# Pytorch-DeepPose
**Repository Path**: duck7216/pytorch-deep-pose
## Basic Information
- **Project Name**: Pytorch-DeepPose
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 1
- **Created**: 2021-05-10
- **Last Updated**: 2021-09-10
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
## Introduction
[English](./README.md) | 简体中文
[](https://mmpose.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/open-mmlab/mmpose/actions)
[](https://codecov.io/gh/open-mmlab/mmpose)
[](https://pypi.org/project/mmpose/)
[](https://github.com/open-mmlab/mmpose/blob/master/LICENSE)
[](https://github.com/open-mmlab/mmpose/issues)
[](https://github.com/open-mmlab/mmpose/issues)
MMPose 是一款基于 PyTorch 的姿态分析的开源工具箱,是 [OpenMMLab](http://openmmlab.org/) 项目的成员之一。
主分支代码目前支持 **PyTorch 1.3 以上**的版本

COCO 17关键点 多人姿态估计

133关键点-多人全身姿态估计 ([高清完整版](https://www.youtube.com/watch?v=pIJpQg8mXUU))

2D 动物姿态估计
### 主要特性
- **支持多种人体姿态分析相关任务**
MMPose 支持当前学界广泛关注的主流姿态分析任务:主要包括 2D多人姿态估计、2D手部姿态估计、2D人脸关键点检测、133关键点的全身人体姿态估计、3D人体形状恢复、服饰关键点检测、动物关键点检测等。
具体请参考 [功能演示](demo/README.md)。
- **更高的精度和更快的速度**
MMPose 复现了多种学界最先进的人体姿态分析模型,包括“自顶向下”和“自底向上”两大类算法。MMPose 相比于其他主流的代码库,具有更高的模型精度和训练速度。
具体请参考 [基准测试](docs/benchmark.md)。
- **支持多样的数据集**
MMPose 支持了很多主流数据集的准备和构建,如 COCO、 MPII 等。 具体请参考 [数据集准备](docs/data_preparation.md)。
- **模块化设计**
MMPose 将统一的人体姿态分析框架解耦成不同的模块组件,通过组合不同的模块组件,用户可以便捷地构建自定义的人体姿态分析模型。
- **详尽的单元测试和文档**
MMPose 提供了详尽的说明文档,API 接口说明,全面的单元测试,以供社区参考。
## [模型库](https://mmpose.readthedocs.io/en/latest/modelzoo.html)
支持的算法:
(点击收起)
- [x] [DeepPose](configs/top_down/deeppose/README.md) (CVPR'2014)
- [x] [Wingloss](configs/face/deeppose/README.md) (CVPR'2018)
- [x] [CPM](configs/top_down/cpm/README.md) (CVPR'2016)
- [x] [Hourglass](configs/top_down/hourglass/README.md) (ECCV'2016)
- [x] [SimpleBaseline](configs/top_down/resnet/README.md) (ECCV'2018)
- [x] [HRNet](configs/top_down/hrnet/README.md) (CVPR'2019)
- [x] [HRNetv2](configs/face/hrnetv2/README.md) (TPAMI'2019)
- [x] [SCNet](configs/top_down/scnet/README.md) (CVPR'2020)
- [x] [Associative Embedding](configs/bottom_up/hrnet/README.md) (NeurIPS'2017)
- [x] [HigherHRNet](configs/bottom_up/higherhrnet/README.md) (CVPR'2020)
- [x] [DarkPose](configs/top_down/darkpose/README.md) (CVPR'2020)
- [x] [UDP](configs/top_down/udp/README.md) (CVPR'2020)
- [x] [MSPN](configs/top_down/mspn/README.md) (ArXiv'2019)
- [x] [RSN](configs/top_down/rsn/README.md) (ECCV'2020)
- [x] [HMR](configs/mesh/hmr/README.md) (CVPR'2018)
- [x] [Simple 3D Baseline](configs/body3d/simple_baseline/README.md) (ICCV'2017)
支持的 [数据集](https://mmpose.readthedocs.io/en/latest/datasets.html):
(点击收起)
- [x] [COCO](http://cocodataset.org/) (ECCV'2014)
- [x] [COCO-WholeBody](https://github.com/jin-s13/COCO-WholeBody/) (ECCV'2020)
- [x] [MPII](http://human-pose.mpi-inf.mpg.de/) (CVPR'2014)
- [x] [MPII-TRB](https://github.com/kennymckormick/Triplet-Representation-of-human-Body) (ICCV'2019)
