w0LEQfdn0TSNai1Lq2eUZzwD+DwZfB4LVcuwmHG5MFNFympGU/YT8hynIfA4tb6DKBuE7Pq6hop3Rt9tMukMCmxqm6N75VkuRC9qWn4TLMvedL3j/v37GRsbZWZmlqame1v4UAn5bbTyo0nZrFJYSefzQSRyKyjt4dnHLZPgVKR8E8mVRdvrNZEMBDbfRHKni8XiAEQiVet+fmhoiHA4Qk3NzuhXo2oqyaXipuoy2Qy44LkfJubLwO/z09Pds6nHuI7DVN95Rj/8GanTnxG6cpPG/gSRrIcjeOjFS4oO3OVRBA0bHylSLHA+nOb/c1Ij4WTIRNOc+obK4WMqft0kmTZIpgySaZNo3MP0fJBcyxoFxXUxdAevOYvfO45PexsrZTGRzrCQVYhb1WSsNnRtPyHzBE3Bx6n2dQOsmZoWa6VSKYCKTtV5PLm/2fTyuUvFtu1NjxpVV+ee+xYXF3dccHLdtaNJjpMLSboOweDq0aS9viKuFCQ4rcO2YWkp99980fbKJpK6/v9n77+DI83PxM7z+/r0mUh4jyoUyle1996wm+wmh+TESrfk7mgVkmKl0J1WmtmVmdBqd3WcC83cai5uRqs9jUbmpBlppNOF5naaZLMNye5mG7av7jKoQqHgCx5IIP3r748EsgoNVFUCSPjfJwLR1QngzReJRObzPr/n9zyl/kibbSK5Vyy/caTTi2uOUNltSxlGIEDezS3tjLn9L8Z2Sv2e9G3cDbSfmKZJvlCg5jYDklPjA4z+4hWyn3xA8FIfjf0LRPMBOjCwCFAkSZpa0oCMRxCTBAvoWCxGi0x3J5k4fZzo/Y/y5OPf5FuNHfw//qf/HlXV+O/+y98GIGNOseB8QEY9hyVdQQ2N0KCNE1MdDFknX9QomBqmpZHKBJmajy4FVSD5oGsOQX2CYGCYgPwqtmkzmrfJuDKpfBxf6iKgHiMWuIemyKPEjOatf3D3kKJZCl6MbVzHWc5urWcHbWXH1WlqWt9oleX2Jzf3ftopy/W0hULpIv/mbFIgALW1NwKlHRrwsOeJwGkN+Tz88pc+4BMI+IRCpSApErkRLO2iOGHLla6mJC5fvrLmINxSe//d8YBISETCYfLkyOfzRKO3zxZs50T3/cg0TRYWUuXAKTM/xcgvfsjix79AP3+J+oFZahcMWstBUpQ8cfKAhE8AiyhpDEzyRpGp7giTJ44Quu8RWh//Bm2HTlU0wS1qNBI1vgN8Z9XnFosjpJwPyLpfYEt96KExavVJooqPJmvkCqUsVdHUmFsMYzvKqqAqEhjFYADd/jPMosVI1ibjamStBlyvA0M9SiJ4H82RRwhpyeo8uHuIuRS8GNvcAFOSpKrPx1MUZd0jVa5c6UNR1G3Pui/X1C5nk0qrIFI5mxQOr8wm7ecL/O0kAqc1BINw772l2V6llgE3elZkMqWs03JX7uUW9ctdVffjEzMQCNDT08PVq31MT8/Q0FC/4vOhUGjHZtOtJRyNANMUCncOnFzbAd/fVee/V5j5NINv/ymzv/wZM/3XSF6dpGlGoQWDOgIUMLDpZHKp/YCBSZgsAUxspchEh87UiUPo9z5Ay+Nfp/nEgzRVuE4gyVLFtVXxQAfxQAfwf1pxu+97zBf6KdgfkvXO4yhXCEbHqddSRFUJ2dfIFUtZqnxRJ7sYwXZkfKn080hAQLMJB64S4BKa/Z/I5W2mbYusFyJr1eP5nQTVE9QE76M58iCGur1Dr7dLLlcauqyus95tMyRJQtNUCmZ1a5xmZ+ewLJO2tsqGLk9MTDI6OsKJEye2/HXEcVZmkyzrRjbJMCCZXJlN2iXXs/uOCJzWoKrQuGKZurQmbFmlJ2rpv6WAqlAodVVdbisgSasDquWgai+7//77GR4e5vXXX+fb3/72iiuy3bamHwmVzi2bzdFwh1mqll2adbWf+69Ug2MVGf70Z8x+8FP8L86RuDRKyyR0EqAJgyIGNu3lIEnHIkQBHQuJIuOtMHOyC+WuJ6h/5Hk67nmK2k1kJ1566eU7FnXfiSTJ1IaOUhta3QHc9z2mcxcouh8xlfmAQHiScHySsLpIQpdwnNLyX3EpqFrMBXDdG0GVLPkEdYuw3kuQL1DtP2Ixa5N1bLJuhJzVBHQQ0k5TG7yPpugDqPLerbPL5fNEwtvfC02WZHK5bFWPuZ72KgsLi7zxxhsEAkHuu2/1QO7NWB6rVSjcKOJ23VI2SVEgFCq1BFjOJu3BzXx7lnioKyTLpSfnyhri0pZNx1kZUJV2LKzs+A2lLJWqrg6o9kIxXjAY4Otf/zqvvvoqr776Ks899xy1taUlibGxMZLJWkK7ZEhucKm1wMLCwh2/1nYdQARON/M9j+sX3mPy3dewPv+MeO8gzaMOdV6AKAYmOiatTC8FSSoOQUxipFExmWxwmTjagn/XwyQffoauh1/kxBqNKzfjtddewzB0jj7wVFWPu0ySZBojZ2mMnOVU/V9Z8TnXs5jOnaPgfETWuwCRIeLaJCE1Q0JTMC2doqVSMHUKpkoqG8fzSxns5aAqZGQJGl8SlD8B618wn7ZYsF3yboyC3QQcImKcpi7wAI3Re5Cl3f1SnctmiYWWJgdsY5pDUZWqtyOwLItI5M4bAubm5nnjjTcA+MY3vrHpbNNyTe1yNsk0lzZHKKWWAInEjWzSQSsX2W1291/jHnBzi/rwiokj0tKE6pUBlWn6SxmqG32dZHntLNVuu4Koq6vlhRde4PXXX+eVV17hscceo6fnCLlcnkRid+yokyQJfWnreDqdvuPX28s1Tge4OHyq/0vG3/0xhU9/SfTyAI0DOWJWAKNcl9TI/IodbiZh5jEwmamxmOmuxz57hsRDT9H56Ev0JLZ+bpdj2+Bv+d3geR4joyN0dXaVb1NknebogzRHH1z19babZzLzCTn3U/LaRdCGqU1OEVEzRFR9admvVFOVL2rMpUPloEryfRTFJ6CnCQU+JiC/j6/8U2bSFgumT85NUHSaUKQeIvpp6sMPUh86tenM22b5vk8un6OlpWXb71vVNFyzuhknwwjcceB3b+9lPvzwQwzD4Otf//qGxq18NZv01QaT8fiNQb277b3goBO/ji209oRqqZyCtSypPJ16OUuVz9+87HdjB99Xs1Q7dbXR2NjAd7/7XV5//TV+8Yt3GBgYoKmpadcUh0OpQNwwAmSzd35BdexSxknfxqLWnfTVHW4N1xaI5QK032aHW5xFDEwWI0WmjySZOHWM6H2P0PHkrxDTIqj5fMX1IHuN67rkc5V3odeUEO2JJ2nnyVWfKzppsv6H5JxPKdCLHBghqU4T0wqEb2qnULS0UjuFhchSbHhzO4V5QoFfYMg/wzNtJiybtAM5O4HptKLKx4gaZ2kMP0BN8Mi2BFWmZeI6LqHQ9s+qDIVCzBXmqnrM25UepNMZ3n33XSYnJ0gmk7zwwosVZdpvbjC5nE0SDSb3LhE47YDlqdKre8VJay77maZPJnMjS7XTxemRSJhvf/vbfPLJJ/T2XmZ8fJxisbCruubG47Fy/6nbcWwHRZL35YDf7MI0w2+/ctsdbgXiFFi9w61gFJk6HGbyxBGC9z9M2+Mvr7nDbW5ublcFzdVWGrdSneAjoMY4lPgaJL626nM5a5ZF9wOy6meYUh9KcIQGbYKoYhNUNXIFfUU7Bcte2U5BU11CxhQBY4yA8iqOZXO9aJNxZLJ2EtvtQFN6iBt30xR9hJhRvUB3ObAMh7d/squua8hVrHXwPI9r1wY4cqR7xfPatm0uXLjIuXPnADh79iz33nvvLe/btldmk77aYDIalcpBktiXsvfsjnc5oUxVSx8rJ1PvvuJ0RVF46KGHOHHiJD//+c+4ePEifX1XOXnyBGfOnNnxXWr19Q3MzF7E87zbvrBajr0vlunMfJqhD15l/oOfo5y/sK4dbo5SZLxDZ+r4IfR776P5ia/TcuJhGit4Q9qpHl4PPPggirr12RTP91C2oQgxrNdxJPkt4FurPpc2x0jZH5B1z2FLV9FDoyS1KaKqh77UTqFoaRSK+i17VIUDIxj6NXTlFYoFm4WsRcbVyNl1OF4nhnKUeOAemiOPEtbXt9S6nNkNh4KUU+XbpFg0sWyras9By7KwrBvHM02TL7/8kt7eyziOTUdHJw899NCKzTE3N5hcbpLs+5JoMLmPicBpj7hdcbptl65oNlKcvtktq7FYlBMnTqIoCpcuXeSLL77g0qVejh8/xrFjx7e96/JykagR0PE9n0wmc9umdLZt77llOte2GPrkzVU73BoJkLjFDrcgRQxMJIpMtMDMyU6Uux+n/qHn6bjvaZIbfAwCwcCOBMmTk5No25DdDBgBjh5dvetuO8WMNmLGnwP+3Irbfd8jVRygaH9Ixv0SJ9RHIDpGrbZAXPORvFJxeqmeao12Cj4EdJuQcY2g0Yvu/H/JF2xmMhYZJ0DObii3U0gE7qU5+jCBNdopZHOlzG4oHC5dxW0jWZbx/eoVu1mWja7rpNMZLl26yOXLV/A8l4aGBu67736am5twHMhkbt9gcrlEQ2ST9icROO1xpXl4lMe93PSZiovTFWVllmr5v5W+L8myTH19Pd/61reYmprm/Pnz5Y/6+npOnDjJ4cOHqppSv5Pa2tJVcyqVum3g5HrutmQuNqpqO9zOPEjykafpeuQbHK/iDrfIDizPAIyOjKBuQ9NSy7LI5wsVD3zdTpIkkwweIRk8AvxXKz7n+x6z+V7yzi/JqhdwQ/2E4hOElQUShoTr3AiqiqbGVCq6RjsFm7B+mSBfotj/jkzO4rplk/cjZM1GoJOQdorZbARJDWDsQOZWluSqbRJwXZeBgQGuXbvG4uICINHU1MzZs/cTDtdRLMLQ0I0Gk4oiGkweVCJw2scqKU7/apYql1t/cbosy3ieB5SKxxsbnyOTyXLx4gX6+6/xzjtv8+GHH9LZ2cnhw4doamra8iBqOViam5ujq6vrll/ne7trXMxmdrhNJ+3SDrcz27fDrTQAGurr6+/wlXtTsVhkPjW3KwOn25EkmfrwKerDp1Z9zvMdpjKfk3c/JudexFMHiSUmiKiLxFQVx72x82+5nYLvSV8JqvKEAqV2CrVdDmePWgzM/c84cxHm1RZ8/QgR/Qz1oUdojNyLIm9N6kVRShmnjbYj8DyPyclJ+vuvMTQ0hGk6KEqY9vZ76ew8hqqGyv2TDANqalZmk3bRS4ewjUTgdABttDj95mW/5YBK06Cu7hC6ztLgyNLno9EIDz/8MA8++CCjo6P091+jv7+fvr4raJpOe3s7R4/2bFkQpes6iqKQuUNLAo+Nv+huVmp8gNF3f3hjh1t/alM73A41dnBom38Gz/PYoYdvW3iejyLvrzSCLKk0xx6gOfbAqs85XpHJzMfklBvtFJLJScJKlqiqYdmloMpc+u/N7RTkvI+R8VHDGYKxDwnI74L1+8ws2izaHlknQcFpRpZ6iOhnaQg9SmPk7KZ2/gW+sqOtkvmUnucxMTHBlStXGRoaJ5/38H2DeLyTzs5W2traiEaDBIM3giTRYFK4mXgqCCvcvjh9dUBVKMDkZBZFUTCMwBrF6TItLZ10dnZi2zZDQ8NcvXqVwcFBBgauoWk6dXV1dHV10dnZuekmmsvZI0mSqKlJYjnWbb/ep1SbsNWyC9OM/OJHLHz0Dvr5i9Rdm6VuaYebjUGBCAVim9rhthN2qji8tbWt4pErm+H5t99csN+ocoC2+BO0xZ9Y9TnTSTOR/Yic81mpnYI+RK0+Q1jKEzc08vM6xUmNvL7UTiG11E5BWupRJfuEgnOEjAkC8k/B+r8zsWCTtiFj12C6bShSDzHjHhrDj1AbOnaHoCpDIv4TTp68CDTiOL9KZ+cp/s7f+bv8jb/xf1nxe8vnC/T3DzI6Os3w8DSFgo/nqdTXt3P2bBeHDrUSjWqMjvbR1eVRWyuJbJJwSyJwEipyu+L0gYEFZNkgkQjdoThdIxI5wkMPHUGSbKanxxgfH+b69TEmJsb54IP3SSaTtLa20tjYSHNz86Y6ehuGzsz0zO2/yAeqHDiZ+TTDv3yNuV/+HPnL8ySvTtA0rdCMQe3SDjdnC3a47QRVVXcksOjoai/Vt2yxSDhc7kR/0BlqjK7E83Qlni/fllpY4NUf/5h7HzqJofdjqR+TMyaQjRHqtClimklY1siZOkVTpVDUWcwGmJpb2vknLbVTUDxCgQkCxghB9VWcosN102LRVsjatdhuO5pylLhxL82Rx4kHJ4D/krY2i6Rv4ftfAH+Xu+92+a3f+i1eeeUVfvu3f5eFBZOhoQlSqSKeJxMIGLS1ddPZ2UB3dyuxmEYgULrQ832f6ek8iURABE3CbYnASdgUSYJAQEZRPGpWNA+/U3G6ga4fpqvrMIcPe2SzC4yPD5FKTfHpp70oygUUpVSr1NZWSp/X19evawdXJBLl+vXrWJZ1y+/zfA9J2njmwrUthj/9GTMfvLm0w22ElgloIED8ph1uU9uww20n1NVtfZfwtXzw3geoqsZDL/zqlt6PLO/PHl/VUiqihoZkJ0mtG8l/EDoOr9hOljbHmXffJe1+hhW8jBoeoVEbJ6476OjkTY18YamdQja4KqjSNYegPkIw0E9A/T8wizZp3yISsEvLZzZAAcsK8Id/GOeP/ujvAUl++tM+ZFmipibKffd1cfx4J83NNQSD0potAUzTRFXVXdOLTti9xDNE2LSbi8NvVnlxukw4XEc8XrsUbFlMT88yOTnO/PwUo6ODKEo/iuKSSIRpaKihpaWZpqYmamoSK5aKluuVfHyam5u5cuUyMzMztLa2rji3bDbL66+/TtLzUSrMXKza4XZ5kKZRhzrXIIKBibGuHW6dD73I8dDq7d17ycLCIrIiEYvu7Z/jVmZnZ5FkicaG3TXIerfIpDMAxKJRKBbW/JqY0ULM+PPAn1/1uVT+GgXnPdLaORz5Cro6SlKdIqF7yJ5O3lIpFEo7/+YWIkzOyvgS2I6KYwbImzLxRBa11UWRfVxXpbv7Im++GeKTT35BLjfHvfee5td+7V9Rs/LKbhXDMOjp6dn0YyLsfyJwEjYtmUyuq5fKnYvTDbq6WrGsViwLslmL69dnmJiYZG5unnPnFvn881kU5Qt0HWprozQ2JmlpqSNUY+Av7U9e3uk1OTm5InAaGhriu9/9LqnRUX783e8Sy6RLDVm++U24abhnJTvcUuUdbh5BiitmuM1212OdOU3iwSfpePwlehING3uAd7FCIV+6Qt/edl3bxvM8dHXvZAC3W2ohRTgcLj0HNtBPqSbUTU2oG/gLK24vtVO4RM75gDnvY3L2EKq0QDBgEiWErWiYsoTrScRjOZqbFwmHCgQCRX70owv80R/dONb4+BDd3d38p//0n3juuedueS6FQkFkm4SKiGeJsGmapuG6blWOtXZxus7RozcCKdP0mZ1Nc/36DKOjU8zNLTA2Ns7HH1/H9AvkWKAz2UJDbRzPCzI9PY9t22iaxsDAAL/7u79Ly+go7wCBP3sF1XHw330X73/8+/Q+cQJ7ZvKOO9wCWDd2uIWLzBypKe9wa3/yW3Q1ddFVlUdkd9up4nBV1dC3oW/QnTrPH3TpxTSxr/ZJ2+DzwbZtUql5JiZmmJhYYH4+x9xcPbb9EhIgyZBIBLnnnnOcPfHPCIfT5DyLjA11taW7zWahv3/lcR3HIZ1O8/zzz3P9+vVbDiMeHx+nrq5ux6ceCLufCJyETUun08zOznLkyJEtu4+VxekS9fVxTpyI4/tHluZCuUxPL3BtbJTzA1dwUxpX+2fxXJ3UfI7e3h+hqj6ZzDxhkvxrKYbuFVEdCweFYkHFJEzdm7O33eFW1ItMdoeZPN5N8L6HaX3iJdoOn9kVO9wOkq9//etI27AbMhQOYxjijXQtnueRyWZWLYPfiW3bLCykmJudY3ZuntnZNIuLFum0heOo+J6EokjEEzFOnGiivj5Ca2uSpqYEuq4AjwP/T8Ai95XVQc+D//gfS/82DANJkujo6OB3fud3+Pa3v33bIL9QKBAMbm5Xr3AwiMBJ2DRN07Bte0fu+0bndIV4vJbGDo22Eyrt0XYkX+WNN95mYGCMwcHraFqYUKiGkxnIKE3kPRsLnUkaUHFQsIiQJ0KWBBl8Jc9Eu8bUicPo99xL0+Mv0nrqURpEBqKsoaFhRzJOP371x2i6Rs/9T23p/STvUBdzkGUyWXzPJxZfXd/mui7ZTIZ0JkNqYZ75uRTZbJZMOkc262I7Crat4roKoVCIRKKRk6fiNNRHaWmpoa4uQiBwq5YAUeBPge/iOBZg4XkBcrki3/2uzv33P0J3dzfHjh3jz//5P3/bBrjLbNsuLctuMNt05coV/uRP/oTvfe97HDt2bEPHEPYOETgJm7aTgdPtqKrEsWMdTEwM8POf/3+4fPkyAP/Qh/8CHUvSsXwdAxMZHx8fD5krXU18+eR/gdpwmFA4QCweoK42hls0yPcPU1MTJRqLYOjGruo6vhNsx0aRlW3feea5Lq699QHsyMgIdfV1hIKhO3/xAeL7PrNzpVYf+Vye8+fPY87NUbh+ncnPPqXoOADYtozjqLiujqHFMAK1tLYlqE0maGiIUVcfJhSSCQbX22DyUeAaV6/+Jln3KrXHvsH3vvf/4xvf+HP8hb/wF2hoWF89oSzLdHZ2bujv2fd9/vJf/st8+eWX/OxnP+Ptt98+8K8L+50InIRN0zStXCC+m14wPM/j8ccf57d+67d45JFHyoHTgAQ2FlEs8CHJfLn7tR2MUPNrf4GWx55ldi5NaiFHetGkr2+6HBz6SCiyh6ZLxKMGwaBGLKaTSISJxSNEo1GCwSChYGjfb2Wfm50jFAqRTCZ3+lS2RLFY3FXP6e3iui65fI5CobCUKcqQzWUp5AsUCgUKxQKuU6prPH/+PACG5RI0JdREI7XxOoKBOLF4nFgsSjRqEApKBIJ+ecl98w9rhLm5rzE6c5zvPvG3+elPf3PDR/J9/7YzLW/nX/7Lf8nQ0BDnzp3jiSee4N/8m3/DX/yLf3HD5yLsfiJwEjZNkiTa2nZXlY+PjyzLfP755/z41R/T1tZGbW0tp0+f5rVPP+W3bzHFXVN8mv7K92mKrBxe63mQyZikFvLMz2eZn8+SzdrMp3JMz2QZGVvAc1PIko+suiiyh6q4GIZMNGpQUxNB1VSCgSChcJhIOEwoFCIQDBAwAqIAeZdyPW9fjVzxPI9CsUCxUCSXy5EvFMjncuQLeRyntLyWy+dxlzJGN5MVmYARIBqL0tLSwvDIBKYpc/8DT6AqYaSshZxLI3d1EYqq5SApGCw1mKzaNN6bmJZZlcB2dHSUWCxGbW3tur5vdnaW3/zN3+Tf//t/z+HDh/nX//pf82u/9mv8yq/8yr69mBBE4CRUycDAAE1NTYRCO7uk8dW5c42NjTQ1NREJRxgZGQHg3//7f89v/b/+d/7BZ59jqDK64+GHgqUK9P/wH+ArQROUPhWPG8TjBl2dN+pefB9su9SXKpezWVgskk4XmJ3Lks0UyOcLZHMm8ymLQnEBmRkU1UVVXBTVQ1U8JAkUVcXQdaKxaHnOXjAQJBAMEgoGCYaCGHoAI6CLJULg6Wee3pZgU1F2dwNM3/cxLROzaGFaRQr5Arl8HrNYpFAs4DgOtm2TSWcwLbOcJfoqWZGJhCMEggGisRiRcJhwJEIsGiUUChMIBvE8HdOUKBYkTMvno09eo6W5iUi4ppRNihQJFmwCR31kvfpB0lqKhSKev7qH3Hr4vk82m6W5uXnd31tXV1cedA3wwgsvMDU1tanzEXY/ETgJVeH7PpZl7XjgtJZoJMrE+ES5g/j3v/99vv/97+MuLnLxb/x3hOZm6f72t+E731kzaLqdG8XpEIloNDZqlIpXG5aaeYJllxp92pZELu+QThcpFk2KRZNsLodl5rGsHI5XYGHBxrHncdwCErd4Q5BK2/GDgQCKopS6HWul7fmxaKzc/dgwDALBALpuoKoKuqajaVpVA454Ir4jvW8uXryIqmjc/dTLW3o/R3uObunxoZQFsm0by7ZwHBfLNCkWS88Rx7FxXZd0Jo1l2Ti2XS5kLhSLOI59y0SOJMsYhk4oGCIcDlOTTBIOhQiFw0QjEYLBIEbAIBgIrvod2jYUihKmCZmsRGoBJFlClpZ2t0o5ouEFzpw+zJFuH/BhsXQRwDYmTx3X2XRga1mleZbG6sZygrAmETgJVbFbC8QBurq66Ovr4/r16xw6dKh8uxKPk37ha0xmc3T/1/911e/3Ruf05Xc2H5Dx/RCWFSp1TrfBtsC0Sj04Xbf0Vb7n4/sujlPE9y1ct4BtZXHdIradx7JNPM+nWCjVnFjpRVzXxXPvfPUtyRKKohJY2q6tKAqapqFqGqFgEEmSkCRp6TYVXV8KuCQZXddRVRVFVVFkBVmRSlkP00RRSkXi25ENm5meQVW3to+T67rMzs5SX1+P53m4rovruUuPs1/6t+PgOA6WZeF6Lo7jYJqlzI5lWeXGsIViEduysG0bZ2kZzLRMHMfB9+6cnZEVGVVV0VQNwzCIRKPUJGvQNb0cAEXCEQKBALqhEzACFQe0vg+FIuVsUtEEKO1oU1WIhJdqk4zS0puiwNDQDMGgRVPTTbsOtyfJtPLcPR9Z3Vyk5vs+TU1NBz6LK1ROBE5CVQQCu2sQ6s2dzJuamkAqdQy/OXACUBQFz6tO885K3eicvvqdZnnZr5SlUnHsKKblY1ngLV3Y+76PqoKmgqb7aBrouk+pH6SHZVtYloVt2RSLRWzHxrIszKKJZVlYtoXruvi+TyFfwLZtcrkcjuswB9i2g7/GCJ3Kf0CQJBlZlpAkGX1pULOPj0QpKFtejnQcB1mWSx+KjKaWmqmWZghKSEhouobnerieVw7qYvEYkiTx1ttv4/s+vu+jLB3DtuzSHsmlzQqqouK4Do7t4Ps+nuehqiqe52GaZun7l84NwLJtfN9bGlDtbSogkGQZTVNLAapcClADgQDBULD8c+uaXgp2AgE0TUNTS1+j6RqGblQ9S+g4N7JJxaKEbd/IJhkG1CbBCEAw4C9191/9AMzPzyPJ0tp1PNsYgEiyRMDY3GuPYRjrfv36a3/tr/EHf/AHazbUvHLlCmfOnOGv/bW/xu///u9v6tyE3UkETkJVrHf771ZZ66pRVVVqEjUsLi6u+pwsy3i3qPvYCZpW+ghzc5aqVJxenu9nS9hWqc6kUJBKQ5NZuvqWZTRVRdOD6DrUhEoB1XpX03zfx3XdUsDhODi2i7v0b9u2cdxSEDIzPYMsyxiGUe6yvRysLWfAFFXBdVxsx17KpPnlQMD3fWzbLge6sizjOM6KuhVVUcuZnuWvU7XSDzQzMw2Ufu+yLJeDpGWyVMrULAdXy18nSRKqppb/LckSqqqhLp2rrJTOz7IsGuobyt+rKAqyoqDrWvn+NE1bWh7VUNTS/amKum3Zt9vx/eVspkSxAEVTwvNAliUUBUIhiUCglE0KBkvZpErMzs1Sk6jZ8fov13GJhNa3vH4z3/e5dOkSPT096+rh9Mgjj/AHf/AHfPTRR3znO99Z8blf//VfJxaL8Q//4T/c8HkJu5sInISqsCyL2dnZW44z2GltbW2cv3C+PHplmaJpuNuccdqIG53TVwZUNxenlwKq0n+LRZ9CYXWWStd8NL0UnOmaj66vnSCQJOnGpPjblH7oWilTst7dSJv1f/zR/46marz0X/y5LbuPTDbD1NQUR7q3riN+tbkuFJcyScViqbauFCyW6vBqEiuzSZK0/nSa7/vMzszR1dVZ/R9gneeRL+SJeBsPnCyrlH29+TWhEg8//DDAqsDpRz/6Ea+++ir/9J/+0zsOFRb2LhE4CVUhyzLT09M0Nzfv+FX2WhoaGsCHiYkJOjo6yrdLkly1OXs74ebidL6SpVpZnH4jS5XNlgIufymgUpQby366DppWylJVkkwwDGPdbzrVEI3EtjzbEQ6F6WjvuPMX7iDTBNMqZZNMqzQkW5IlVAWCQYlEwidglOrsqlXDn8lkcBx7dbC8gSG/m7GcqQwFNr4hJZvNEolE1v2adfToUZLJJB999NGK8/mN3/gNTp8+zV/9q391w+ck7H4icBKqQlVLyx62be/okMzlOhX/K3UZy1uNh4aGVgROqqrs6cDpdtYuTi+9v61c9ist5xSLErnczct+pWPomo9ulAIqTS1lq5bfZ+rq6nbkZzv3+eeoqsZTv/K9LbuPry4Z7jTPuymbVChtLFgu4tZ1iEUljIBPMOAvNZjcmkBmdnYWuM3vfpsunIrFIsCmd/JuJDMkSRIPP/ww7733XnkZ9/d+7/fo6+vjzTff3PElTGFricBJqJpgMEihUNjx6eJrXT3quk4kElnVY6VUeFzaDbUT2+p3QuXF6eDYpSxVOr12cXomO08oKFNbF0PXSkuK+8Xi4iK2be/Y8rNllWqSisVSkHtzEXcwCNEYBAOlwHirGkyuZWpqCkVVd3wpqlAo4OMTDoc3fIzNLDE//PDD/PjHP+bKlSskk0l+8IMf8J3vfIfnnntuw8cU9oaD8U4hbIvDhw/v6g7YTU1NXBu4tiJI0vVSAY9pmgcmcLqd9RanLy7a5HIGtqMsFX2vvey3Fx9azysVtm/PfZWyScstASwbfH9lS4Cbs0k7+Wc2PT1NQ0PDjv+tL2ecNho4mabJ2NgY3d3dG/r+Rx55BCjVOb3zzjuYpsnv/u7vbuhYwt6yB1/OhN3KdV1yuRyx2Opp6btBV1cX/f39TE1N0draCtxoemda1qauXPe7WxWnq4qDJMnE4/5ti9PBLy/7VVKcfidGMICxxZlN13W3LHtq2zeySaa5MpsUCEAyWvpvMOB/pX5tZxUKBRYXFzl8+PBOnwqphRSw8VYoi4uLm7pYevDBB5FlmX/xL/4F7733Hn/7b//tXfG4CFtPBE5C1ViWxcTExI4GTsvLdP4aharL/ZyuXr16I3BayjhZprl9J7mPyLKEqvpLDde3rzj9uWeeQ5K3tpYmEo1UpfB9uSXAcm2Saa3MJoVDK7NJu7k8Znq61P6hoXGt9iNLv/9tqnHK5/LAxjt+LywsbKqNSiwW4+TJk/ziF7+gqamJv//3//6GjyXsLSJwEqomEAiU6g6WiiV3G13XScQTTExMlG/TdA2JUtpeWL/bzfeqRnG6qi4FUvrK4vQfv/ojNE3n2IPPbNnPFotu7ALAcVa2BPhqg8lkzY2WAKWM2+7IJlViamoKSZapq92ZTQE3y+fzpY7qyvrfxpYvrDZ7kffggw9y4cIF/tE/+kdEo9FNHUvYO0TgJFTNbtlZdzttbW1cuHCBxcVF4vE4xlKaf63A6erVq/zpn/4p3/3ud+np6dnuU90T8vk8kiSta2fTeorTbVvCNFcXpy+ma9ENmbl5aUXn9GqW3fRf66e5uZlw6NZLuMtBYNG80RLAdVc2mDSMG9mkvVjrdbOpqSkaGup3xa4xy7LQ1I11VZckiaNHNzeH0LZt3nrrLe6//37+m//mv9nUsYS9ZY//GQu7zaFDh3bFi+qt9PT0cOHCBYaHhzl79mw5wPtq4OT7Pn/zb/5NLl26xDvvvMMrr7yyK7NoOy2TyYC0+S3hy25VnO66y0FVKUtl6BYQJJ+X8bwby37VLE53HW/Vc/nmBpNmsbTsdnODyUR88w0mdyvTNEmlUtx11107fSpAqXg/Ft9YxmhsbIxkMrmp5+0//sf/mMHBQf7dv/t34rXhgBGBk1BV4XAYx9n8xPKNulUfp2U1NTXEYjHGx8c5e/YsqqIiS3J5QvqyP/53f8zI6ChvvfUWL3/zm/zJn/wHvv/9resZtKdtQ2ygKKWP5eL0aCSFpuU42uNX1DkdVnZOX/737YrTXdfB81TSmdUNJhW5lE2Kxf1yS4C9nk26k+X6psbGxh0+k5JUKkWwPrju7/M8j9nZ2VLN4zrNz8/z2muv8eWXX/K//q//K7/xG79R7iIuHBz7/E9d2G7pdJqZmZldvbRVV1fHwOBAaUlRktB1bUXGaW5ujt/6wW/xz/7ZH9DV1cU/+f1/wl//P/91vv6Nr5MUYxRWktiRDV8vv/xNJFm6bed0xykFVLazsjg9k7l1cbqilG4vFmE+lSAYMsrZpGhEIhD0y9kkWd4/2aRKlOqbpFs3vvS3rzjcsixs2yYZSJYvliqVyWQIhUIb2lH32muv8f3vf5+GhgZ+/dd/nd/+7d9e9zGEvU8ETkJVhcNhhoaGdm2BOEB3dzcDAwMMDw/TEwii6zrF4o3Aqba2litXrpT//9lnn+Fyb+9OnOqul4gn1tzBuNXefvstNE3j1KMv3PJrVHV5ia7y4nTfK31VMAh33dVOcKkFw25qCbBTJiYmaKhv2BX9zjKZDACJmsS6v7dYLJJIrP/7AL73ve/xve+JzPNBt/N/AcK+omkamqZRKBSqVvdSbS0tLciyzLVr1+g5fQYjECBbLOz0ae1Juq7vSOCUzWTRtI1tQLhdcbrrlj5v2yZzc3PEYrtzaPV2y+fzpFIp7rnnnp0+FaCUFQY2FADtlqVGYe/avW2ehT2rpaVl52qcbtPHaZmiKNTV1TEzM4Pv+4RDIbLZ7Had4r4yOzu7aozNXqYopZ15lmWRz+d3+nR2jevXrwPQstT/7Ja2q4dTofS7WW8LgGw2y+Tk5FacknCAiMBJqLqampqqNA7cSkePHsWyLOZT84SCIYrFItlsltNnznD27NlVu+z+1t/6W9TX1/Of//N/3qEz3p0kScLzds8g3GpxHHdX7w7dbtevXycQCNy+xm8bM4+p+RS6rqNp2rpKAmZnZ3dtCYGwd4jASag60zS5dOnSTp/GbXV2doIEly9fJhgq7czxPI+/+3f/LuPjE/yrf/Wvyl/7gx/8gD/+43/H7/zO7/Crv/qrO3XKu5IsyzuyVHfXXXdx5uyZLTu+6zq7PvjfLp7nMT4+QWtr664JOubn59fdK851XRYXF0kmk1t0VsJBIQInoep0XcfzvFVb/HcTwzCoTdYyMTlZrsXK5/N8/3vf4/jxY/ze7/0e2WyWf/bP/hm/93u/z9/5e3+Hv/SX/tIOn/XuYxjGjtSymbaJbW/d86uurq48luegm5mdwXHsyh6P7Vqqy+eJlOb8VKxQKBCLxURALGyaCJyEqpMkiXA4vCN1QxISkiTdso/TzXp6enBsp1zLks1mURSFf/A//QNmZ+f4tV/7Nf7Hf/AP+Ct/5S/zd/6Hv73Vp74nRSIRamtrt/1+L1+6zOXeK3f+wg3KZDJiDM+S62PXQSrVLu4Gruti23a5vqnSdgSRSIRDhw5t5akJB4QInIQtkUwmNzQKYTv19PSATLm4OZfPAfDiCy9y5uwZfvGLd/nud77DP/pH/2gnT3NXy2QyjI+P7/RpVN38/Dz5gthpCaX6psaGxl0zRmlhYQHg1v2k1mCaJsPDw1t0RsJBs7vf2YQ9q6amZsO9UraLpmm0tbYxMz2NYRjksqXA6U//9E+5cP48UNq1s1vqOnYjz/MoFos7fRpV5zgOqigOL7chqCjbtE21bjMzM8DtB0x/1dzc3K6/kBP2DvFMErZMf38/hR26aq+0YLmjs7M0LFTTyOay/OxnP+ev//W/zssvv8x3v/sd/viP/3hFM0xhJUmSdqQ4PFmXpLZu64p8bdvZFY0ed9rY2BhQQRuCZdtwkTE2NoYkS8RisYqee77vMz8/vyNLysL+JF4ZhC2j6zqLi4sEg+ufJ7VR680Otba2IssyRcviyy/P8/u/93s89NBD/MEf/AHj4+O88sor/OAHv8Uf//EfbdEZ7y2u6+J5Hq7rLg23Le2qS6UW8PzStN1kMkmhUCCdTuN5Hr7vU1NTg2EYjI2NlW+LRCI0NDQwOjpKoVBYGn+icOTIEWZnZ5mZmcXHx/d9DnV1IUkSA4ODAJw4caK8dNTX14ftOAAEAwEOHz7M5OQkqdRC+fnQ3X0Y0zSZmJhAkkp1cHV1dcTjcYaHh8u3BYPBpdtjpNNpcrkcsiyTTCaxLItisYgsyyiKgmEYyLKM53nIsrwvM5PDIyOEw+FdNWoolUoRCUfKGaQ7ZZIsyyIQCGzr65Cwv4nASdgy8XicycnJDQ3T3C6yLFNbV8sHoyP8b//kf6P7yBH+7b/9txiGwaFDh/ivfu2/5t/863/Dhx9+yEMPPbTTp7tpruviOA6u65aaf4bDZDIZ8oU8nlsKiBobG7Ftm7GxMVzXw/M9GhsaqKuro7e3FyQJRVaIRiO0tbURjUVZWEghy3I5yABAAkVVkKVSoCFJEtFYrFzAbxilwKeurg7P88rBC5Q6QkcikfL/L++E6jlyBID/7T/8SxRF4cGv/SqHDh1alXmora0lHo8DlAOyQCBAc3Mzvl8KxgzDACC6nLnwfVRVxV/6r+M4WJaF53kkk0lMs9RNfDl4bGlpIRAI0Hu5F9/3kSWZ2tpaWlpaGBkZKQ+71jSNlpYWstlsKfBSFFRFIRwOlwPP3biMZJomk5MTnDh+YtcEhb7vk81laW9rr/h7DMPgyNLzRhCqQQROwpaJRqPMzs7u6rl1ANFwhH/+B/+cUCjEH/7zf04sFit/7m//9/8D//FP/gP/y//yv/Dqq6/u4FnemuM4mKaJ4zg4jlOuyxofHy/fFk/EaWps4tq1a9hL9TvBYJBwOFwKjlwPWZHLDQV1XS9n4xRFKS9bnT59esV927aNIiurdiuFQqE12xSslblYKxOgquqaS2XLWSbbsmBp5Mpa28uXR//cTJblNbewf/WcbNtmanqa06dOrbg9FouteG4sO3vmLL7vr2gEWldXh23buDfd5rouxWKxHLgahoHjOFwbuAaAoqg0NTZSW1vL2NhY6bFXFQJGgHg8Xm7vsd6mjxs1OjqK7/mlnmeV2IYl28XFRXzPr3hsim3bDA8P093dvatfg4S9RQROwpaRZZnu7u4due9K2hEAIEncdddd/OAHv4VtW6t2DjU1NZXrPLab67pYloVlWUhSqaZjZmaGTCaDbdvYjsOpkydJZzLMTE+jaRqqqhIKhTAMg2gshroU9Cz/XEePHl11P4lEnEQivur2Smp8XNdlZmZ2XTucdjvbtlGV9b00SpK0otP4WkFjPB4vZ8GWGYbB2TNn8TwPx3HKmadQOIxj26WgmFJbhNnZWVILC7iugywrnDxxglwux+LiIqqmoqka0WgUTdPwPG/Tnc+HhocJhULr+91ucXCyPKNuuVj9Tn/ns7Oz2xZoCgeHCJyELZXNZkmlUrS3V55a34xKe7rcTJZlOjs76O/vZ2pqio6Oji04s9Vc10WWZRzHIZVKYds2lmURi8epTSa5fOUKsiSj6xrhSJhYLEYgEEDTdHT9RkYlWVOzZiZnO+pSZFku1TZtM0mRUNSt2fVm2zaatr0vjbIsrwja1/rdtbS00NLSgu/75SBL0zQCgQC2bZPL5crZu8tXLiNLpc/X1tZSV1fHfCpVfj4ZhnHbwMqyLCYmxjl+7PiuCjpGRkZAKu3aXXarv3nP85iZmSm1HRGEKhKBk7ClDMNgfn6+vOyzW506dYr+/n5GR0d54IEHqnZc13UxTRPTtKipSbCwsMjMzDSmZeF5Lke6j6Cq6tKbtUYoFCa0NALm5InVtSXrHWq61WRZxt+BWXXf+tavIEtb83zSNG1Xt9KQJKkcNAcCAQKBwKqvOXP6TLlGazlAskyTfD6PZdkoikxPTw8zMzMUCgV0Q0fXDRLxOLIsr3+ZbpvMz88TDoUrei2xLIuamhpRFC5UnQichC2laaWr22w2u2Z9yK7g+8TjcRRVJZvLlndJrYfjOBQKBUzTRJJlapNJRkZGWFhcwNANAoEAiUScQMCgqakJwzBWLCGsNc5iN13p34qiKBw+fHjb7/fVH7+KYegce+jZqh/7VvVZe8lycHVzndfNmzSWi+mXC9QtyyK9uEgiHmdufp6LFy+iaXp5J6FhGLiue/vl2y2ucfJ9n0wms+bPsdbXGoaxbZlu4WARgZOw5WpqarBte1vuaznYqLi30E3BSUN9PRMTE4yMjNDV1bXml/u+T7FYpFAsYhaLBAJBEok4fVevoqkqgUCAUDgMlJZW2tvbVwRAt8oQ7FU3P97bGejZlkWlZWzrNTk1iabp1O7jYbDLv6u1gsRIOMxiepGuzq7y8qFlWfT19SErCsFAgGSylkQijmma6Lq+Lb/7xcVFPM+jqXnlLt217juTyTA9PS120wlbQgROwpardAfMTuvs7GRiYoLLly/T1dWF7/sUCoXyRzKZRFEUhoaGCQYDBIIBDKP0pnHi+OpakIPSQLH/Wj+nTp7adDHybmEWTXTd2OnT2DHXr1/H93yOHjtKQ0ND+fbTp09jWRaFQrFcAzY8PIxpmhiGQdJxqF+6SFJVterB1MTEBACHuu48b256enpXL7cKe9vBeGUXdtzExAShUGjVrqLdZHkpcXp6mlRqAYDJyUlCoSChUKi8O+3EieOrvncvLKttFVmSq7KLa7ewLAvtgAS9a7k2MEAwGKShvmHF7aXeW0a5/xWUdmm6rks+n0eangFJ4vr16+XGt5FIpDwaZbN/I4ODg+i6vmLJf61ddcVikXw+vyNLyMLBcHBfHYRtpWkac3Nz2xI4VbqzzrIsiuk0Md9nanqqPOwX4OLFCzz++OPU1CS26Cz3D2mpe/Z2eviRR1DUrSkOVxRl1wy03W65XI6JiXHOnD5TcaCjKEpp00KhAJ5HV1cXruuSy+VKNX83BVORSIRwOExNTc266gh932d2ttT24k7n5Xnert+MIuxtInAStkVNTQ3Xr18vDU/dwqv55aBprSvR5aLvqampcgfohGkSDYWoq62job6B/v5+TNNiZGR0Q0XiB1FDff22Z5smJia2LCt0kDMVAwMD4G/wMbiprlBRlBWZoZaWFmpqasjlcqTTaWpqalhcXCSdThOJRIhGo7d9XZifn8dxnLU3Udx0oeQ4TqnOcI8X9wu7mwichG2hKArJZJJisbhm9+atks/nWUwvkkln8H2fY8eOEYlEyj2RpJkZmJsrv/HX1tYyMTGJbVu3LRIXbqivr9/2+xweGkLTqp8Vcl2X6enp8vLSQeL7PteuXaO+vr7qmWFJksqF6MvPl0AgQLFYZH5+npGREXp6etB1Hdu2S3+bN2WWRkZHAFZ1qP+qiYkJFEUpN8gUhK0gLqeFbdPe3r7lQdPyLKuFhQWg1GnYdVyamprKjfDC4TDBYHDNlH9dfT22bREKhbhw4ULlu/MOsMHBQbLZ7E6fRlWYpsniYnqnT2NHzM7Okk6nN9ftfx11TIZh0NjYSHd3N2fOnCEYDFIsFhkYGODSpUuMjY1hmqWu6fNz84TD4VV9zG7++zRNk/n5+R0J5IWDRQROwrYaHBykUChsybHHx8e5cPECU1NT2E6p/UF7ezttbW3EYrGKlt3q60vjJRobG5mfn+f69etbcq77ie/7uK6706dRFTvRNXy36O/vR5LlHcmyyrKMJElEIhFOnjzJ4cOHUVSlvLN1bGxszV1yNw+GnpycpK6ubs3ZhYJQTQfzFULYMbqulzuJb5Zt28zPz2PbNm1tbYRCIY72HMXIGMS0dTTbvOmqtTZZC1Jp8KysKJw7d462trZNn+t+