# Drowsiness_Detection_Using_YOLOv5 **Repository Path**: drone1024/Drowsiness_Detection_Using_YOLOv5 ## Basic Information - **Project Name**: Drowsiness_Detection_Using_YOLOv5 - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-07-31 - **Last Updated**: 2025-07-31 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 😴 Drowsiness Detection Using YOLOv5 🚗 ## Overview This project utilizes the YOLOv5 architecture to develop an advanced drowsiness detection system. The model is designed to identify signs of driver drowsiness, such as closed eyes, yawning, and head movements, using a custom dataset. The goal is to enhance driver safety by providing timely alerts when drowsiness is detected. ## Performance Analysis ### Quantitative Results The YOLOv5 model was trained and tested over 25 epochs, showing exceptional results: - **Mean Average Precision (mAP)**: 0.97924 for the training dataset after 25 epochs. - **Training Precision**: 0.95620 - **Training Recall**: 0.96873 ## Model Performance Metrics | Algorithm | Accuracy | Precision | Recall | F1 Score | Missing Detection Score | Inference Time (seconds) | |-----------|----------|-----------|--------|----------|-------------------------|--------------------------| | **YOLOv5** | 0.90476 | 0.92857 | 0.92857| 0.92857 | 0.00000 | 61.31154 | ## Results
PR Curve |
Precision Curve |
Recall Curve |
F1 Curve |
Confusion Matrix |
Results |