- [x] [AI Challenger](https://github.com/AIChallenger/AI_Challenger_2017) (ArXiv'2017)
- [x] [OCHuman](https://github.com/liruilong940607/OCHumanApi) (CVPR'2019)
- [x] [CrowdPose](https://github.com/Jeff-sjtu/CrowdPose) (CVPR'2019)
- [x] [PoseTrack18](https://posetrack.net/users/download.php) (CVPR'2018)
- [x] [MHP](https://lv-mhp.github.io/dataset) (ACM MM'2018)
- [x] [sub-JHMDB](http://jhmdb.is.tue.mpg.de/dataset) (ICCV'2013)
- [x] [Human3.6M](http://vision.imar.ro/human3.6m/description.php) (TPAMI'2014)
- [x] [300W](https://ibug.doc.ic.ac.uk/resources/300-W/) (IMAVIS'2016)
- [x] [WFLW](https://wywu.github.io/projects/LAB/WFLW.html) (CVPR'2018)
- [x] [AFLW](https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/) (ICCVW'2011)
- [x] [COFW](http://www.vision.caltech.edu/xpburgos/ICCV13/) (ICCV'2013)
- [x] [OneHand10K](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html) (TCSVT'2019)
- [x] [FreiHand](https://lmb.informatik.uni-freiburg.de/projects/freihand/) (ICCV'2019)
- [x] [RHD](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html) (ICCV'2017)
- [x] [CMU Panoptic HandDB](http://domedb.perception.cs.cmu.edu/handdb.html) (CVPR'2017)
- [x] [InterHand2.6M](https://mks0601.github.io/InterHand2.6M/) (ECCV'2020)
- [x] [DeepFashion](http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/LandmarkDetection.html) (CVPR'2016)
- [x] [Animal-Pose](https://sites.google.com/view/animal-pose/) (ICCV'2019)
- [x] [Horse-10](http://www.mackenziemathislab.org/horse10) (WACV'2021)
- [x] [MacaquePose](http://www.pri.kyoto-u.ac.jp/datasets/macaquepose/index.html) (bioRxiv'2020)
- [x] [Vinegar Fly](https://github.com/jgraving/DeepPoseKit-Data) (Nature Methods'2019)
- [x] [Desert Locust](https://github.com/jgraving/DeepPoseKit-Data) (Elife'2019)
- [x] [Grévy’s Zebra](https://github.com/jgraving/DeepPoseKit-Data) (Elife'2019)
- [x] [ATRW](https://cvwc2019.github.io/challenge.html) (ACM MM'2020)
支持的骨干网络:
(点击打开)
- [x] [AlexNet](configs/top_down/alexnet/README.md) (NeurIPS'2012)
- [x] [VGG](configs/top_down/vgg/README.md) (ICLR'2015)
- [x] [HRNet](configs/top_down/hrnet/README.md) (CVPR'2019)
- [x] [ResNet](configs/top_down/resnet/README.md) (CVPR'2016)
- [x] [ResNetV1D](configs/top_down/resnetv1d/README.md) (CVPR'2019)
- [x] [ResNeSt](configs/top_down/resnest/README.md) (ArXiv'2020)
- [x] [ResNext](configs/top_down/resnext/README.md) (CVPR'2017)
- [x] [SCNet](configs/top_down/scnet/README.md) (CVPR'2020)
- [x] [SEResNet](configs/top_down/seresnet/README.md) (CVPR'2018)
- [x] [ShufflenetV1](configs/top_down/shufflenet_v1/README.md) (CVPR'2018)
- [x] [ShufflenetV2](configs/top_down/shufflenet_v2/README.md) (ECCV'2018)
- [x] [MobilenetV2](configs/top_down/mobilenet_v2/README.md) (CVPR'2018)
各个模型的结果和设置都可以在对应的 config(配置)目录下的 *README.md* 中查看。
整体的概况也可也在 [模型库](https://mmpose.readthedocs.io/en/latest/recognition_models.html) 页面中查看。