JsvyimG226GtvX1LauUcxzmQb7yO4zA4OERnR8eOF8ZLkkQwGCx3/J6YnMB1XXRd5/Lly3R2dq5Zw1RfX7/j5y4cDCLjJGyrZDLJ/Pz8ppfARkdHuXTpEoVCoXwlmkgk1t9cco3eS8maJHPzc3QfPsz8/Dxz8/ObOtf9LhAMbNn4k1vpOtRJR0f1u0LX1NQcyPqY0dFRHMfe3Fy3LVrWvj5Wyvred999tLW1oes62WyWoaGhcvY6lUphGMaB6Z0m7CwROAnbKhgMEo1GsSxrXd/n+z6Li4uMjo4CpQDs1KlTdHV1Vb1uqq6ujtnZOe666y4kWeLSxYtVPf5+09TYRCKxvf253n3nXT54/5dVP26hUDiQdW39/f0Eg8EV40w2ZAv6mY2MjGAYBrFYrLz7LhAIEAwGGR4Zpr+/vzT8VxC2iQichG3X1dW1rpR6NpvlypUrjI+PEw6H8X2fcDi85tXl7doR3NJX3ijr6upwHYeiadJzpIeh4aF9U/y8FRYXF8sNQ/e6qakp8vn8Tp/Gtkqn00xMTNDT07PrGrmapsnC4sKqgnVVVWlsbCxnyBoaGigUCuLvVNgWInASdsS1a9fI5XK3/RrTNPF9H8dxaGho4Pjx4ySTyS1/ca+rK+3KmZ2Z4fjxE/iez+eff76l97mXmaZJobA/gg3Lsg9cncyVK1dAYnPLdFukv78f/Fu3IXBdF8cuvT6U6rQGGRgYKO/GE4StIAInYUfEYrEVnbpv5vs+MzMzXL58mWKxSCKR2LqAaY1jxuMxNE1nZmaGRCJOfX09Q8PD615ePCgURdn2XXWapqPr1S3i9n0f27YOVOBk2zZXr/bT0d5BeGk49W4yMDCAqqorZubdTNM0jh07hqIoJBIJTp06RTAYZGRk5EAuuQrbQwROwo6ora0lk8msujJ0XZdr164xNzfHsWPHyjtrtpMkSdQ31DM5OQnAPffeg+95nDt3btvPZS+QZHnbA6eXXn6JF158serHbWlt3Tcz9yoxMDCA49icOHli08eSqhynOI7D7NwsTU1Na140LS4uMj0zveL3Jcsyzc3NHDlyBM/zGBkZ2TetMoTdQwROwo5QFIXW1tYVL2q+7yPLMslkkmPHjq1/hxw3Bolu9mqzpaWlPB6iqbGJxsZG+vuviSWANSTicdrbq7/D7XZe+eErvPqTV6t+3GRNTdWPuVv5vs+VK1eoqalZNdB346qXFR4aGsL3fI4ePbrqc57ncf369Vu+Rtzc36mvrw/btqt2XoIgAidhx9TV1REIBPA8D9u2uXz5Mq7rbksd0wprBFnNTaWRGxMTEwDcf//9OI7NZ599tn3ntUd4nrftBdWe4+La1c0kLC6mGRwcrOoxd7OpqSkWFhY4duzYrisKB7h+/Tqqqq4ZlE/PTBMIBIhGomt8Z4ksy7S3t5NIJOjr69v2QdTC/iUCJ2FHjY2NMT09zeDgIPF4fPv7sNziDSORiBMMBhkfLwVOtbW11NfX03+tn2KxuJ1nuOvZts3Y2N7vsO44B6swvLf3Mpqm78qhxp7nMTw8TOstlk5936e1tfWOu2clSaK5uZnu7m4xsFuoGvFMEnZUXV1duUi8WoNVq3H1vPyCOzk5Wb5SffChh/A9n48++mjTx99PVFXF9fZ+HYlt22hVLjjfrbLZLKNjI/T0HKnexUoVi7HHx8dxHGfNbJNpmjQ3NWMYBnCjBcntBAIB5ubmmJ2drdo5CgeXCJyEHRUKhcrN7aq5XLCuPk63uN+WlhZs22Jubg6A2mSSxqZGhkeGD1yvn9tRFAXPc7d1F9Nzzz/H0888VdVj6rpOKLh6lMd+1NfXB8CxY8eqelypSlmdS5cugbS6DUEmk6G/v39DzzVd15mamhK77YRNE4GTsKMcx6GxsXHV1PPNqOQKtBLLXZQnJifKtz34wEP4vs/58+erch/7gSzLtLZu7zy/8+fPc/Hipaoes7a2tqrPw93KsiwuX75CW2v7rvx5HcdhfHycpsamFXMDfd/n+vXrtLS0bOgia3nCgFhqFzZLBE7Cjkqn06RSKQKBwM50/V1+AV7jKjQUCpFIJMoF4gA1NQm6Oru40neFdDq9XWe56233brTpqWlmpmeqesxr164diK3rV65cwXFszp49s9Onsqbh4WE8z+PMmZXnNzc3V+7XtBGSJBGNRg/E71jYWiJwEnaUJEn4vo9pmgwMDOy6F7WWlhamp6dxHKd829133w3Ahx9+uENntftcudK3p6/kXdcln8/v+wJix3G4dOkSzc3N1NXV7fTprOnChQuEQiHa2lZmMZPJJJ2dnauyTevJPnV0dFR9tqVw8OzvVwlh1wsGg+Tz+fLw3+np6aoct1p1DC0tLfiez/j4ePm2WCxGR3sHExMTVTvfvU5R5BXB5V5jmiaapu/KbfnVdPVqP6ZprsrmVEUV/uYWFxeZm5ujra1tRU+2sbExHMfZ1K5H3/dFQ0yhKkTgJOwowzBKwYnv09LSwszMzKb7rVTzza+xsRFV1RgeHl5x+yOPPIKsKHzyySei2JSlnXXu9vXJ6TnWQ8/RI1U7nuu6BIPrb7i6l3iex8WLF6ivr6exsXFr7mSTf3sXLlwAWBHYzc3Nkc1mV9Q7LVvPJpD5+XmKxeK+zyoKW088g4QdJUkStbW1ZLNZVFXlxIkT2/vCdpsaJyjtGOvoaGd0dGzFlaphGNx/3/3Mzs5y9erV7TjTXS0SiaCq2zeqJBqJEa7ikks0GqWzs7Nqx9uNBgYGyOfznD59eldm1nzfZ3BwkEQiQTweB0qF7BMTE2su0S2rZDOI4zhMTEzQ3Ny8K392YW8RgZOwKywuLjI4OIiqqly/fn1XDdTt7OzEcezy7LplR4/2EAwG+eSTT/f0MlU11NfXb2vtyGeffsq5z85V7Xip1MK+bjHh+z4XLlwgkUisqh3aLSYmJrAsi1OnTpVvs22bpqamTc+sLBQKJJPJXbmLUNh7ROAk7AptbW3lK07f91fsZFsvCWl9fZzuoLm5GUVVGRoaWnG7LMs88sgjOI7Nxx9/XLX724tSqQVmZqq7y207pVLzWNb+nWc2MjJCOp3e2mzTJpesv/zyS1RVpbu7G4B8Pk8oFKK+vv42d3n7+3Rdl7m5OaLRKC0tLZs6P0FYJgInYVeQJInu7m50Xae+vp7FxcVdkwFQVZW21lZGRkZX1V+1tbXR0NBA/7X+A92ewPNcCoXCTp/GhpmmhWHsz3Ervu/z5ZdfEolE6Orq2to722BQViwWGZ8Yp6mpCVVVsSyLa9euVbRT81aBoGVZ9PX1kc1mRR2iUFUicBJ2DVmWaWtrQ9d1VFVlenp6+17w7nA/XV1d2LZVHg9zs0cffRSQDvQAYEVRt3W5MhAKEgpvbvlmme/72I5VHuGx3wwODpJKpbjrrrt2bWH0p59+Cj7cd9995d1v9Q31G16iy+fzXL58mZqaGjo6OkRdk1BVu/OvSDjQJEmiq6uLfD5Pf//GhupWHHBV+ILa2tqKrCirdtdBqT3B6VOnGBkZYWxsbD2nuW9omrqt0+e/9vzXeOrpp6t2vKM9R3dtULEZnudx7tw5EonErhzmC6XC7WvXrpFMJssbRVzXpbFh/Tv/CoUCuVyOQCBAT08PTU1NImgSqm7/vVII+0IoFKK7u5tcLkculytlBezKalC24oVSVVVaW1rLXY2/6syZM6iqxvvvv38g+8SEw2GOHKlee4A7eeWVP+Mnr/6kKseybXvfLuX09V0lm81y7733bn0AscHHsL+/H8dxuP/++/F9n2g0ypEjRyo63+VaRsuyGB4e5urVq5imiSzLmy4oF4RbEYGTsGsZhkF9fT3pdJp8Ps+lS5cYGRm5YwZqq94guro6MU1z1e46KAVWDz30IMVikY8++mhL7n83831/e5uB+uB71Ql2lpsu7je2bfPFF+doaGigtbV1p09nTb7v8/nnn5NIJGhqauLy5cuYpomiVNbawnVdJCSGhoZQVZWTJ0+STCa3+KyFg04ETsKu1tzcTC6Xw3VdTp48iaqq9PX1USgU8DyvepmCCo7T3t6Opum37NvU3d1NY1MjV/uvMp9KVee89pDJqcltXa6rFsuyNtWRerfqvdyLaZrcc+8927dctc77uXbtGoVCgePHjzM6Oko0Gr1jrZnv+6TTaa5du8bIyAgAPT09tLa2oqrqhk9dEColAidhV5Nlme7ubiKRCJqm0dLSwunTpwkEAszPz3Pp0qVy/5ebVdyOYB0v9KqqcvjwIUZGb531eurJp9A1nffefXdPBhEbJUkSiqJWvJy6+Ttc+qgC0zT3XWF4sVjkwvmLtLS2bqhWaLucO3cOXdepra3FsqzbtgxYXgIfGRlhfHyceDxe3iUo6piE7SQCJ2HXCwaDmKbJ7OwsUAqmljuOl3a72fT29mLbNrZtr7/GaB0vukd6evA9n4HBwTU/HwgEuPfee0mlUgdul52mbt/Oupdf/iYvfv3FqhwrmawlFApV5Vi7xcWLF3Ecm3vvvXenT+WWpqenSafTHD9+nGQyyaFDh1YV6Nu2Xe7Of+XKFXzfp62tjWPHjlFbW4ssySJoEradCJyEPUFRFK5fv76iV5AkSYTDYTo6Ojhz5gyappHJZOi70sfQ4BAzMzNVL9SuTSZJJpP0X716y2XCnp4eamtr6b3cSyq1UNX7383a2toIBLZn3tvbb7/Fe+++u+nj+L5PLBZdcw7aXpXNZrnU28uhQ4dI1tRs3x2vc9n8woULqKpKIpFAUZTycqllWSwuLgIwOTlJNpulrq6O48ePL2U2FREsCTtKBE7CnqDrOq2trQwNDa25BLZ8pZpMJjl+/Dg1yZrybrxsNsvExETVGuEdOdLDwsLCLQuKJUniySefBCTeeeftfbtj66s0Tdu25clsJks2k9v0cQqFAn19+2vW4McffwLA3Xffvb13vI5gZnp6mqGhIRobGwkGg8iyzPT0NJcvX+by5cvlwKm9vZ2uri5qamr2ZbsIYW8Sz0Rhz6itrSUSidxxjp0sy8RiMbq6ulBVFVVV8X2fsbExzp8/Tz6fx3VLna7LIc06gpvDhw8hyfJth/tGo1HuuftuFhcX6evrq/jYe9nc/Nye251WNE0Cgf1T3zQxMcHo6Ahnz57ZmblsFQZP77//PrIs09DQUM4i67pOW1sbZ86coaOjYyvPUhA2RWxBEPYMSZJob2/H932KxeItl4UkaeWsukAgQEtLCy0tLdi2jaIoFAoFhoaGkNIZ4pk08UQNoXis/P23o+s6XZ2dDAwOcv/9999ymefUqVOMjo7y0ccf09jYRCIR3+BPvjdoqrZrxuRUyjLNbVte3Gqe5/Hhhx8SDoc5dfLUnb9hm/i+T6FQIJvNlv/25ufnaW9vp6Wlpdw+IJFIrO+4S3/jUrV2CQhChUTGSdhzcrkcV69e3VAhsqZpyLJcenM5dYruI92EIxEURca2bS5cuMC1a9eYmJggl7v1UlDP0R5cx1k1+PdmkiQtjWOBn/70zX2/y05Vt29X3V133cWZs2c2fRxN1wmHw1U4o513qbeXdDrNgw8+uKPb8m3bZmFhgXw+j+/7nD9/nqGhIYrFIoqi8PHHH6OqKk8//TSNjY37qr5MOBhE4CTsOZFIhJqaGoaHhzddP2QYBolEgoBhoOs6J06coK6uDkmSsKxSR+m+vj6GhoaYmp4im80C0NjQSDwep7e397bnEI/HeeD+B8jlcrz//vubOtfdLhgMEo9vT1bNtE1s+/ZLtpWoTSZ3ZkmryvL5PF988QUtra20t7dvy336vl8u5LZtG8s0udJ3hd7eXubm5rBtG0mSOHXqFCdPnqSjo4Pp6WlSqRSnT58WAZOwZ4nASdiTWlpasCyrHMhs2FeW5VRVJR6P09TURE1NAoCOjg5i8Tiu45LNle5vdHSU+vp6FhYWuHKlj3w+f8uM0vHjx2hpbWVgYIDx8fHNne8uttyPZztcvnSZy71XNnWM5aB4PxTvf/rpp3ieywP3378lx/c8j3w+z9z8PL7vs7CwyMVLl+i7epXZ2Vls20bVVDq7ujhz5gzd3d3lIHq5C7jjOHzyySfoul6VwvX98HsT9iZR4yTsSbIsc/ToURRFwff9FXVJ1ax5kCSJQCBQqoO5aWt3U1MT4UiE4eER+vpKb+CWbdLV2UUoFGJmZgbdMAgYBoFAgKefeoof/vCHvP32O/zKr3xr3ywP3cz3fS719nLi+PE9sQPKNE0c193zW9unpqcYHBzk9OnTm874OY6DaZoUTRPf86irq2N8fJzZuVl0zSAYDJCIx4lEwhzt6UHTtPLjJ8lyqZHoLR7P3t5eisUiDz30UFWfH3v99yfsPSJwEvas5ULTkZERenp6tvXNWtd1apNJTp8+xeeff059fV25yNV1XSRZIpvJMDszQ6ImQWNDI4e7D3Pu3DnefPNNnnrqaRKJOJ7nIUnSvnjxX/45bNveE524i0WTwB44z9txXZcPf/khwWCQM2fuXPO1nKXxfZ+FxUUsy8QyLYLBIPX19QwODuJ5HoFAoNwUtLGxkebm5k09RycmJ/jiiy8IhUKcPHlyw8cRhN1ABE7CnhYIBNB1neHhYbq6usov7tuVxj969Chfnj/PxYsXl3o3lZb7mhqbVn3t4UOHyefy9PX1ceHCeR5//HFGR0dJp9Pouo6u63R2dmJZFsWiia5raJqGqqp7JrDSNQ3LsrY8cErWJdG1zc2Xc12HUHhvdwy/cOECCwsLPPPMM2iahu/7OI6DbduYpkUiESefzzM9PY1pWti2RWtbG4l4nPTiIoZhEI5ECAWDQKl561dVOnD3Vqanp7l44SKWZfHoo4/umeeyINyKCJyEPU2SJDo7O+nr62NmZoaGhoaNvTBvMNAyDIOjPT30Xu7l3uy9RCKRW35tJBLhoYceYm5ujoHBAU6cOEFHRweu62JZFpZlI8ul3X2p1DyWZWHbNh0dHQQCAYaHh9F1HU3TiEQixGIx8vk8siyXdwvu9JtSJBLZlqD1vnvvQ5E394a+XfVY1eD7Pp7nYdul54iu6wwODvLFl1/Q0NBQ/rrr16+zsLiIpqrouk40WprxWFOTRNc1dF0v77hbnvNWxZNcddPCwgIjIyOMjo3S1tbG4cOHq3d3oh2BsENE4CTsebIsc/jw4Ru1FusJHqoQaJw4cYLey7309vbywAMP3OHuJJ555hl++MMf8rOf/YyXX36ZUCiEqqosj0uLRqMrdnr5vo/v+zQ1NWE7DrZtlYOTqakpCsUiruOg6zrHjh1jZmaGbDZbzlbV19eXi3uXG4IuB1rV1tS0OtO2Fd54/Q00Teeup1/e8DEmJiaor6/fsa37ruviOA6O4+C6bjkQTqfT5axRY2MjiqJwpe8KEhKqqlFbm6Suro5z586hqTp333M30Ujp+dLa2kpbW9uq+1oeZ7Ll1vh7un79OgAPPfTQFtxf9Q8pCHciAidhX9B1Hd/3uXbtGm7ERZa2r94pEonQ1dlF39WrnD179o7LVKFQiKeeforXXnuNN954g29961u3DWKWa4fW2jZ/6NCh8r+Xd/VFo1FUVcN1HRy31OvKsixmZ2dLb9KeV9o1mEhwqbcXRVZQFJloLEpTY1N5l5SsyKiKWp5cb5omiqKUMx5rBarZbJZCoUB9fX3lD+AOcF2XmdmZDQV6y5sRloMez/NwXZdwOIzjOKTTaVzPxXM9otEo4XCYwcFBXNfFdT1CoSAdHR2MjY2Ry+dRFQVVVYlGo6WAWCotQUci0XLwe+rkqRVLZl+e/5JMJsNTTz21Yll4pzOOyzKZDIVCoTya6NSpU9vWqkIQtpoInIR9Q5IkEokEnw98Tmtr67be9+kzZxgaGuLixYsVTaRvbGjk3nvv47NPP+Xtt9/hmWee3vQ5LAdf5V2ANwmHw3R3d6+4zfd9eo4cWXpDd8vfr6pa+Y2/aBcByOXyzM3N4rounufT3t6GqqqlTIgkIcsKdXW1BANBpqanWVhYQJIkDMOgvb2d+VSKXDZbXk5czoKlUimQSr+7aCRKKBRibn6+vOyz3B4im81iWtaNwEACw9CZT6XKP0skHEbTNFILC+XvLy1XRZlPpcqZOkmSiIQjaKrO+Ph4OaNXX1+PLMuMjY3heR6+75NIJKivr+fq1auYloXnueiawfHjx5idnSWVWkCWS4Nnl5ddlxs9yopc/nlra2tRFAVlKUgC6OzsXPU7DIfDa+64vDlomk+l+OKLL+jo6FjzGDstm80yNDREa2srH3/8MaFQ6I6ZWEHYS0TgJOwrtbW1RGeijI2N0VHTcecr8OXPb7IuJ1lTQ1dXFxcvXeLYsWMVtRs4feoUc7OzDA8Pc+XKFY4dO7apc1gvSZLWXMIpjYZZmR2oqUmU+1rd7OyZs3ieV94duFyD09zcXL4NwNB1/FCoHJDc/HvxPR/PL2VtAApLHacBdEMnTpxCobBinIusKBhBg0w6Xb7NWKr/ymWzq37vruPgOqXWA5IiUSwWMQy9vJ1eluVyNq22trZ82/Lj09nZiSSVAqTlYzc1Na2ZsVprqaxa2RbP8/jg/ffRVG1rlr42Y2kU0uDMDB0dHfT29mKaJi+9/NKWLAsvP0d2S5ZNODhE4CTsO81NzWi6tu0vqHfffTfDI8N8+eWXPPLIIxV9zxNPPEHRLPLRxx+VG2/uJcvBxHJGRJIkXMchHA6vePzXyqSoqlpx4PHVpb9vfvObyJK8ZsZlrQGxX/1+3/eJx+Nr1jetFeRsW43QHVy8eJG5uTkef/xxgks74XYTXTfo6qoln89z6dIlOjs719xhKgh72e7vUicI67S87DM/P8/09PS23W8sFuNoz1Gu9l9lcXGxou+RZZmnnnwKXdP56c9+RiaT2eKz3FqKonDq1KktD1pf/fGrvPnmGxv+/sXF9J7LVMzMzHDui3O0tbWvqG3bDYrFIsPDw0iSRDgc5p133kFRFB577LGdPjVBqDoROAn7ku/7hMNhpqenmZub27b7PXPmDLKs8Pnnn1f8PYFAgOeeew7Pc3n99dc3NLx4N8lms5imuaX3YVsWZnFjs+p832d0dGRPjeywLIt33nmHgBHg0Ucf2VVBn2maDAwOEo3FkWSJjz/+mEwmw3333beq1q6aRDsCYaeIwEnYd8p1NYbBkSNHGB8fJ31TLcxWCoVCnDp5kpGRkXUFbHV1dTz04EPkcjl+/vOf76k39a9aWFggm8vt9GncUrFYRFlqy7AX+L7PBx98QC6f48mnntzSYGS9PM/j2sAADfX1JBNxZmdnuXjpIs0tzZw6dWqnT08QtoQInIR9LRAIcOTIEUKh0NrBSJWKw2926tQpNE3ns88+W9f3HT16lLNnzzIxMcGHH364Z4Mn3dCxrY1lg7ZDvlAod8reC65evcrw8DB33303jQ2NO306ZZZlIcsyR7q7qaurw3FcfvHOLwgGgjz7zLO7KismCNUkAidh3wsGgyiKwrVr18hms1t+f7quc+bsGSYmJhgfH1/X9951110cO3aMvr4+Pvrooy06w62l68aWL9U9/MgjPPjwxra4RyMRGht3TwByO6nUAh9+9BFNzU2cPnV6p0+nLJ1O03f1KqZplgvnf/nLX1K0TB5//PFtmVW4Vy8shL1PBE7CvrRc/7BsuXfQ4ODgim3tW+X4sWNEo1F++ctfrqtmSZIkHnzwQRqbGrly5Qrnz5/fwrPcGtFIZMsbYE5MTDA1MbWh710eYrvbOY7DO++8jaaqPP7Y49s6xPp2UqkFRkZH6ersLAdIly9fYXp6msOHDtPe3r6t5yMyW8J22x1/iYJQRbcqFo3H47S1tTEwMFDuGVRW5atXVVV56KGHyGazXLhwYV3fK0kSzz/3PDU1NXz++eeMjIxU9dy2mqqqKIqypRmB4aEhhofX/7j4vs/Vq1dX//53oY8//pjFxUWeeOIJQqHdMYzY930ymTSHDx0qz2XMZrN8+tmnhMNhHnzwwR0+Q0HYeiJwEg6Umpoaenp6UBSl9Oa5hVerLS0tdHV1cf7CeRYWKmtPsExRFL7+9a+TTCZ5+513yvO+9oqrV6/uyt2BxWIRVdV2fWH4lStXuHr1KqdOndr2Lvi3sjyKp6OjoxzIeZ5X3szw2GOPIski+yPsfyJwEg4cwyjV4PT29m75st3999+PIqt8+NEv152B0TSN5557DkPX+dnPf87s7OwWnWV1LY9aKRaLO30qq+TzecLh3ZG9uZXJqUk++vgjmltauOeee3b6dPB9n/HxcWZnV+8Sff/990mlUtx9992lDNQ2LpuJdgTCTtndl12CsEUMwygt2129yiFJYqveSkOhEPfeey8fffQhAwMDq+bF3UkwGOTFF1/khz/6Ea+9/jovvvACdXV1W3S21RMIBDBNszy49uZhuIqiYBgGi4uLOK6L73lIskxtMsni4iL5fL48mqWpqQnbtpmZmSkHnolEgrb2dupr6xgeHi7dXzBAY0Mjs7Oz5YBNlmWampooFotkshkkSoN5I0vnlE6ny6NWNE1D07RV42C2WyaT4a2fv0UkHOHJJ57YFXVNw8PDuK7LkSPdKzJ1Fy5eZGBggJbWVk6dPAlLv4vtJOqbhJ0gAidh36n0xTSRSCB3dJD64guCnZ1bdt167NhRBgau8fHHH9Pa2rruwuR4PM7XX3yRn7z2Gq+//gZf/8bXSdbUbNHZ3p7v+3ieh6Io5cG77lJQ1NTURCq1wOzsDJZts7CwQCAQQFVV+q9dKwUpskwymaS+vp5sNlseLqzpGlD63cmKXJ4JtzzSJbxUT7Oczeo6VBq1Eo3FAFCXRr4s7/BaHty7/Fzw3FIg5rouhq7jeR5zc3NLQ4s9YrEYzc3N9Pf3UygWkGUFQ9fp6ekhlVogm82Ua7dqamqQZRnTNNG00rJfNd7AbdvmrbfewvN8nnnm2W3ZmXan81FVlYaGBoLB4IqfcWZmhs8//4xYLMYzTz8tAhjhQJF8sadT2GfGM+Nk8hna4xXs7ikW8a9dw65JkvX9NQfZVsPc/Dw/+tEP6T7cveExFPOpFG++8QaO4/K1rz2/JTvXPM+jWCximhaOYxMKhQiFQly9ehXbcXBdh3gsTmdnJ5OTk1iWVQooVIWG+gYsy8K27fL8uuUhutX2O3/vb6BpOr/xg9+t+Htc16W3t/eOI2E8zytnyAKBQHnAsOOWBgXX1dXhui4jIyPYjoPnuTQ3NVNfX8/o6Gj55w4EAuWM250eA9/3eeuttxkdG+G5Z5/b8bqmdDrNyOgo3YcPr5qJl8lk+NGPfoSmabz88svlCwFpcBAaGmCLd1QuKzpFJnITdNV0EdbvPFRbEKpFZJyEA0+SJFzPZXxyEsextyQgqU0mOX3qNBcuXKCtrW3N4bR3kqyp4cUXX+RHP/oxr73+Oi987Ws0NDSs+zie5yHLMrlcjkw2g1k0MU2Tzs5ObNvm+vXr6LqOruuEQiEkSaK1tbWcXVlePlprQK9hGBiGgW3bXLs2wPHjx9Z9flsll8thGMYdgxhZllcM9Q0Gg2sO1D12rPSzLS8rAkQiUWzbwrIsXM8lGo0yPDxMNpdD1zQMw6CjowPbtnEch0AggCzLfPnll4yOjnDvffftaNDk+z6zs7NMTU/T2dGx6ud2HIfXXnsN27H52gsv7Ghbh+XHXGS7hO0mAidh35GQVvVxupOAYXCku5uBgUFcz92Sie533XUXExMTvP/+B9TW1pa3c69HPB7npZde4sc/XgqeXvjaLbtJ37ysNjs7SzabpVAo4vkep06exLYdfM8nEo1SW1uLtvTGvhwQ3CwcXt8Vvaqq2LaF4zi7ZgdbvpBf989RiZvrkNbKWHZ2duI4DqZpYtk2kiSRy+WZmprCsk3Si2kGBgbo6uqitaUVy7K2LFNXCcuy6DlyZNVSoe/7vPnmm+TzeR577DFqk8nV3yyCGOEA2PnKQ0HYJUqz7boJGKWr7GqvYiuKwuOPP47rubz33nt4nreh4yQScV5++SVUReWnb/6MmZkZ4EZdz+TkJAMDA1y8dInR0VEAZEUhFo/T1dXJyRMnysdpbm6mNpkkEolUtRB5q3fWaZqOvlQXVSlVUYkt1URtJ0mS0DSNSCRSrk2rqUlw/PgxahI1DAwO0NDQwH333UcqNU/f1atcvHSJ+VQKKC2NbXXfKdu2GRoawnEcWltb16yv+uKLL5ienubEiRPr3uQgCPvJ7rgUFISdIkmlj6UgSdM0Eok46XSayclJurq6VizbbFY8HuehBx/kgw8+4MLFC5w9c3bDx3nppW/w+uuv85PXXuNoTw+dnZ00NTUhyzLJZC1toWD53HeimDwWj204OLyTl15+ad2B3m7bjTg9Pc3b77xDTaKGZ599Fl3XOXz4ML7vYy9lpjzPY2pqikKhgKbp1NXVUldXV15urYZ0Os3o2Bi1yeQts4NffPkFX375JYcOHeL++++vyv1u1nqzyoJQLSJwEoQ1RKNRCsUCV/v76ezo2NCy2q0cOXKE69evc+7cuXJRcSV83yefz5PJZAiHw0QiEU6cPMmF8+e50neFaCxGU1PThuqetsJWLHcue+WHr6DrOkcffKair8/lcszNzdHR0bFl57Qe86kUP/3pzwgFgzz33HMrgnNJklb8/5EjR8q/+2VXrvShKDKxeIxYNLbhzuKO43D9+jjtbW23zMZduHCBL859QX19PY899titlxB3aJ+R6OMkbDexVCfsO5IkbXqZTZIkGhsaaWttrXrjSUmSeOSRRwgFQ7zzzjtYlnXLr11efisWi1zq7WV0dAzP88pb40+fOsW3v/1tYtEYn3z8MefOnds1w08ty2JsbGxLju05Lq5d+fJVNpdFWWpZsNMymQxvvvEGiiLz/PPPVxT0SJJEOBwu12gdO3aUpqYmPNdjYWEBKO3czOVyFf3+TdNkcmoSRVE4fvzYLYOm3t7LfPbZZyQSCb72ta/tir5SgrDTxF+BINxGPB6nq6sL27aZmJio2tKTYRg88eQT5PI53n33vVVvdpZlMTk1Se/lyywsLGIYBocPHeL48WO0tLSs2O0UDAb51re+RXNLC19++eWm6qeqSVEU5lPzuyKQy2VzhEI7v2W9UCjw5ptv4jguz3/taxuuuZJlmVgsRktLCy0tLQA4js3IyCiXL1+5bbA/n0pxtb8fWSq9/N8qgzQ6OsrHn3xENBrlG9/4RmVF/qI4XDgAROAkCHDHZQZZlikUCgwMDGDbdlXusrGhkfvuu5+xsVHOnTu3dBo+pmnS19eHYzt0dnSQSMSRJGnNLfHLFEXh+eee48SJEwwMDPDjH/+4aue5UYqioKk6hUJhR88DSo9rJLKzgVOxWOSnP/0p2VyO555/tup1Z40NjRw/foz29jbkpeza9PT0iiW+xcVFpianOHzoEA0NDbcMmoaGhnjr7beoTdby8ssvo2nrK8TfDqIdgbBTRI2TsC9VXDha4YuuoigcOnSIqakp+vuvcfz4saq8YJ88cYLFhQXOnz+PZVkcWnpDO3HixLqXliRJ4oEHHkDXdb744gv+7M/+jBdffLGq9VnrFQoFMU1rwzU4t/Lc88+ta9lop3eBLWeaFhYXeObpZ27ZQmKzJEkq/75938fHZ3BoCEPXqampIbm0g/J2z62xsTF+8e4vCBiBVfVXt7ULspyCsB1ExknYd7aqWFSSJJqamjhypBtJkpibn6/KklhnZyfhcJi+q33lgG8z9Th33XUXjz76KPlCnldffZW5udXDWbdLR0fHlnRjP3/+PBcvXqroa2dnZ1lYWKz6OVQqn8/z2muvsbC4yHPPPkdbW9u23K8kSdTX1ZOIxykUChQKhdJIm9sEnIODg/z8rZ+jazovvfTS7RtcOg6k0zA5iTQ0BI4Lt8mKCsJ+IQInQVgnTdPwPI9MOk1f39UVSyHr4XkekiQRCAR44YUXCIfCvPXzt8hms5s+xyNHjvCNr38DgB/9+EecP39+08fcCNd1y32mqml6apqZ6cqOm0qlkOWdWc7JZrP85Cc/IZvL8bXnny/XI22X0dFRHMfh+PHjtLW1kc1m6evrwzTNVV/b39/PL979BcFAkJdffnl1s1DPg2wWZmaQRkdLH6kUku9DMgk9R6DKmcXb8dnZgczCwSUCJ0GAdW+llmWZzs5O6hvqGRgcJJfLrev7C4UCl69cwbZtamtriUajPPPMsziuy89//vOq1CfV1dXx0ksvkYgn+Pzzz3njjTdwHGfTx10PWZaZnJzc8gaOt+I4DsVicUeWK9PpNK+99hqFYpGvfe35NUfUbAXHcRgfH8d13fJ4n+UapXA4TE1NDf3XrpWbk/q+z8cff8z7779PY2Mjv/Irv1J6vHwfCgWYn0caHUMaHkaanUUyTaRIFFpa4PBh6O6GpiaIRrfl5/sq0Y5A2G4icBIOtk1csUqSRG0yydGeHkKhENls9ratBZY5jsPA4CBNTU0rim5rahI8/dRTpBZSvPXWW1UJcsLhMN/85jfp7u5mYmKCH/7wh6TT6U0ft1KyLGMYxoazcpu1HDRt9zb6hYVFXnvtNSzL5sUXXtiymqab+b5PKrXAlb6+cuH0V5d8JUmioaGBpsZGJicn8X2ft99+m97eXhobG3n+8SfQc3mk8YlSoDQ1hZTNIgWD0NgIhw5BTw9+awvU1MAaHcYFYb8TgZOw7xiqwYK5wOjiKFPZKRaKCxSd0oy2raDrOpIkUSwW6bt6lbn522/Bn5qaIh6LrbmrqrW1lUcefoSJiQneevvtqmRqZFnmscce44knniCfL/Bnr7zCtWvXNn3cSkUiEfKF6gZOPcd66Dl6pKL77urqqup938n09DSvvfYTXNflhRdf2LaO5ZZlMT09RWdHB62trbetk6utraWtrY2fvfEG41eucDQW58Vjx1Cnp5EyaVAVqKuDjg44ehS/o730/8GgaDkgHHhiV52w7yQCCY7WH6XoFClYBQpWAd/08T0fVVbRZA1DNTAUg4CvUK22iHV1dYRCIcbGxijk87csAr7Tkk1PTw+e5/Hhhx/y9tvv8PTTT1UlY3Lo0CFqa2t5/fXXee+995iYmODRRx/d8mxMfX191e8jGomhqLf/zfm+z/j4OM3NzdtWCzM4OMi777231BH8eRKJ+Jben+d5zMzO4Hs+TU1NHD169PY/q+dBoUBxfp4PfvYzMrNz3HPyBCfvvrtUnxQKQTgMu2Qw8+2IdgTCTtn9fx2CsAF1oRtX+Y7nUHSKmI6J6ZoU7SIZO8OitYhvWgTS40iaiaba6IqOoRroysbm04VCIXp6enAcp1wYXV9fX7769zyPdDpzx51mx44dw/U8Pvn4Y9555x2efPLJqgQfsViM73znO/z8rbcYGBhgenqap595Zktn2amqysLCYrkfVTV89umnaJrOs9/9tVt+TWk8TZbW1q1PrPu+z5fnvyyPJnnmmWduvyOtCuZTKSYmJgiHQuVgfNXj6/tQLEKhgJQvgGMzOzfH+7/8JQVFpvnsGY6/8ILYDScI6yACJ2HfU2WViB4hot8oEPZ8D9MxKRaz2FNpCqpCwS2QdbJ4BQ8JCVVSy0HUcoaqkjd+SZLQNA3HcbBtm8tXrtDc3ExNIgHA2Ngo0Wjkjp2YT544ged5fPbpp7z77rs8/vjjVQmeVFXla88/T19fH59++hk/+tEPOX7sOPfdd9+WZJ8kSWJychLD0Kvez+l20uk08fjGOnOvh+u6vP/++wwODtLV1cVjjz22peNdisUigUAAz3XXnqNoWZAvIOXzYC3tnpNlCIW4MHidzy5fRmps5Jlnn2V+fh5piwM8QdhvROAkHEiyJBPUggQlDT9cjx+vwY/FsF2rlJVyipiORdEukLfyeEUP/FIQpis6umJgqDqGYqDIa79JqqpKe3s72WyW69evEwwECAaDRKNR5ubnKioYPn3qFL7n8fnnnyNJEo899ljVgpujR4/S3t5eLg4eHR3lmWee3ZK+S7FYlGw2u62BUzab3fLt/8VikbfffpupqSnuuusuzp49u2VLR8VikYmJCQrFIseOHr1RO+U4kM+XskrFYinLJMulwu3aWgiHsVWVdz/4gMHBQZKNTbzwwgu4rovv790t/RU3uRWEKhOBkyAskSQJXTXQVYOocSNT4bg2pmuWMlSOiekUydhpFi0P3/ORJRld1tHVG5kpTbmxWy4SiZRrTyYnS4NVZ6ZnqE3WVjT/68yZM3i+xxfnvqBQLPD0U09X3s35DoLBIC+++CKXenv57LPP+OGPXuG+++7nxPHjVX1DDYcjzM3N0tDQUJXjBUJBjDs8BkeO3Ll4fDPm5uZ4++23yeXzPP744xw+fHjL7mtxcZHRsTEa6uvpbG9HXl5+KxTBsUuBkqZBInGjVmlpx+b8/DyvvfIKhUKBe+69h7vvuhvHcQiFQkR3qIVANYl2BMJ2k/zdMIFTEHaK4+BfvYqfSEC88kJe13OxloIp0zUxbZOCXcDHLzW2REKTNHRVR1d0AmoAXdFxHIfJyUkWFxepb6inJlFTcRDU19fHLz/8JYl4gmeffbbqvYkymQzvv/8+U1NTJBIJnnjiyapln1zXpVgsrm6quEGX3n8DSZY48fDza35+PpXC0PWq3d/NfN+n9/JlPv30EwJGgKeeeqpqAeHNbNtmZmaGWDRKUJbx83k00wLbKu1sU1WkUBg/FCwFSl9ZcvN9n97eXj786ENkSebJJ5/k0KFDZDIZhoaGOHLkyG3nH+52aTPNvDlPT23PigsVQdhqInASDjbXxe/rw4/HS1frm+D7/spgammpz/Gc0mgWHzRZQ1M0fMfHKlgszC2QiCVoaWmpKPs0Pj7Oz996C01Vee6556itrd3UOa/1MywHBb7v09XZxSOPPFKVIa/LPa6qkS37nd/8G+i6wa//w3+86nO+73P58hU6OtqrHjiZpsl7773P2NgoLa2tPP7YY1UvAncch8mREdJTUyQDAerCETRdA1lGCobww0sZpdu0Bshms3zwwQeMjo4SjUZ58cUXiUajTE5NMjszS1dX157PNonASdgpYqlOEKpEkiQMNYChrnwjtV1rRTBlOkUs2cILeeiKwZXhPvqnrtHc0ExrYwtBLXjLN4KWlha+8Y1v8NM33+Qnr73G0089RWtra1V/hpMnTtDR3s77H7zP0NAQ4+PjPPDAAxw+fHhTy3fzqXk816tO3ZEPvrf2NV+hUMr8Vbueanp6mnfeeYdCscC9993HqZMnq7ec6boUUym8bJag7xOcm6O5vgE1Grmx9BYK4d+h6Nz3fc6fP89nn32Gj899993HmTNnyv3AfM/n2LFjVVvq3UmiHYGwU0TGSTjYqphxWtfdLi31FZ0iRdvk+tR1Upl5FEkhGo8RCgYJKKXlPX2pCF1X9PKbRC6X42c/+xmphRT33lvlN/GbTE5O8sknnzA/P08kEuGxxx/bcBfsQqHA4NBQVeqnfufv/Q00Tec3fvC7q895ahL8O/fLqpTneVy8eJHPz31OOBTmySefpL6+fnMH9f1yQXdxfp756WnyhSL1zc3UtLXdyCqtI9O3uLhYek6kUsRiMZ599lk0TWNqagrP8+jp6dlXQcZicZGUleJo3VFUWeQAhO0jnm2CsAMUWSEohwhqIQhCc6wZ3/eZmp1keGyY6ZlpjJBBvC6O4irlpT5VUpeK0AM8+eyTfPTLj/ns00+ZmJjg8cceq3rNSlNTEy+//DIXLlzgiy+/5LWfvEZLayuPPPzwupfBlpe0CoXC5rNB0tLHGhobGm/buX095lMpfvnBB8zOztLe3sGjjz6CsdExIzf1U/LNIrbrogUCTGdzhDo7aWprQwmH171XzPM8Lly4wOeff47v+9x9993cc889TExMMDk5SUNDA8lkcl8FTYKwk0TGSTjYljNOsVhp9tYu4Ps+szMzzM7O4jgOidoEsq5ghHQs16ZoF7BdG8/38DyPocFhei9cIqSFePKxJ+ls69ySK3DTNPnggw8YGR1BlhV6jhzhrrvuWleNTyaTIRAIbLpm6sK7ryHJEqcefWHV8R3H3XRRu+M4nD9/nvMXzqNr+saWKm0b8vlS40nLBN/Hdl0WikXmikVCdXV0HDtW2hG3QcPDw/zyl78kl8vR2NjIkSNHsG2bkydP4nkeiqLs24BpsbjIgrVAT12PyDgJ20oETsLB5nn4V67sqsDpZo7jsLiwwMzMTHlg7eHubjw8rHLdlMnk7CS/eO8XpLMZjvb0cOrkqfLynq6WdvVpslaVN9GFhUXOnfuckZERJFmis6OTBx54oOJsV7FYxDAqayZ6K//0//abaJrGf/t3/q8rbh8YGCCeSFCbTG742JOTk3zwwQdkMhkOHTrEAw88UFlw6Lor+yl5HkgSvq5jqSpGMsng1BSqYVBbW7uprNvs7Czvvfcec3Nz6LrOkSNHqKmpKX9Uo5h/t1soLrBoLXK07ugte6kJwlYQYbog7GKqqlJbV0eytracheq9dIlYLFYKpKJRYtEojV1NnGw9ybsfvEvv1V7MRZN7HrgHL+CRM3N4hRu7+krBlIGx1BFdltaX8Ugk4jz99NPMzc/z8UcfMTQ0xPDIMCdPnOTkyZO3DaB832dgcJCuzs5NBQ7ZTBZNW1ngbJom+UJhw0N9i8Uin332Gf39/YTDYZ5//vnbF7L7PhQKpUAplwfXKWWPVBUpFsfSVOaKBebSpSxbdzRKVySy4YDR933S6TTvvPMOMzMzyLJMV1cXTzzxBKqq7tvMkiDsNiJwEoQ9QJIk6hsaqG9ooJDPoxsGU1NTpObnSc3Pc/ToUSzT4njPCRprG/n888/56I2POHXqFKfOnsKTvaWdfRZFq0DRKuL53orBxzcHU5UsfdQmk3z9619nbn6eL859wcWLF7nUe4mO9g7uvffeNbe7S5JEMllDKpWq+q63bDZLsqZm3Z3VHceht7eX8+cv4LilZa677rpr7ayNaa5cflvupxQu9VNyDIO86xKLx5kYGQGgq6ur/LOuN7hJp9NkMhnm5uYYHR1lanoKSZI4fPgwDz/88JbPwxMEYTUROAkH2/Ib2R5asQ4uvQk3NTURCgZJpVJcunSpnGkxDIOTp06RXlzkwsWL9Pf3c/bsWXp6eqgNlZbIHM/BcpZGy7gWpl0ka2dIL3VDl5BKS31LDTxvN/i4Npnk2WefYW5+nk8+/pjh4WGGh4dpbGrk7JmzNDU1rQgYahI1XL16lebm5qrOxqutrV1XUbjneVy9epUvvviCYrFIS2sr995778qBx0t1SuXlNyhllQJBSMTL/ZTmFxeZm5sjl8uRSCSIxmJ0dHRUfC6+77O4uEihWKCQL2AYBq2trVy/fp2RkREmJibwPI+2tjYeeeSRPd+DqRpElYmwU0SNk3Cw+T7+5cv40Shsoi5mpzmOg6IoLKRSjI2NEY/HSSQSZLJZPnj/fdKZDLFolPb2du655x5832dhYYFAIFAq1tZ1kCjXTRWdIpZjUbSLuL67ooFneejxLQYfLyws8uWXXzA2dh3HsTEMg56eHk6dOlXekbawsEgsFt1w4PSTP/kXKKrK1/7cXwRgZmYGVdUqKgr3fZ+RkRE+++wzMpkM9fX13HPvPTQ1NpXqlAqFUlapWCz9//Lct5v6KTnAwsIClmXR0tLC3NwcsiwTi8VuOeDX87xS0Oo4zM3PYRZNisUiyWSSuro6hoaGMAyDQCDA3NwcFy5cIJVKIckSPUd6OHnyJMk9/ByttlQhRdpOc6z+2LqXmwVhM0TgJBxs+yRwupltWaRSKRYWFujq6sJxHC719nK5txfbtunu7ub48ePYjoNZLGKaJo2NjSRqahi4dg3DMNA0jUgkQjgSIV/M4eBgezama1Gw8jieg+/7q5b6AkvBlCIrOI7D1av9XLp0kVwuhyRLtLW2c+bMaZLJJLlcjsgGa37+j3/7T9FUjZe+/9/iui69ly/TffjwbeurPM9jaGiI3t5e5ubmiMVi3HvPPbTX1SEVi6XlN8cuZSE1rTTOZKmfkq9pWJaFYRiMjo4yPz9PLBYjkUhQs5Sh8jwP27axLAvHcaipqWFhqbDfsixsx6bnSA+apjEzM1MOkoLBIIqiYNs2fX199Pb2kk6nUVWVI0eOcO+994oluTWIwEnYKWKpThD2GU3XaWhspKGx1KjSdV3q6+pQTp9mYmKCwcFB+q9do6uzk7vuuovaujqglIlpbGzENE0s28Y0TSLRKFPjU2QyGRRFIRgMcuRID3PzsyxkF3AlFxcXOSCTNheZy9vIslzqNyXrNHTW03b4BTILGS6ev8TY9TFGR0fQdZ2amhqOHTtGZ2fnuoOny5cuo2k6LwGzc7NEwuFbBk3FYpG+q31cuXyFQqFAPBDgsVOnONzUhGxZMDNTGmcSjqyY++ZLEtPT06RnZ8nlcoRCITo6Oqirq0OWZVzXZX5+nnw+T2trK4ODgxSLRTRNwzAMEokEgUCAxsZGDMNA1280MF3u9u55HiMjI/Re7mVqstSosq6ujscff5zu7u5bZq8EQdg5InASBNhTNU7rFQyF6OzqoqOzk+PHjuF5HufPn+fKlSsMDQ+Xlqruvpu29naisRhfrZ453N2N7/s4tl0e3RHQA4S0MK7j4DgOLbEWTMvkcv+VUp8p3yZRV0M0FqF3sBfP9wi1BDnZfoJ8Ls/o4Bhjk2NMTk4SCAQ4fPgwra2thMNhZFlGkiQCgQCKolBcqi2SJAlFUdA0DU3TMQydYrFIsVCkqakJx3GwbbuUCfN9isUily9fZrC/H6VYpCEapaezk46ODhbSaeZSKdxAACJhGju7GJ+aIjU5ieM4ABw/fpxisUgulysXiheLReLxOLIilzNzy8uPa/V5Wl4KvZnneYyPj3P16lXGx8cxTRNZlmlobODuu+6mublZ7JCrgL/UKlS6VSdUQdgiYqlOOPD83l78SASqPDB3tysWCnz55Zf09fVh2TY1iQTRpTqompoaYrEYgQ10Ivd9v1QTBciyTGpxnpyZo+gUcXDQDI251ByL6UVGR8coZgvks3kUFEJaiLpkHclEkp6eHmpqarh6tb9cCByPx2hpaeFP/9//hGgkRsupB1FkmWPHjjE3N8f18evMz8yRnpykmJpHd13q4gkaW5oJ19QQbmgg3tzM2Pw8lufhui6hUIjW1lZ6e3vRdZ1wOEw0GiUcDlctgHEch+npaS5dusT4+DiO45R7YB06dIj29vaKhjwLN8wX5snYGY7Xb36EjyCshwichAPvoAZOyxzHof/qVa729zMzMwOUdsp1dHZy5vRpRkZGUFUVwzAIhUJEYzF839/Um5Xj2piuyWIujS/7ZPJp+gauMjo8wkJ6ETxQJJl4ME5jXSNdHYc41NFVzt784T/+n4lF45x58ht0dXQwcvUq4/39pMbGUFyPWE2Cto5O2o4fw9F1TEWh6PvlGXNDQ0OEQiGCwWApQKxyDZHjOOVl0ampKTLZDPiABHW1dfT09HDkyJED0ahyq4jASdgpInASDjz/8mX8cPjABk43W1xY4NrAANf6+8lks6iKQnNzM4maGuKxGNFYjObmZkaGh1lcXMQwDAzDoL2jA2epLkpVVRRFQdW0inbNZTMZTNMkkazBck3yZp7x6XEGRwYZuT5COpvG83zwoTaeJBKK4I8MoBYtwvE2cvMpJCAYCRNraiLa1IgUjnDqvvtYTKeZm5srn2cikah6sOK6LouLi8zOzjI5OUkqlWI+NY/vlV5aI5EIjY2NHD58mMbGRnR97bYOwvrM5efIOllONJzY6VMRDhgROAkHnn/5Mn4oBEtF0kJpuW16aopr164xOjpKLp8HIBgI0NzcTHNzM3V1dRiGgW3bJGpqyKTTTE9P47oujuPQ0dFBIBDg8uXL5WCqpqaG+oYGJiYmcGy7fH+Li4vU1dVh33Tbct3SlWtXGBsdZn5yjOJiCruQRvJ9PMBRFAiGCSZqCSXrqEs20FjXSE1NDZFwhGAwuOklMN/3cRyHYrFIPp9ndnaW2dlZFhcXMU3zRjZpSWyph1NDQwMtLS0iUNoiInASdooInIQDTwROt+f7Ppl0momJifJHYalgW1nqXRSLxYgnEsSX/h2JRNA0DUVV8ZdqiVzXRVEUjECAhVQK13XL9VC+7zM8PIyulwq+s+k0diZDYXYWJ5NB9jyQZeJ1dSTb2/nF559SMGQefupxFrILjE2Mkc6mcb3SMWVfRpEUVEnFUAyCWpBELIFhGOUCdyTQNR1d18nlc0s3SXh+qd9SejFdbiPAGq+SgUCAmmQN9XX1BINB6uvrSSaTolZpm8zl58i5OY7XH9/pUxEOGPEXLgiiPuK2JEkiFo8Ti8c5dvx4aWba4iJTU1MsLi6yuLjIwsICIyMja8UXKLK8tBNOQ1VVXNfFtm1s28ZZDmJ8H8W2US0L1bIIaRqRaJT6+nrCp08Tb26mtr2difl5AoEA8x99REDReO6R58r3Y7s2qXSK+fQ86VyamdQMqUyKfD5PsVhk1p3FnrPxHR8VFUVS0GW93EOpdBo+mqaVi8Nj8RiGXqrtWm4vEI/Hb9voUhCE/U0EToIgrIskSaXsUiKx4nbP88hmMqTTafL5fDk4sh0H56bGkMstBXRAd11020b3fQzDIByLkbZt9ESC2vZ29HgcWVFIpVL0j44Sj8dpamoq1VB9JbOjKRoNNQ001DTcOCffw3Kt0miZpa7oBauwohu6KqkrOqFvZPCxsP38NcN0Qdh6YqlOOPD8K1fwg0GxVLfVHKc09y2fh2IRyfNAUcAwkMJhCIchGMRyXaanp0mlUmiaxvHjx5mfn0fXdSKRCADT09PIskzdBn5nvu+XuqCXZ/WZFO0itmuXBx8rknJjtMxSMFXJ4GNh+8zmZym4BY7VH9vpUxEOGPFKIAiwrxtg7hjPK899o1hEsu3S3DdNQ6qpuTH77Su73HRFoa2tjba2tvJtX53R9od/+IcEg0F+4zd+Y92nJUkSulIaXhw1brT7dDynnJUyHZOCXSBjZ1i0FvE9H1mSy7P6AmoAQzXQZE1shReEA0YEToIg3viqw/fBNCGXg0IBybJKj62qljJKoVApq7TUaXszCoUC1U6Wq7KKqquECZdv83xvRTC1vNSXM3N4hdWDjwNqAF3RxVLfNhCLJcJOEYGTIAgbZ1mljFKhgFQsloInRUEKhUpDk0MhCAb3bHAqSzJBLUhQu9FB3fd9LNdaFUwVrAK+uXLwsVjq21oi2yfsBPGXLAhCu8yGlQAACFVJREFU5Vz3Rp1SoVCqU5JlCASQ6upuLL/t4x1nkiSVi8m5KXnmeM6KIvSiXVyx1CchYSgGuqqXgyldET2eBGGvEYGTIICocboV318ZKDlOKVBSVaREorT0tkad0lb79re/vev6JamySkSPENEj5duWl/puLkIvOAWyThav4CEh3djVp9zY2ScyKYKwe+2uVx5B2AniTWqlYvFGoGSaN+qUIpEbGaUqz3Zbr2vXrqHrOvfcc8+OnsedVLLUV3SKFOwCeSuPV1xqkbC01LdchG4oBoq8f7N4GyHaEQg7RQROgnDQ2XY5qySZZmk3nKJAMFjKKi3XKVUwd267XLhwgUAgwK/+6q/u9Kms262W+uylwcfLwVTRKZK203iWV97Vp8t6eakvoAbQlIM9JFhCXPQI208EToJw0Nxcp1QsIrluKSgyDKTa2gNRp7QbaYqGpmgrlvpcz11RhF60i+Sd/IqlPk3SVtRNiaU+QdhaInASBNjfNU6+f6OfUj6/sk4pHr8RKIlhtLuOIiuE5BAhLVS+zff9FcHUcs+pm5f6NLkUhN0cTO23pT7RjkDYKSJwEoT9eHV+cz+lm+uUvtpPaY/+7MePH0c/oIGeJEkE1AABdWWdme3a5SL05eW+ry71GYqxoiP6Xl/qE5k1YSeIkSvCgedfu4Yvy9DYuNOnsnE31SlRLCIt9VMiGLwRLO2yOiVh6y0v9S23SSg6RYp2sTRaxvfLS303z+rTFX1PBCRT2Sk82aM72b3TpyIcMCLjJAh7keuWlt9yudvXKe2yLfvC9rrTUt9yhqrcDd1bvdS3vLNPdEMXhBLxqioIsPtrnG6uUyoUSnPfJKk09y0Wu9FP6YAuXwmVu3mpL068fLvlWqvqptJ2mgVrYcXg45tn9e1kN3TRjkDYKSJwEoTdyjRXjjORJJDl1f2U9sCyirD7lQcfc+vBx0WnSNbOkrbTqwYf78RSn2hHIOwEETgJwm4JPByntPT21TqlQACpoaGUVRJ1SsI2WvfgY2/14OPlnX1iqU/YL0TgJAg7xfNWFnQvtwkQdUrCLnarbui2Z6+Y1VewChStpUL0m5b6xOBjYa8Tz1pBgO2pcfL90jiT5TYBN9cpRaM3AiXDuPOxBGEXkSSpvNT31cHH5eadSzv6vjr4+Kt1U5UOPvZ9X2SxhB0hAidBkKStC5xurlMyzdJtslxqEVBbW1p+E3VKwj51p6W+cpsEu1ha6iusXOq7OZgSQZKwW4jASRCqyXFWLr8tz30LBJDq629klUSdknBAVTL42HRN8laeglXAN318zy8PPl5e6vM8DxnxdyRsPxE4CcJmeN7KfkrLdUq6jlRTc6NLt6hTEoRbqmTw8fKsvuWlvrn8HJ16586dtHBgiVdzQViP5Tql5eU3y7oxzkTUKQlCVd1u8HFrvJVEILFzJyccWCJwEoQ7sawbA3K/WqeUTN4YZyLqlARhy63VDV0QtpMInAThqwHPreqUDAOpru5GPyVlf02bFwRBEO5MBE6C4PulIGlmphQo2fbqOqVQCLS9PUleEARB2DwROAkHnhQMwuRkKVBanvkWDos6JUEQBGEVyfd3+3RTQdgGhYLopyQIgiDckQicBEEQBEEQKiS6hwmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAgVEoGTIAiCIAhChUTgJAiCIAiCUCEROAmCIAiCIFRIBE6CIAiCIAj//3brQAAAAABAkL/1CgMURZM4AQBM4gQAMIkTAMAkTgAAkzgBAEziBAAwiRMAwCROAACTOAEATOIEADCJEwDAJE4AAJM4AQBM4gQAMIkTAMAkTgAAkzgBAEziBAAwiRMAwCROAACTOAEATOIEADCJEwDAJE4AAJM4AQBM4gQAMIkTAMAkTgAAkzgBAEziBAAwiRMAwCROAACTOAEATAFkZu6UB29DlAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from mindquantum.core.gates import RX, RZ\n", + "from mindquantum.io.display import BlochScene\n", + "\n", + "# %matplotlib notebook\n", + "\n", + "state1 = np.array([1, 1])/np.sqrt(2)\n", + "state2 = np.array([1, -1]) / np.sqrt(2)\n", + "state3 = np.array([1, 1j]) / np.sqrt(2)\n", + "state4 = np.array([1, -1j]) / np.sqrt(2)\n", + "scene = BlochScene()\n", + "fig, ax = scene.create_scene()\n", + "scene.add_state(ax, state1, pointcolor=\"red\", linecolor=\"red\")\n", + "scene.add_state(ax, state2, pointcolor=\"blue\", linecolor=\"blue\")\n", + "scene.add_state(ax, state3, pointcolor=\"yellow\", linecolor=\"yellow\")\n", + "scene.add_state(ax, state4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise 3\n", + "\n", + "对 $|\\psi\\rangle = \\frac{|01\\rangle - |10\\rangle}{\\sqrt{2}}$ 的两个比特进行测量。" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "state:\n", + " √2/2¦01⟩\n", + "-√2/2¦10⟩\n" + ] + }, + { + "data": { + "image/svg+xml": "
\n\n\nShots:\n 100\n \n\nKeys: M1 M0\n \n\n\n\n0.0\n \n\n\n\n0.106\n \n\n\n\n0.212\n \n\n\n\n0.318\n \n\n\n\n0.424\n \n\n\n\n0.53\n \n\n\n01\n \n\n\n\n53\n \n\n10\n \n\n\n\n47\n \n\n\n\n\n\n\nprobability\n \n
", + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from mindquantum.core.circuit import Circuit\n", + "from mindquantum.simulator import Simulator\n", + "from mindquantum.core.gates import Measure\n", + "import numpy as np\n", + "\n", + "sim = Simulator(\"projectq\", 2)\n", + "sim.set_qs(np.array([0, 1, -1, 0]) / np.sqrt(2))\n", + "print(\"state:\\n\", sim.get_qs(True))\n", + "\n", + "circ = Circuit([Measure(\"M1\").on(1), Measure(\"M0\").on(0)])\n", + "sim.sampling(circuit=circ, shots=100).svg()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.7.5 64-bit ('3.7.5')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "fe23db6dbd04142dcf620a84033ad5fbdd1968100e6cb68cefa531a9613914d5" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/lecture4.ipynb b/solutions/lecture4.ipynb new file mode 100644 index 0000000..9a6092f --- /dev/null +++ b/solutions/lecture4.ipynb @@ -0,0 +1,176 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise 1\n", + "\n", + "我们定义 $[A, B] = AB - BA$,$\\lbrace A,B \\rbrace = AB + BA$,$\\vec{\\sigma} = (\\sigma_1, \\sigma_2, \\sigma_3) = (X, Y, Z)$,验证\n", + "\n", + "$$\n", + "\\lbrace \\sigma_i, \\sigma_j \\rbrace = 2\\delta_{i,j} I = \\begin{cases} 2I \\quad & i = j \\\\ 0 \\quad & i \\neq j \\end{cases}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "from mindquantum.core.circuit import Circuit\n", + "from mindquantum.core.gates import X, Y, Z\n", + "import numpy as np\n", + "\n", + "x = X.matrix()\n", + "y = Y.matrix()\n", + "z = Z.matrix()\n", + "\n", + "s = [x, y, z]\n", + "for i in range(3):\n", + " for j in range(3):\n", + " t = s[i] @ s[j] + s[j] @ s[i]\n", + " if i == j:\n", + " if not np.allclose(t, 2 * np.eye(2)):\n", + " print(\"Error\")\n", + " else:\n", + " if not np.allclose(t, np.zeros_like(x)):\n", + " print(\"Error\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise 2\n", + "\n", + "写出 $R_x(\\theta), R_y(\\theta), R_z(\\theta)$ 的矩阵形式。