# IMRAM **Repository Path**: dxxxxx-57/IMRAM ## Basic Information - **Project Name**: IMRAM - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-21 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Requirements and Installation We recommended the following dependencies. * Python 3.6 * [PyTorch](http://pytorch.org/) 1.0 * [NumPy](http://www.numpy.org/) * Punkt Sentence Tokenizer: ```python import nltk nltk.download() > d punkt ``` ## Data preparation Download the dataset files. We use splits produced by [Andrej Karpathy](http://cs.stanford.edu/people/karpathy/deepimagesent/). The raw images can be downloaded from from their original sources [here](http://nlp.cs.illinois.edu/HockenmaierGroup/Framing_Image_Description/KCCA.html), [here](http://shannon.cs.illinois.edu/DenotationGraph/) and [here](http://mscoco.org/). The precomputed image features are extracted from the raw images using the bottom-up attention model from [here](https://github.com/peteanderson80/bottom-up-attention). Image features for training set, validation set and testing set should be merged in order into one `.npy` file, respectively. More details about the image feature extraction can also be found in SCAN(https://github.com/kuanghuei/SCAN). Data files can be found in SCAN (We use the same dataset split as theirs): ```bash wget https://scanproject.blob.core.windows.net/scan-data/data_no_feature.zip ``` Place `data_no_feature.zip` in the directory of `data`. ## Training and Evaluation ```bash ./script/tune_coco.sh ```