我们将跟进学界的最新进展,并支持更多算法和框架。如果您对 MMPose 有任何功能需求,请随时在 [问题](https://github.com/open-mmlab/mmpose/issues/9) 中留言。
## 基准测试
在主流的 COCO 姿态估计数据集上,进行基准测试。结果展示 MMPose 框架 具有更高的精度和训练速度。
| 骨干模型 | 输入分辨率 | MMPose (s/iter) | [HRNet](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch) (s/iter) | MMPose (mAP) | [HRNet](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch) (mAP) |
| :--------- | :--------: | :-------------: | :------------------------------------------------------------------------------: | :----------: | :---------------------------------------------------------------------------: |
| resnet_50 | 256x192 | **0.28** | 0.64 | **0.718** | 0.704 |
| resnet_50 | 384x288 | **0.81** | 1.24 | **0.731** | 0.722 |
| resnet_101 | 256x192 | **0.36** | 0.84 | **0.726** | 0.714 |
| resnet_101 | 384x288 | **0.79** | 1.53 | **0.748** | 0.736 |
| resnet_152 | 256x192 | **0.49** | 1.00 | **0.735** | 0.720 |
| resnet_152 | 384x288 | **0.96** | 1.65 | **0.750** | 0.743 |
| hrnet_w32 | 256x192 | **0.54** | 1.31 | **0.746** | 0.744 |
| hrnet_w32 | 384x288 | **0.76** | 2.00 | **0.760** | 0.758 |
| hrnet_w48 | 256x192 | **0.66** | 1.55 | **0.756** | 0.751 |
| hrnet_w48 | 384x288 | **1.23** | 2.20 | **0.767** | 0.763 |
更多详情可见 [基准测试](docs/benchmark.md)。
## 安装
请参考 [安装指南](docs/install.md) 进行安装。
## 数据准备
请参考 [data_preparation.md](docs/data_preparation.md) 进行数据集准备。
## 教程
请参考 [getting_started.md](docs/getting_started.md) 了解 MMPose 的基本使用。
MMPose 也提供了其他更详细的教程:
- [如何编写配置文件](docs/tutorials/0_config.md)
- [如何微调模型](docs/tutorials/1_finetune.md)
- [如何增加新数据集](docs/tutorials/2_new_dataset.md)
- [如何设计数据处理流程](docs/tutorials/3_data_pipeline.md)
- [如何增加新模块](docs/tutorials/4_new_modules.md)
- [如何导出模型为 onnx 格式](docs/tutorials/5_export_model.md)
- [如何自定义模型运行参数](docs/tutorials/6_customize_runtime.md)
## 常见问题
请参考 [FAQ](docs/faq.md) 了解其他用户的常见问题。
## 许可
该项目采用 [Apache 2.0 license](LICENSE) 开源协议。
## 引用
如果您觉得 MMPose 对您的研究有所帮助,请考虑引用它:
```bibtex
@misc{mmpose2020,
title={OpenMMLab Pose Estimation Toolbox and Benchmark},
author={MMPose Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmpose}},
year={2020}
}
```
## 参与贡献
我们非常欢迎用户对于 MMPose 做出的任何贡献,可以参考 [CONTRIBUTION.md](.github/CONTRIBUTING.md) 文件了解更多细节。
## 致谢
MMPose 是一款由不同学校和公司共同贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。
我们希望该工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现现有算法并开发自己的新模型,从而不断为开源社区提供贡献。
## OpenMMLab的其他项目
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱与测试基准
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 检测工具箱与测试基准
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's 新一代通用3D目标检测平台
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱与测试基准
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's 新一代视频理解工具箱与测试基准
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱与测试基准
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 新一代生成模型工具箱
## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=aCvMxdr3)
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