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\n", + "\\begin{align*}\n", + "R_x(\\theta) & = \n", + "\\begin{pmatrix}\n", + "\\cos{\\theta\\over 2} & -i\\sin{\\theta\\over 2} \\\\\n", + "-i\\sin{\\theta\\over 2} & \\cos{\\theta\\over 2}\n", + "\\end{pmatrix} \\\\\n", + "R_y(\\theta) & = \n", + "\\begin{pmatrix}\n", + "\\cos{\\theta\\over 2} & -\\sin{\\theta\\over 2} \\\\\n", + "\\sin{\\theta\\over 2} & \\cos{\\theta\\over 2}\n", + "\\end{pmatrix} \\\\\n", + "R_z(\\theta) & = \n", + "\\begin{pmatrix}\n", + "e^{-i\\frac{\\theta}{2}} & 0 \\\\\n", + "0 & e^{i\\frac{\\theta}{2}}\n", + "\\end{pmatrix}\n", + "\\end{align*}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0.92387953+0.j 0. -0.38268343j]\n", + " [0. -0.38268343j 0.92387953+0.j ]]\n", + "[[ 0.92387953+0.j -0.38268343+0.j]\n", + " [ 0.38268343+0.j 0.92387953+0.j]]\n", + "[[0.92387953-0.38268343j 0. +0.j ]\n", + " [0. +0.j 0.92387953+0.38268343j]]\n" + ] + } + ], + "source": [ + "from mindquantum.core.gates import RX, RY, RZ\n", + "import numpy as np\n", + "\n", + "print(RX(np.pi / 4).matrix())\n", + "print(RY(np.pi / 4).matrix())\n", + "print(RZ(np.pi / 4).matrix())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise 3\n", + "\n", + "证明 $XR_y(\\theta)X = R_y(-\\theta)$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\n", + "\\begin{align*}\n", + "XR_y(\\theta)X\n", + "& = X \\left( \\cos{\\theta\\over 2}I - i\\sin{\\theta\\over 2}Y \\right) X \\\\\n", + "& = \\cos{\\theta\\over 2}I - i\\sin{\\theta\\over 2}XYX \\\\\n", + "& = \\cos{\\theta\\over 2}I + i\\sin{\\theta\\over 2}Y \\\\\n", + "& = R_y(-\\theta)\n", + "\\end{align*}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from mindquantum.core.gates import X, RY, X\n", + "import numpy as np\n", + "from numpy.random import rand\n", + "\n", + "n = 100\n", + "theta = np.pi * rand(n)\n", + "x = X.matrix()\n", + "\n", + "for i in range(n):\n", + " ry = RY(theta[i]).matrix()\n", + " ry_ = RY(-theta[i]).matrix()\n", + " if not np.allclose(x @ ry @ x, ry_):\n", + " print(\"Error\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.7.5 64-bit ('3.7.5')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "fe23db6dbd04142dcf620a84033ad5fbdd1968100e6cb68cefa531a9613914d5" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} -- Gitee From 90d1ec9667e9b1f32534caec804d3790aebd0a7c Mon Sep 17 00:00:00 2001 From: zhuyk6 <1773354746@qq.com> Date: Sun, 21 Aug 2022 10:41:43 +0800 Subject: [PATCH 2/3] add lecture6 --- lecture6.ipynb | 182 +++++++++++++++++++++++++++++++++++++++ solutions/lecture6.ipynb | 92 ++++++++++++++++++++ 2 files changed, 274 insertions(+) create mode 100644 lecture6.ipynb create mode 100644 solutions/lecture6.ipynb diff --git a/lecture6.ipynb b/lecture6.ipynb new file mode 100644 index 0000000..6836dd6 --- /dev/null +++ b/lecture6.ipynb @@ -0,0 +1,182 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Z-Y-Z 分解\n", + "\n", + "**Theorem:**\n", + "\n", + "任意单比特门 $\\mathcal{U}$ (任意 $2\\times 2$ 酉矩阵)都可以分解为:\n", + "$$\n", + "\\mathcal{U} = e^{i\\alpha} R_z(\\beta) R_y(\\gamma) R_z(\\delta)\n", + "$$\n", + "其中 $\\alpha, \\beta, \\gamma, \\delta \\in \\mathbb{R}$ 。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Proof:**\n", + "\n", + "我们知道\n", + "$$\n", + "\\begin{align*}\n", + "R_y(\\theta) & = \\begin{pmatrix}\n", + " \\cos{\\theta \\over 2} & -sin{\\theta \\over 2} \\\\\n", + " \\sin{\\theta \\over 2} & \\cos{\\theta \\over 2}\n", + " \\end{pmatrix} \\\\\n", + "R_z(\\theta) & = \\begin{pmatrix}\n", + " e^{-i\\frac{\\theta}{2}} & 0 \\\\\n", + " 0 & e^{i \\frac{\\theta}{2}}\n", + " \\end{pmatrix}\n", + "\\end{align*}\n", + "$$\n", + "\n", + "分别计算 $e^{i\\alpha} R_z(\\beta) R_y(\\gamma) R_z(\\delta) |0\\rangle$ 和\n", + "$e^{i\\alpha} R_z(\\beta) R_y(\\gamma) R_z(\\delta) |1\\rangle$\n", + "\n", + "$$\n", + "\\begin{align*}\n", + "e^{i\\alpha} R_z(\\beta) R_y(\\gamma) R_z(\\delta) |0\\rangle \n", + "& = e^{i\\alpha} R_z(\\beta) R_y(\\gamma) e^{-i\\frac{\\delta}{2}} |0\\rangle \\\\\n", + "& = e^{i(\\alpha - \\frac{\\delta}{2})} R_z(\\beta) \\left( \\cos{\\gamma\\over 2}|0\\rangle + \\sin{\\gamma \\over 2} |1\\rangle \\right) \\\\\n", + "& = e^{i(\\alpha - \\frac{\\delta}{2})} \\left( e^{-i\\frac{\\beta}{2}} \\cos{\\gamma\\over 2}|0\\rangle + e^{i\\frac{\\beta}{2}}\\sin{\\gamma \\over 2} |1\\rangle \\right) \\\\\n", + "& = e^{i(\\alpha - \\frac{\\beta}{2} - \\frac{\\delta}{2})} \\cos{\\gamma\\over 2} |0\\rangle + e^{i(\\alpha + \\frac{\\beta}{2} - \\frac{\\delta}{2})} \\sin{\\gamma\\over 2} |1\\rangle\n", + "\\end{align*}\n", + "$$\n", + "\n", + "$$\n", + "\\begin{align*}\n", + "e^{i\\alpha} R_z(\\beta) R_y(\\gamma) R_z(\\delta) |1\\rangle \n", + "& = e^{i\\alpha} R_z(\\beta) R_y(\\gamma) e^{i\\frac{\\delta}{2}} |1\\rangle \\\\\n", + "& = e^{i(\\alpha + \\frac{\\delta}{2})} R_z(\\beta) \\left( -\\sin{\\gamma\\over 2}|0\\rangle + \\cos{\\gamma \\over 2} |1\\rangle \\right) \\\\\n", + "& = e^{i(\\alpha + \\frac{\\delta}{2})} \\left( -e^{-i\\frac{\\beta}{2}} \\sin{\\gamma\\over 2}|0\\rangle + e^{i\\frac{\\beta}{2}}\\cos{\\gamma \\over 2} |1\\rangle \\right) \\\\\n", + "& = -e^{i(\\alpha - \\frac{\\beta}{2} + \\frac{\\delta}{2})} \\sin{\\gamma\\over 2} |0\\rangle + e^{i(\\alpha + \\frac{\\beta}{2} + \\frac{\\delta}{2})} \\cos{\\gamma\\over 2} |1\\rangle\n", + "\\end{align*}\n", + "$$\n", + "\n", + "因此 $e^{i\\alpha} R_z(\\beta) R_y(\\gamma) R_z(\\delta)$ 的矩阵表示如下:\n", + "$$\n", + "e^{i\\alpha} R_z(\\beta) R_y(\\gamma) R_z(\\delta) = \n", + "\\begin{pmatrix}\n", + "e^{i(\\alpha - \\frac{\\beta}{2} - \\frac{\\delta}{2})} \\cos{\\gamma\\over 2}\n", + "& \n", + "-e^{i(\\alpha - \\frac{\\beta}{2} + \\frac{\\delta}{2})} \\sin{\\gamma\\over 2}\n", + "\\\\\n", + "e^{i(\\alpha + \\frac{\\beta}{2} - \\frac{\\delta}{2})} \\sin{\\gamma\\over 2} \n", + "& e^{i(\\alpha + \\frac{\\beta}{2} + \\frac{\\delta}{2})} \\cos{\\gamma\\over 2}\n", + "\\end{pmatrix}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "对于任意矩阵 $\\mathcal{U}$ ,我们可以考虑其作用效果:\n", + "$$\n", + "\\begin{align*}\n", + "\\mathcal{U} \n", + "& = |\\psi\\rangle \\langle 0| + |\\psi_\\bot\\rangle \\langle 1|\n", + "\\end{align*}\n", + "$$\n", + "\n", + "对于 $|\\psi\\rangle$ 和 $|\\psi_\\bot\\rangle$ \n", + "$$\n", + "\\begin{align*}\n", + "|\\psi\\rangle\n", + "& = \\mathcal{U} |0\\rangle \\\\\n", + "& = a |0\\rangle + b |1\\rangle \\quad \\text{where }|a|^2 + |b|^2 = 1 \\\\\n", + "& = e^{i\\phi_0} \\cos{\\gamma\\over 2} |0\\rangle + e^{i\\phi_1} \\sin{\\gamma\\over 2} |1\\rangle \n", + "\\end{align*}\n", + "$$\n", + "\n", + "因为 $\\langle \\psi | \\psi_\\bot \\rangle = 0$ ,不妨设 \n", + "$$\n", + "\\begin{align*}\n", + "|\\psi_\\bot \\rangle\n", + "& = \\mathcal{U} |1\\rangle \\\\\n", + "& = -e^{i\\phi_2} \\sin{\\gamma\\over 2} |0\\rangle + e^{i\\phi_3} \\cos{\\gamma\\over 2} |1\\rangle \n", + "\\end{align*}\n", + "$$\n", + "\n", + "矩阵 $\\mathcal{U}$ 可以写作\n", + "$$\n", + "\\mathcal{U} = \\begin{pmatrix}\n", + "e^{\\phi_0}\\cos{\\gamma\\over 2} & -e^{\\phi_2}\\sin{\\gamma\\over 2} \\\\\n", + "e^{\\phi_1}\\sin{\\gamma\\over 2} & e^{\\phi_3}\\cos{\\gamma\\over 2}\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "现在我们需要确定 $\\alpha, \\beta, \\gamma, \\delta$,只需要令\n", + "$$\n", + "\\begin{cases}\n", + "\\phi_0 = \\alpha - \\frac{\\beta}{2} - \\frac{\\delta}{2} \\\\\n", + "\\phi_1 = \\alpha + \\frac{\\beta}{2} - \\frac{\\delta}{2} \\\\\n", + "\\phi_2 = \\alpha - \\frac{\\beta}{2} + \\frac{\\delta}{2} \\\\\n", + "\\phi_3 = \\alpha + \\frac{\\beta}{2} + \\frac{\\delta}{2}\n", + "\\end{cases}\n", + "$$\n", + "\n", + "解得:\n", + "$$\n", + "\\begin{cases}\n", + "\\alpha = \\frac{\\phi_1 + \\phi_2}{2} \\\\\n", + "\\beta = \\phi_1 - \\phi_0 \\\\\n", + "\\delta = \\phi_2 - \\phi_0\n", + "\\end{cases}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 其他的分解\n", + "\n", + "除了Z-Y-Z分解,还有X-Y-X分解等等,一般地有下面定理:\n", + "\n", + "**Theorem:**\n", + "\n", + "如果 $\\vec{n}$ 和 $\\vec{m}$ 不平行,那么对于任意单量子比特门 $\\mathcal{U}$,存在如下的分解:\n", + "$$\n", + "\\mathcal{U} = e^{i\\alpha}R_{\\vec{n}}(\\beta_1) R_{\\vec{m}}(\\gamma_1)\n", + "R_{\\vec{n}}(\\beta_2) R_{\\vec{m}}(\\gamma_2) \\cdots\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 习题\n", + "\n", + "## Exercise 1\n", + "\n", + "给出 $H$ 门的Z-Y-Z分解" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.7.5 64-bit ('3.7.5')", + "language": "python", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.7.5" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "fe23db6dbd04142dcf620a84033ad5fbdd1968100e6cb68cefa531a9613914d5" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/lecture6.ipynb b/solutions/lecture6.ipynb new file mode 100644 index 0000000..3cac9f9 --- /dev/null +++ b/solutions/lecture6.ipynb @@ -0,0 +1,92 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise 1\n", + "\n", + "给出 $H$ 门的Z-Y-Z分解" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "$$\n", + "H = \n", + "\\begin{pmatrix}\n", + "\\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}} \\\\\n", + "\\frac{1}{\\sqrt{2}} & -\\frac{1}{\\sqrt{2}}\n", + "\\end{pmatrix}\n", + "= \\begin{pmatrix}\n", + "e^{i0}\\cos{\\gamma\\over 2} & -e^{i\\pi}\\sin{\\gamma\\over 2} \\\\\n", + "e^{i0}\\sin{\\gamma\\over 2} & e^{i\\pi}\\cos{\\gamma\\over 2}\n", + "\\end{pmatrix}\n", + "$$\n", + "\n", + "因此\n", + "$$\n", + "\\begin{cases}\n", + "\\alpha = {\\pi \\over 2} \\\\\n", + "\\beta = 0 \\\\\n", + "\\gamma = {\\pi \\over 2} \\\\\n", + "\\delta = \\pi\n", + "\\end{cases}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "from mindquantum.core.gates import RZ, RY, H\n", + "import numpy as np\n", + "\n", + "rz1 = RZ(0).matrix()\n", + "ry = RY(np.pi / 2).matrix()\n", + "rz2 = RZ(np.pi).matrix()\n", + "h = H.matrix()\n", + "\n", + "print(np.allclose(h, np.exp(complex(0, np.pi / 2)) * rz1 @ ry @ rz2))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.7.5 64-bit ('3.7.5')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "fe23db6dbd04142dcf620a84033ad5fbdd1968100e6cb68cefa531a9613914d5" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} -- Gitee From 63b2f0f2f66686be1b73aed969bcc6419bd104d9 Mon Sep 17 00:00:00 2001 From: zhuyk6 <1773354746@qq.com> Date: Sun, 21 Aug 2022 12:57:59 +0800 Subject: [PATCH 3/3] add lecture8 --- images/CU_implement.png | Bin 0 -> 11018 bytes lecture8.ipynb | 489 +++++++++++++++++++++++++++++++++++++++ solutions/lecture8.ipynb | 163 +++++++++++++ 3 files changed, 652 insertions(+) create mode 100644 images/CU_implement.png create mode 100644 lecture8.ipynb create mode 100644 solutions/lecture8.ipynb diff --git a/images/CU_implement.png b/images/CU_implement.png new file mode 100644 index 0000000000000000000000000000000000000000..13b8aa7bf8c1a8bf12736877bd75e629a73d1301 GIT binary patch literal 11018 zcmdUVbySsKzbD<@0*6keLAp~A=@O(~DQyN2;kPU}KPDz`?;`D?XFefP+J@1h0Rip@6?