# eco_tracker **Repository Path**: dudu00joker/eco_tracker ## Basic Information - **Project Name**: eco_tracker - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-04-20 - **Last Updated**: 2024-05-30 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README [![LICENSE](https://img.shields.io/badge/license-Anti%20996-blue.svg)](https://github.com/996icu/996.ICU/blob/master/LICENSE) [![MIT Licence](https://badges.frapsoft.com/os/mit/mit.svg?v=103)](https://opensource.org/licenses/mit-license.php) # eco_tracker This is a C++ reimplementation of algorithm presented in "ECO Efficient Convolution Operators for Tracking" paper. For more info and implementation in Matlab visit [ECO tracker](https://github.com/martin-danelljan/ECO). The code mainly depends on Eigen 3.3+ and OpenCV 2.4+ library and is build via cmake. # Quick Start If you want to compile and run the project, you can create a build folder first, then run the command: ``` mkdir build; cd build; cmake ..; make; run ./eco_tracker ``` ## Some tips: 1. It uses fHoG feature to build feature map default, but you can extend to use CNN feature via setting USE_CNN; 2. About Deep features, this project supports extracting by Caffe and NCNN, the latter is suitable for ARM platform. For more info about NCNN, you can visit [NCNN](https://github.com/Tencent/ncnn); 3. Extracting Color Names features will be added in recently. # Reference Danelljan M, Bhat G, Shahbaz Khan F, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 6638-6646.