# eddi **Repository Path**: dongyi1996/eddi ## Basic Information - **Project Name**: eddi - **Description**: R package for the Evaporative Demand Drought Index (EDDI) data product - **Primary Language**: R - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-05-08 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # eddi: R package for the NOAA Evaporative Demand Drought Index [![CircleCI](https://circleci.com/gh/earthlab/eddi/tree/master.svg?style=svg)](https://circleci.com/gh/earthlab/eddi/tree/master) [![AppVeyor build status](https://ci.appveyor.com/api/projects/status/github/earthlab/eddi?branch=master&svg=true)](https://ci.appveyor.com/project/earthlab/eddi) [![Codecov](https://img.shields.io/codecov/c/github/earthlab/eddi.svg)](https://codecov.io/gh/earthlab/eddi) [![Project Status: WIP – Initial development is in progress, but there has not yet been a stable, usable release suitable for the public.](https://www.repostatus.org/badges/latest/wip.svg)](https://www.repostatus.org/#wip) The eddi R package facilitates access to the NOAA [Evaporative Demand Drought Index](https://www.esrl.noaa.gov/psd/eddi/) (EDDI) data product. ## Installation You can install the development version of eddi with devtools: ``` r # install.packages("devtools") devtools::install_github("earthlab/eddi") ``` ## Example The EDDI product exists for multiple timescales, including the 1 to 12 week and 1 to 12 months scales. Shorter time scales can detect short term droughts, e.g., “flash droughts”, and longer time scales are appropriate for detecting long term drought. For more information see . This is a basic example which shows you how to get EDDI data for Nov 29, 2018 at the one month timescale: ``` r library(eddi) eddi_data <- get_eddi(date = "2018-11-29", timescale = "1 month") eddi_data #> class : RasterStack #> dimensions : 224, 464, 103936, 1 (nrow, ncol, ncell, nlayers) #> resolution : 0.125, 0.125 (x, y) #> extent : -125, -67, 25, 53 (xmin, xmax, ymin, ymax) #> coord. ref. : +init=epsg:4326 +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0 #> names : EDDI_ETrs_01mn_20181129 ``` This returns a `RasterStack` object with each layer in the stack corresponding to a date, that can be visualized using `raster::plot`. Here, large positive values indicate exceptionally dry conditions, and large negative values indicate exceptionally wet conditions, with values of 0 indicating median EDDI values. ``` r color_pal <- colorRampPalette(c("blue", "lightblue", "white", "pink", "red")) raster::plot(eddi_data, col = color_pal(255), main = "EDDI data for 2018-11-29") ``` ## EDDI Resources A user guide for EDDI can be found here: For the science behind EDDI, see these two papers: - M. Hobbins, A. Wood, D. McEvoy, J. Huntington, C. Morton, M. Anderson, and C. Hain (June 2016): The Evaporative Demand Drought Index: Part I – Linking Drought Evolution to Variations in Evaporative Demand. J. Hydrometeor., 17(6),1745-1761, . - D. J. McEvoy, J. L. Huntington, M. T. Hobbins, A. Wood, C. Morton, M. Anderson, and C. Hain (June 2016): The Evaporative Demand Drought Index: Part II – CONUS-wide Assessment Against Common Drought Indicators. J. Hydrometeor., 17(6), 1763-1779, .