_Ar@BP z3CUGjQ40+`{Lm~S!1W_HIXyQ`M=Li^Qx{7(YX?VrOLkXt7fVYAR~tvSL&R2b@Fua> zT6%6WE|#WluN@s|v|ii8z7`IShl_`2z2PgD;6_FS5BEk&KFvmI)<#Aa>=if9MoJwQ z|9V6iANOWqqQq#NJ{%kkoT99hmRH99yr&oCc_zw{rw-*tm}!yG*n=?lI})D9k|f5j5kxuDBK?M9^)wG4L$wVO8B6r4e|&lQ3X&d#-bmn2Kr}g6XPz72dgCY$bcoY(38p7d&2X_+eZ$E;}Bk+`f#r4l6 z+<)nkUbA*=1r~klyUj8yFQuoDMmg>xi>~|3n@=5!%t@0`= z{3L9z&}!vZ_guCxUY3zSr<;(uxw)SyzHs&sQt4KcmzAYgvh+sw^YgE=*w*m!@)B&M zBuA)dJ$XFmE*!>VO)4oX%ZEq6fCeWk^@av*m?Jzam;pXM!!Y#sF$%}Oe+N#VcmGOUoV?<%~=dEVWFp^OVKnmjG@pi zmp1SPZzo~bk4Oo)6#3TBAe7BBdEQ^}!fQWS*R)E%@y?J4N%Ve=P|tO@Oyvu7?VnGZ z*H4@Bk>h8@zp>M03s)&=ywdZM6(qt4B`k4$p;`E%v*J?#xyS88y^2+qXr!w6JsC-K zcVu!5C6=YE>{>M)J$;p5H^$ca4M*T+*+8~{$DUqS3}klQQNN5NUE*O*kvK;5?_0mW z9fs?{+kgvxZ@eGCR2Y8CGcmoRyxST2k&o*yLb)L-3&Mq%6)6U-8 z@~30V=i)QHM+e_2oQaduS4Spf4!ig7Sc-`z^|Pk6`s$jRA@;@rq2|4@%bu+dj$XdL zB8^QPdmbXgL|N@A2CZ*2ir+Riis*BGmBvG6Gpa@!HSg);e-`TjTbyi)y1G#;XB{+X z$V$fFP|V|C3ZB~7_?g(C(IJ$Pk@0GkqQd-StzR!--u>w4NK(O9WWo1R>~6oTb){Fr z9}NT=%ZjJVLz#{)XW;1kygQ@86}By}>TMZ8^n72b^i4zgDa7Z`xOZ%KxdNA^!TMyf z)!ODe5p_9VzWegU^~&s&L~k%-P&@YThH!Lt{wC~aWsQh<2bSFkHAwq1oY@(Kh>AxH z!KS9p;)uJxy``t&!n?gVkTciJeg8PGiQaC%e)R}p*rbl7)WqB(u5D6aMX!LU9$5HO45d`LaN5m;C|YS4YR~? zg#7cFw_%}D`8wIT&CLc10sS1=ofg3<^#WESX_)zm(KmhA|19pAvXZo#8Xh?XdE*Oj z)2h_bxw&_Jeb2hOdYqhH9<8*3$RtEZ#K!jIedWtwX9xA;n$k;7PVUt5og5^0XjW_M z|JpgjFa|{%M@I#7b9xNbEO|{$LM#--6PMGUV`E6~``7je;N6C29&*zsCGq6;7HW6R z3_Thlvvu|%jg2@@bjyPEhr}&ix+s3Y(rI++=NpN;%R}d#G1jkq0-bk;Q{ES8)=TT_ zq1TusOUx3t#cUH@%F0SztE!?wBjUG2jt{HUXlPinL)YYEZ*FmGM!d$DX8$14n^!T5zM)9Cn$`?%qie?mu}= zi`Eg*xL){s+i9rU@|)E(4_y2Uo4f_?q(5(ltU9NEX{>Fo({i(-b5~WVu@DV&L`P5# zTGeFdYGKMEV~sjo zlb^5G=)vw`zZmrWyYSWZEj=$UVg08rh*Ds`Ua)dYtXhS3=rly{SdMm=D0%({xQo%_(&tO2KIyn=pLN8PSc+Ur71 ztsd+unc^{-l;{@!bjT|@vZchftB!b%C z6>;X?&zkb2RUS0g_Vo`Rh~HK*&N~B`R9edOva9eN zn{LQYPEUR3<+nG&(gWNGJ32bby#jX^j8PL1IbKD@RZx@k_R@=q%}?iJrRo%da=ndj zf~_ep&jRk3W&Qj2Z@XmoW*RWHH;3D;YTSKa5y>fMi9?>Juu~)wvH6OQ#-Ih<-yfZx zx_Ug~=r*f0yS=D5o@Umbze$46+zkHO|DN0a#_ii_M?Pjvckmt|GpPDvDrQ|`B>2_d zxZbht-}q#BPTjY&E&d|pSYb~BGDkn>G*NPjJ|I{PXG9t}wqh&gi}qe_^O1M;^q6YQ zpxMJiau$cP|4ia@+&gwTT^_Z)kob-+7aGbU>i>P9Uk?unbhs4-JBP4(qmef0la7(q z_?v*Cwww;SjK?fn1RS#JvVPJCI*XOxYZ%jdTQHNALM@+sSlt?>zq&|wY;?OIMS@?( z$NzSE(73d_J7B(PLiOpB-d7u1ru@PIpK>wyMSni|>rL}9&ok6F#lH)dr#G`Yo4ijy zPwr-`u`KQ9_Lff99M55nnBTm6l#w1`LzJ4tkFNUA8)#xAkJ8lKOdCaa<|DQ-m>F#> zcFI?vlHTJg#ksPwatAJ4T2LF*W-z-hu|!UJIr@6apB?NsGH-odBUm>BXZCNdyKmx4s_@ht10^9sn;q_NO9i51YeL z15eE7__z7pQkAcI7w=;`!*N$PaUT$}dC-qYIbO9Lul90#9*Aa01X3yBP=`%J!*ohQ z$8Ebm88#jb&mJzN#7Tr56EaESA+Zo+lp5FLsE?|v6>G6@Jnje%#mxMpBM+(TCd9`# zly^|!xIgQaFdN4%;kMk-Dtbx|n#yVmDz&7q0mZ^~uY@UozxhJjMgh~-xlaTJ{xq{H zoe(23c?=4inwDNf{rw3E&!#mUBO`JSiwBNvbaY5@E+VsPhAh~BgZ_-Suv;s_1!LAY zuo(sc37J&(en||^&qEYh`}>6b$nx{^#Z(GcY)qGz`}ziDrHrV^u~3xL7libNtZJ68 zM$K(rJILRx^{ahvF!YN}|An2%KzqA}4n{I9KmSDJp~;yU3`g$BfT6Dv;EMpN0Q4v# zBzP$)DL^0k1_t(>Tb?Tr%He}WpyE==K6}Q}6AOt>OiUcUOz9-TJR z@u&6VzB~r)S1MnleIK>#`J!gY_!d`M<@)J}y6b(DjBWMo zzKt!k>%RH+Xa!WppW9s%E;5d~vGMV7T4oW{*W24~;QTK7nJZ`a(c&WBq%1Vf-h$U4 zsaJbqWMpOE$}Awd_ri$ESolR9f9eY>FCQO|bh{ULNM7H3C26Ck>OHB4&#ROt)ws!H zyf*jikNY^O4? z&wlNd&+KGhUtgQ{dnPF&IflZ#rBUO1g3Xc1&omO$AO~!dF$Ct^=t%%<-rIx1l6X{I zz4J!A$oenh@voe=uRO0TD9lY$W`f>q(L)zoAh>_dvZI5P6B+pU_&%4FL0ZIH@Q~nb zYspJ=DmvUJjZyP8yq#Cf^ED#7@)#JH7~OsS9UUFto=)Uz{^g_RQd?!AgY92RN{){e zsA*Za@K%|XCGG5x-%BGyk1#fO<&f!p@#_}z(1FiFKOi-ztaYg6mP5IMJ zYNo%tC)TG9c8c$4Br*`KZRR$WQu104%Q~xbD?L{-snXA$+^yR9V1P$Jj!~;GR_gxq z=%3^aDNG^#Dh!#KodHCrQItuMU`AwyR*|6GsEI5=eY8^}1mJ*Sh=@t;G?)1Wn*~QI zF1Vj6VpSY=Z@2ZoJgW#d+cX=rHz@@L5jK+N^}Vw*GoN)zs*ZN#j&R9Z(vHeVFz4px zmNqw0la-J|rJbGS13vT87?G2|1_%#UAtCkk0_7k1&`CMI=F}Aw448w0NG47`I=xg- zvfZgXUnY>lPs1dUEEzo$?9fbPSliq*pB&Dt*3*82^0!45;pVWIjgITm3ks6?dK}6t zDD-yseku79pOPMZjk!V3!{ajLKp&M8q4@gsGZjUt>FF9nTN``(?tA~+c=s)?mDN@6 zC$325S%5&~3_N?L+@(t8gSNXENDYeco2>@y+pLbpnH=X;iHG4clKtv3$MIkr(2P=cg#$`7Q&3pH}n>n3- z`9S1Q((R1w?xd=hi(j0|cIYV1M~j6hmB$hz@%?*P2QC@MsFe>%w#i9S&jo)0ht^XSwBVolxy`w@VA`w&FLOk}dYTQKta_86jQFV9N@3LhjRpS; zDgKvBK~=!a8cJ6>=$dXv0>O_P-5DrD*)}-!+8TPo^gKNHt8pN~^A4?7^_s}Ym3nL{ zrMCZsagyF`IKWsz$xc;J&+FAYR9w$E|1Yr|7&( zR2a)@$N-FrQskJOL2>6Il_g5;@%5>|m_zF-&Ya6`*?epR4ce=enyjm01|UYzqalDi z$}sFH>R2xU_4?Y$TX~g3X8sXBgrb!UMRlzK)#PD5CW^xn{r_$S-ts zgCY(7uy)FoW-9rqExml0NA5;q8SJIL4 zR2;tN4_-td4zkMxN^4)HMzj9?ApC1gawTHC05eWbPPTEhqaHgIYZk>PBI>df2MoCQ z>WM795$G320o#m8Nl92c*NTymUT4R>_>Ue5btQvMItO$+#tSy+0YwNMvW1MDCMz*E zo!`)wgAB1TA^Ty|1;!A_^Fz}KFz&+1WoNRa>;%DG=)pac>sDlZV(5CIs@0aUsi}zu zEm-Cz54mr9aRHb8l8tUmNkC%dJxd^nA5dB=|tA0SVQ2Mid8C*UE1F4CXqlY5!hLGSr z0pz=5<9sY2v8$Jy4>+oKJFH&b-a>82#=ONlEQH{r}qI~!Zuj$Ug2 zx4XLKZ!5C0Ixi*klRkVfJC6}qsS|Ms?+A)PVrOUfI>!x^)E=jN)p(~LzMoS5ZU9t0 zd4NYF68ancT!35Mk6QNC9ut8cM;56o4G1^bdHu49hGCH-SlwXRIs+I(m>&J^~yN&e~0E-YAs?)1bvOpcmi}0_?O@HYswQi3iH1ge*C` zG&dK~p!Evj+WWe1Xh`n4D=z{9VnSkKaO#v^Y0ELnmA`1T`z*hShdBO95!$1jMe?Ck*0KmGCv2gO4sgGAK$L+Cwh(rekt`hZdEW%S#2o-`}n;w%gXy z@$ewHZVbVYYp3;6y?)u%V(UFN1wT~M)s=9NiC60}v8br%_lycH+oymvMlnvl3OVb4 z58;2`2-GZEU!f#vi-^b)e&7!Ana^16t`?gKIp9Zp%U)HZ^oE z0-cbVE2*JK{m~CNNg_Eue*P6d_op57baF9i|gs&Utc5%gAuv>j^x4x?H0w-oE&7qf063gvZL--+3?Nz@G+t zD+rkx)DHpp2@$8`<5!bCxK5K|o-(-;G@P8Ivn_WR+}!3|{u|2SDpz0BSe#DF>P?QH zK0i8WJX~1>rT0X)qG#W84qiZe^F$|+A-lK=pW1Qe?PkC!#j6@OR;s(>xNKKX>WLYs z&J&dk!63)jz>uOXn>p79f3CW^4h#O}3s5yi6$+-Nv~~Wq*a_+heHjuDW|w$7t-lfp zpnCOG?zOd`=yo!=yw^(EG{6lgE`eVH8WNyO>~RFE0mOz4Zc2(#yx&Z09Qs+qG|ui1*fUwsws_{~%b(s06r* zuWu(1s@aEze%kP*ikl1P^vZfpbASR6Z)st9%+@jExhSJ#`xro8uc@8tX{eyr5seCQ zM#l;906rNJk`x|LCb&&kWLc7xyu5tOH1x?qD?RGo7@E49-qiCOA}C~If2skbX6XD0 zvaOx1NtNEui3t>R0;B?-6kc0GptDIitK%y}m;n5j`rWJTDANp&5sDxl(2OcTx04B2 zy88~1kV5c7K9LL^-$F`d&V_y?T8B#<-drJzc#E1Au0Mic9%6T`BZYjTNY?oO5Zr zO@z%g7kPUYm{AlU1rNqPKB++6BsHpHqMD`wqJ)IRRz{^bB;g4t$)0q_JA6w^OTC&6 zlDxcvi)%ylnAJJ&O1E32tVKW6(B>_vFlhl>l33_)iE&=8~~B_&%wX1fD;AXgYtCi|p5I3XlQbRE-NJ zaSECA@Y8=xPv>kj^f!b6s)SEM754L}(kPGyxI}YX8B~v)&_3uK{ zgC_4z9aTd^h_J9Qo|x6(8wXBQ6cjo>HmuOl(4+HH%anL=JvNfP`5ICnLy-{@hJ5}k z`7H76gbuw-S~U4DwTpwh! zj+xa;#`UVbj=Q(5Zs^buKy2^{NMyl;k8`vMFB|g*`r`m)TnS&C6e><^Q(e(pTLUf%`^-Dtswg$M(% z@iwz6LAOeDp&p>eF1DUX$XvUG`~oHpX_jxxh<(f9q8WdBLgL3?n_GF`XN2Jh5bplm z);?4oIUymVt~QW<>OFhJi=y$J?dXfU#ZHYELLukK+i!FpyU!P-Ez~=Ci7z+nS zPiiU|EX_sQ7#NumC9}%Z%F4<}jRU#p`O?WLXd~$E@9SGveq}=w8QRs1;{pS(OykPd zz*qcq$wn6OJRo;^o@P;>TiQekoSvOa*PY!R=Z(QfTW-R9Px+Ug>FA{N#zMq`ePj?F zT6a|j(?m!?9{INzxoZ=PKkV`P)w(}P`eW13G#2`SM6XN-*b(;imz;_OJ3Bi^+ss)P zg1@TEh9Yi!5OEG9;6kHEB&@l}U`-Vo2;p&o9{Q8?y9_R$Z%a#Vg)UNm;q;5AGap`g@Vvjm>qNIu>gN5QO7Cc)@lcxRmU`pySo#G>X#BGvy-vnBl0fx6~|bJg0F(eFJ{#P4{qz4=}Nmz zj=aJ`sm0FBh^P|`O2JBMm>+kG)|ktsmIb}>QX3iQ?+@y?=(s{B1XPAbkpO7ZU-jAb zIbOXf&OOBB0pnxbw#sB#S~;EDU+t;dLsxe<_OxBY1)~z@u&!?InKF8Ca0njpqiO41 zHSd>?a&mH~f@P}-C<%g>;_<9g-~|MTfxw_%5l2cyL?aiS? z7}x#dU&r0kof1~g^3KyQ=_@@3?e+6Bc9g=P6}~Y zeo5t3wZy%#RGsf$@@8ukoA9T@!vQc2L^2?{?L+oc{2|Fdup|2wQ+qjB>3fQ>ET^ZZ z1$DJUr)#V`3*)Z)0p3lS6;iSZC`L13?QRo0?q)C`Q29bJ8rq zBOu@@&D`qj=x_p~Qa-n8aw6x`g+tA>nz3;lz-)qR!9x~2*_D-ekCQQ2i&uT1^OH8U zsZV`L_{)vs$_(nwMpsG_Qj_?gPmz&OR;H>}xyWOhRZwPsSJmjT6$$Hxem!#wA3Ehv zoZ9z*o#`;Bhqfn_b{ckgDkz|SO#cW2B`}XpN3qjV3rPD4WmmViGWj}}-(r9c4$L*c z#|W~sI|WKJ`jUq-ga|<}i%LuPJiWHJw%Xc5P`O#{e^mxvf~3eE-*I}}3b(EKeKBnJ z1<>*Uh&3}a53g-Ge9FhS1XV;wKtKSd{rD<>FpVT&PU_ijz($w#EJM%_4-ezo-oUMG zZkW!z+y2uMY5+_(ENtw)S6qwB1KKf2*3X}->v@q^G~MghlMLS6_}p!5Tf@rbL%<-9 zB>hNH6LX5N17$~Nrzuam52X&Ye%kqFj1^!}QwJ1MX(sa0sc(YHseVdHn3SgiLuJ&P1Z?zHsX+Jp&*VoDk3+ACHKP z39Ya9jGOgueXA`agBTnV67FwHAs`^2{7D!YmIRtwa~1t26ciN4>!b$U4zC_77+wIg z(rj}$Q?Jqqe}#}>>F{uIy>)5Hx8PP2S*dJJ;Qbjzez6!Ius91sH0EYowG1xJJep_4xDp@G1s;c2* zWWWwq~^H#Y={D z<@K8>^##+Q@wZ9?xKZ%G)hR0d%DLgd8-&fW55Ywr*35Wn@D4hTNNXB`2W&nJ|p6=zF zD<%#6Fy1Hms1ko55%Qmkjj2EPhRB${F=7Qe6QwG!B1ZZ8NVqy>%2QcyF4ei+h zGjTpzf(J+gkYbwMqvhz?ul4o0G@R7Fmj}o+%aMhjx^lXseVe<5C;<)hl0^cfI<)%4 zWo=_^so8U}Q=m82^s?MAHH8}&*e$(agWCrNqJ#Db3RN>Zj?H_kEKjYpw30d}Cvoos z0?^R0o3Dfbh664w`Sta+pz{e5P#a>Ygo44LvZIR$dLg0LZNK>wL}O;un9vZ;#KpmW zEL3vHNy|#w=#hQ$xtW}5b|v)yMF@;zS`H2zt7zmHY;4#G2tX7Ayu5^u&7Q#lV9)I^ zCzw}I0L*jU4%-^(Y&FR;9T8Dwz{Y`Ohd@~I9Ro~2BqYFKa-Ks#-vx2)-uIkG&(}cL zme^pXzyZCe6nkN`_Y(Bq7yCyshC zUo{`J#tF{4m9_ds>5@^Clcatd`==|-o(n-KDFUDF#x>E*SzOU``IGPy%o`dT&4J77 zlXm#Rq^72S4)m zE(1yJ12BUF19#c4uC9gLTEPUmPhp!9O?>8oj(S1e286uNdzRaI%PYVuYjE8VcFW35 zo`&{Z*v~qZ?_|g*sQGw%w?p|wpn-gRNd0o8BRlrkb;}^!;T*q~|8a^`->8$s+ay_2=bK6PODpGiOkBDI-44kUNci)r$hZS z^ZNC6L}YX*kiNEBULU>syWN7fL_CR{!Crf>s2^fp)BI0q`oAP@{pZrx|BL@Vp!%fe Wo@)Kl1;\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\n\nZ\n \n\n", + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from mindquantum.core.gates import Z\n", + "from mindquantum.core.circuit import Circuit\n", + "\n", + "circ = Circuit()\n", + "circ += Z.on(1, 0)\n", + "circ.svg()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "这个门的作用是:\n", + "1. 当控制比特q0为1时,对目标比特q1作用Z门;\n", + "2. 当控制比特q0为0时,不做任何操作;\n", + "\n", + "也就是说:\n", + "$$\n", + "\\begin{align*}\n", + "|00\\rangle & \\rightarrow |00\\rangle \\\\\n", + "|01\\rangle & \\rightarrow |01\\rangle \\\\\n", + "|10\\rangle & \\rightarrow |10\\rangle \\\\\n", + "|11\\rangle & \\rightarrow -|11\\rangle\n", + "\\end{align*}\n", + "$$\n", + "\n", + "写成矩阵形式:\n", + "$$\n", + "\\mathcal{U}_{CZ} = \\begin{bmatrix}\n", + "1 & 0 & 0 & 0 \\\\\n", + "0 & 1 & 0 & 0 \\\\\n", + "0 & 0 & 1 & 0 \\\\\n", + "0 & 0 & 0 & -1\n", + "\\end{bmatrix}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "CZ门具有一个性质,交换控制比特和目标比特后,作用效果不变。" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\n\nZ\n \n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\n\nZ\n \n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "from mindquantum.core.gates import Z\n", + "from mindquantum.core.circuit import Circuit\n", + "from IPython.display import display_svg\n", + "import numpy as np\n", + "\n", + "circ1 = Circuit()\n", + "circ1 += Z.on(1, 0)\n", + "display_svg(circ1.svg())\n", + "\n", + "circ2 = Circuit()\n", + "circ2 += Z.on(0, 1)\n", + "display_svg(circ2.svg())\n", + "\n", + "print(np.allclose(circ1.matrix(), circ2.matrix()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们可以使用 CZ 门和 Hadamard 门来实现 CNOT 门。" