# Fall_Detection_Project **Repository Path**: eden33s/Fall_Detection_Project ## Basic Information - **Project Name**: Fall_Detection_Project - **Description**: 此專案是針對一連串人體的骨幹座標(frames)變化來偵測人體的目前動作的 CNN,訓練資料來自 SBU_dataset 以及我自行利用拍攝好的照片經過 openpose 得出人體骨幹座標的資料 - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-06-10 - **Last Updated**: 2021-06-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Fall Detection with Co-occurrence-Feature-Learning-From-Skeleton-2D-Data *** 此專案是針對一連串人體的骨幹座標(frames)變化來偵測人體的目前動作的 CNN,訓練資料來自 [SBU_dataset](https://www3.cs.stonybrook.edu/~kyun/research/kinect_interaction/index.html) 以及我自行利用拍攝好的照片經過 [openpose](https://github.com/CMU-Perceptual-Computing-Lab/openpose) 得出人體骨幹座標的資料 *** ## Detail -This is a project implemented with Keras based on the code from [here](https://github.com/fandulu/Keras-for-Co-occurrence-Feature-Learning-from-Skeleton-Data-for-Action-Recognition), [relative paper](https://arxiv.org/abs/1804.06055). -Training and Testing data is in [data_seq dirctory](https://github.com/LinShien/Fall_Detection_Project/tree/master/data_seq). -The whole model is defined in [model.py](https://github.com/LinShien/Fall_Detection_Project/blob/master/model.py). -Addtional data-processing code is in [utils.py](https://github.com/LinShien/Fall_Detection_Project). -To test the model, use [fall_detection.py](https://github.com/LinShien/Fall_Detection_Project/blob/master/fall_detection.py). 且部分資料由熱成像圖轉換成座標圖來做訓練,如下 : class 9 ![fall_img](./img/fall1.gif) ![fall_img2](./img/fall2.gif) class 10 ![sit_img](./img/sit1.gif) ![sit_img2](./img/sit2.gif) ## Result Train with 416 skeleton sequences (20 frames) Test with 83 skeleton sequences (20 frames) Training acc : 100 % Testing acc : 94 %