# CR_system **Repository Path**: elmforest/CR_system ## Basic Information - **Project Name**: CR_system - **Description**: A Web Application for Multimodal Cloud Removal via Ensemble LearningGitee. 这是Gitee镜像仓库,原仓库:https://github.com/elm-forest/CR_system - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: https://github.com/elm-forest/CR_system - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-21 - **Last Updated**: 2025-02-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # A Web Application for Multimodal Cloud Removal via Ensemble Learning > This is my **Undergraduate Graduation Project**. The following is an incomplete document for reference only.
Left to right: Cloud-covered Optical Image, SAR Image, Cloud-removed Optical Image. ## Model Structure **Stacking Ensemble Learning Framework**
## Installation Python 3.7. is strictly required. See requirement.txt for the rest of the dependencies. ```shell git clone .. cd CR_system pip install -r requirements.txt ``` Make sure you have a c++ build environment ready, and [ninja](https://github.com/ninja-build/ninja) is recommended. ```shell # install kernelconv2d, ref: https://github.com/xufangchn/GLF-CR#prerequisites--installation cd ./glf_cr/FAC/kernelconv2d/ python setup.py clean python setup.py install --user ``` ## Prepare Data SEN12MS-CR DATASET Ref: https://patricktum.github.io/cloud_removal/sen12mscr/ ## Prepare Weights | Model | Download | Repo | |---------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------| | DSen2-CR[[1]](#refer-anchor-1) | [weight](https://drive.google.com/file/d/1L3YUVOnlg67H5VwlgYO9uC9iuNlq7VMg/view) | https://github.com/xufangchn/GLF-CR | | GLF-CR[[2]](#refer-anchor-2) | [weight](https://drive.google.com/file/d/11EYrrqLzlqrDgrJNgIW7IY0nSz_S5y9Z/view?usp=sharing) | https://github.com/ameraner/dsen2-cr | | UnCRtainTS[[3]](#refer-anchor-3) | [weight](https://u.pcloud.link/publink/show?code=kZsdbk0Z5Y2Y2UEm48XLwOvwSVlL8R2L3daV) | https://github.com/PatrickTUM/UnCRtainTS | | TUA-CR (Ensemble Head) | [weight](https://github.com/Elm-Forest/CR_system/releases/latest) | | ```shell cd weights # Download the model for ensemble learning and move here ``` ## Running Before running, configure `utils/common.py` firstly **Run as a Web System** ```shell # config utils/common.py cd CR_system/web_service python main_web_service.py ``` **Run as a Test Case** ```shell # config utils/common.py cd CR_system python test.py ``` **Training** > Not Available.
> The training process is not end-to-end, and training methods are not provided here. ## References [1] Meraner, Andrea et al. “Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion.” Isprs Journal of Photogrammetry and Remote Sensing 166 (2020): 333 - 346.
[2] Xu, Fang et al. “GLF-CR: SAR-enhanced cloud removal with global–local fusion.” ISPRS Journal of Photogrammetry and Remote Sensing (2022): n. pag.
[3] P. Ebel, V. Garnot, M. Schmitt, J. Wegner and X. X. Zhu. UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical Satellite Time Series. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2023.