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\nH\n \n\n\n\n\n\nZ\n \n\n\n\n\nH\n \n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\n\n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "from mindquantum.core.gates import Z, H, CNOT\n", + "from mindquantum.core.circuit import Circuit\n", + "from IPython.display import display_svg\n", + "import numpy as np\n", + "\n", + "circ1 = Circuit()\n", + "circ1 += H.on(0)\n", + "circ1 += Z.on(1, 0)\n", + "circ1 += H.on(0)\n", + "display_svg(circ1.svg())\n", + "\n", + "circ2 = Circuit()\n", + "circ2 += CNOT.on(0, 1)\n", + "display_svg(circ2.svg())\n", + "\n", + "print(np.allclose(circ1.matrix(), circ2.matrix()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 控制U门\n", + "\n", + "CZ门是一种特殊的 $C(U)$ 门,其中 $U = Z$。一般来说,$C(U)$ 门的定义为:\n", + "1. 控制比特为1时,对目标比特作用 $U$ 门;\n", + "2. 控制比特为0时,不作用(作用 $I$ 门);\n", + "\n", + "## 相位\n", + "\n", + "考虑一种简单情形 $U = e^{i\\alpha}I$。\n", + "\n", + "如果仅仅是单量子比特,那么 $e^{i\\alpha}$ 作为全局相位,我们可以忽略它(全局相位在物理上没有观测效应)。\n", + "\n", + "如果是 $C(U)$ 二量子比特门,此时就不能忽略掉 $e^{i\\alpha}$。不妨设 $|q_1 q_0\\rangle$,控制比特是 q0:\n", + "$$\n", + "\\begin{align*}\n", + "|00\\rangle & \\rightarrow |00\\rangle \\\\\n", + "|01\\rangle & \\rightarrow e^{i\\alpha}|01\\rangle \\\\\n", + "|10\\rangle & \\rightarrow |10\\rangle \\\\\n", + "|11\\rangle & \\rightarrow e^{i\\alpha}|11\\rangle\n", + "\\end{align*}\n", + "$$\n", + "\n", + "对于一般的 $|\\psi\\rangle = a |00\\rangle + b |01\\rangle + c|10\\rangle + d|11\\rangle$,作用效果为:\n", + "$$\n", + "\\begin{align*}\n", + "|\\psi'\\rangle\n", + "& = a |00\\rangle + be^{i\\alpha}|01\\rangle \n", + " + c|10\\rangle + de^{i\\alpha}|11\\rangle \\\\\n", + "& = \\left[I \\otimes \\left(|0\\rangle \\langle 0| + e^{i\\alpha} |1\\rangle \\langle 1|\\right) \\right] |\\psi\\rangle\n", + "\\end{align*}\n", + "$$\n", + "\n", + "因此 $C(e^{i\\alpha}I)$ 等价于一个单量子比特门。" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "alpha = 0.1660577379868905\n" + ] + }, + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\n\nU\n \n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\nU'\n \n\n\n\n\nI\n \n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "from mindquantum.core.circuit import Circuit\n", + "from mindquantum.core.gates import UnivMathGate, I\n", + "from IPython.display import display_svg\n", + "import numpy as np\n", + "from numpy.random import rand\n", + "\n", + "alpha = rand()\n", + "print(f\"alpha = {alpha}\")\n", + "\n", + "u = UnivMathGate(\"U\", np.array(\n", + " [[np.exp(complex(0, alpha)), 0], \n", + " [0, np.exp(complex(0, alpha))]]))\n", + "circ1 = Circuit()\n", + "circ1 += u.on(1, 0)\n", + "display_svg(circ1.svg())\n", + "\n", + "p = UnivMathGate(\"U'\", np.array(\n", + " [[1, 0],\n", + " [0, np.exp(complex(0, alpha))]]\n", + "))\n", + "circ2 = Circuit()\n", + "circ2 += p.on(0)\n", + "circ2 += I.on(1)\n", + "display_svg(circ2.svg())\n", + "\n", + "print(np.allclose(circ1.matrix(), circ2.matrix()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 实现 C(U)\n", + "\n", + "根据 lecture7 我们知道 $U = e^{i\\alpha}AXBXC$,其中 $ABC = I$。这意味着我们可以用如下的电路实现 $C(U)$ :\n", + "\n", + "![CU-implement](./images/CU_implement.png)\n", + "\n", + "下面我们证明这件事情:\n", + "\n", + "不妨设 控制比特 $q_0 = a|0\\rangle + b|1\\rangle$,目标比特 $q_1 = |t\\rangle$ 。\n", + "\n", + "左边的线路作用的结果为:\n", + "$$C_U |\\psi\\rangle = a|0\\rangle |t\\rangle + b|1\\rangle U|t\\rangle$$\n", + "\n", + "右边的线路一步步的作用结果:\n", + "$$\n", + "\\begin{align*}\n", + "|\\psi\\rangle \n", + "& = a|0\\rangle |t\\rangle + b|1\\rangle |t\\rangle \\\\\n", + "& \\rightarrow a|0\\rangle C|t\\rangle + b|1\\rangle C|t\\rangle \\\\\n", + "& \\rightarrow a|0\\rangle C|t\\rangle + b|1\\rangle XC|t\\rangle \\\\\n", + "& \\rightarrow a|0\\rangle BC|t\\rangle + b|1\\rangle BXC|t\\rangle \\\\\n", + "& \\rightarrow a|0\\rangle BC|t\\rangle + b|1\\rangle XBXC|t\\rangle \\\\\n", + "& \\rightarrow a|0\\rangle ABC|t\\rangle + e^{i\\alpha}b|1\\rangle AXBXC|t\\rangle \\\\\n", + "& = a|0\\rangle |t\\rangle + b|1\\rangle U|t\\rangle\n", + "\\end{align*}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "下面对 $C(H)$ 门进行验证。\n", + "\n", + "因为 $H = e^{i\\pi\\over 2}R_z(0)R_y({\\pi\\over 2})R_z(\\pi)$,所以令\n", + "$$\n", + "\\begin{cases}\n", + "A = R_z(\\beta)R_y({\\gamma\\over 2}) \\\\\n", + "B = R_y(-{\\gamma\\over 2})R_z(-{(\\delta+\\beta)\\over 2}) \\\\\n", + "C = R_z({(\\delta-\\beta)\\over 2})\n", + "\\end{cases}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\n\nH\n \n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\nRZ\n \n\nπ/2\n \n\n\n\n\n\n\n\n\n\nRZ\n \n\n-π/2\n \n\n\n\n\nRY\n \n\n-π/4\n \n\n\n\n\n\n\n\n\n\nRY\n \n\nπ/4\n \n\n\n\n\nRZ\n \n\n0\n \n\n\n\n\nPS\n \n\nπ/2\n \n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "from mindquantum.core.circuit import Circuit\n", + "from mindquantum.core.gates import RZ, RY, RZ, X, H, CNOT\n", + "from mindquantum.core.gates import PhaseShift\n", + "from IPython.display import display_svg\n", + "import numpy as np\n", + "from numpy.random import rand\n", + "\n", + "alpha = np.pi / 2\n", + "beta = 0\n", + "gamma = np.pi / 2\n", + "delta = np.pi\n", + "\n", + "circ1 = Circuit()\n", + "circ1 += H.on(1, 0)\n", + "display_svg(circ1.svg())\n", + "\n", + "# A = RZ(beta) * RY(gamma / 2)\n", + "# B = RY(-gamma / 2) * RZ(-(delta + beta) / 2)\n", + "# C = RZ((delta - beta) / 2)\n", + "circ2 = Circuit()\n", + "circ2 += RZ((delta-beta)/2).on(1)\n", + "circ2 += CNOT.on(1, 0)\n", + "circ2 += RZ(-(delta + beta)/2).on(1)\n", + "circ2 += RY(-gamma / 2).on(1)\n", + "circ2 += CNOT.on(1, 0)\n", + "circ2 += RY(gamma / 2).on(1)\n", + "circ2 += RZ(beta).on(1)\n", + "circ2 += PhaseShift(alpha).on(0)\n", + "display_svg(circ2.svg())\n", + "\n", + "print(np.allclose(circ1.matrix(), circ2.matrix()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 多控制比特\n", + "\n", + "如果控制比特数目为 $n$ 个,记作 $C^n(U)$,作用效果如下:\n", + "$$C^n(U) |x_1x_2\\ldots x_n\\rangle |t\\rangle = |x_1x_2 \\ldots x_n\\rangle U^{x_1x_2\\cdots x_n}|t\\rangle$$\n", + "当且仅当 $x_1 = x_2 = \\cdots = x_n = 1$ 时,对目标比特作用 $U$ 操作。" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]\n", + " [0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]\n", + " [0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]\n", + " [0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j]\n", + " [0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j]\n", + " [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j]\n", + " [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j]\n", + " [0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 0.+0.j 1.+0.j 0.+0.j]]\n" + ] + }, + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\nq2:\n \n\n\n\n\n\n\n\n\nX\n \n\n
", + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from mindquantum.core.circuit import Circuit\n", + "from mindquantum.core.gates import X\n", + "\n", + "circ = Circuit([X.on(0, [1, 2])])\n", + "print(circ.matrix())\n", + "circ.svg()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 习题\n", + "\n", + "## Exercise 1\n", + "\n", + "使用 H 门来实现 **交换** CNOT 门的控制比特和目标比特。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Exercise 2\n", + "\n", + "使用 CNOT 和 单量子比特门 来构造 $R_y(\\theta)$ 。" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.7.5 64-bit ('3.7.5')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "fe23db6dbd04142dcf620a84033ad5fbdd1968100e6cb68cefa531a9613914d5" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/solutions/lecture8.ipynb b/solutions/lecture8.ipynb new file mode 100644 index 0000000..7f50b9e --- /dev/null +++ b/solutions/lecture8.ipynb @@ -0,0 +1,163 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise 1\n", + "\n", + "使用 H 门来实现 **交换** CNOT 门的控制比特和目标比特。" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\n\n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\nH\n \n\n\n\n\nH\n \n\n\n\n\n\n\n\n\n\nH\n \n\n\n\n\nH\n \n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "from mindquantum.core.circuit import Circuit\n", + "from mindquantum.core.gates import H, CNOT\n", + "from IPython.display import display_svg\n", + "import numpy as np\n", + "\n", + "circ1 = Circuit()\n", + "circ1 += CNOT.on(1, 0)\n", + "display_svg(circ1.svg())\n", + "\n", + "circ2 = Circuit()\n", + "circ2 += H.on(0)\n", + "circ2 += H.on(1)\n", + "circ2 += CNOT(0, 1)\n", + "circ2 += H.on(0)\n", + "circ2 += H.on(1)\n", + "display_svg(circ2.svg())\n", + "\n", + "print(np.allclose(circ1.matrix(), circ2.matrix()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Exercise 2\n", + "\n", + "使用 CNOT 和 单量子比特门 来构造 $R_y(\\theta)$ 。" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "令\n", + "$$\n", + "\\begin{cases}\n", + "A = R_y({\\theta\\over 2}) \\\\\n", + "B = R_y(-{\\theta\\over 2}) \\\\\n", + "C = I\n", + "\\end{cases}\n", + "$$\n", + "\n", + "显然有 $ABC = I$ 和 $AXBXC = R_y(\\theta)$" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\n\nRY\n \n\n2.1425\n \n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/svg+xml": "
\n\n\nq0:\n \n\nq1:\n \n\n\n\n\n\n\n\n\n\n\nRY\n \n\n-1.0713\n \n\n\n\n\n\n\n\n\n\nRY\n \n\n1.0713\n \n\n
" + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "from mindquantum.core.circuit import Circuit\n", + "from mindquantum.core.gates import CNOT, RY\n", + "from IPython.display import display_svg\n", + "import numpy as np\n", + "from numpy.random import rand\n", + "\n", + "theta = rand() * np.pi\n", + "\n", + "circ1 = Circuit()\n", + "circ1 += RY(theta).on(1, 0)\n", + "display_svg(circ1.svg())\n", + "\n", + "circ2 = Circuit()\n", + "circ2 += CNOT.on(1, 0)\n", + "circ2 += RY(-theta/2).on(1)\n", + "circ2 += CNOT.on(1, 0)\n", + "circ2 += RY(theta/2).on(1)\n", + "display_svg(circ2.svg())\n", + "\n", + "print(np.allclose(circ1.matrix(), circ2.matrix()))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.7.5 64-bit ('3.7.5')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "fe23db6dbd04142dcf620a84033ad5fbdd1968100e6cb68cefa531a9613914d5" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} -- Gitee