# HOReid **Repository Path**: feboreigns/horeid ## Basic Information - **Project Name**: HOReid - **Description**: HOReid-------- - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2023-04-04 - **Last Updated**: 2024-12-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # HOReID [CVPR2020] High-Order Information Matters: Learning Relation and Topology for Occluded Person Re-Identification. [paper](http://openaccess.thecvf.com/content_CVPR_2020/html/Wang_High-Order_Information_Matters_Learning_Relation_and_Topology_for_Occluded_Person_CVPR_2020_paper.html) ### Update 2020-12: We release a strong pipeline for occluded/partial reid. [link](https://github.com/wangguanan/light-reid/tree/master/examples/occluded_reid) 2020-06-16: Update Code. 2020-04-01: Happy April's Fool Day!!! Code is comming soon. ### Bibtex If you find the code useful, please consider citing our paper: ``` @InProceedings{wang2020cvpr, author = {Wang, Guan'an and Yang, Shuo and Liu, Huanyu and Wang, Zhicheng and Yang, Yang and Wang, Shuliang and Yu, Gang and Zhou, Erjin and Sun, Jian}, title = {High-Order Information Matters: Learning Relation and Topology for Occluded Person Re-Identification}, booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2020} } ``` ### Set Up ```shell script conda create -n horeid python=3.7 conda activate horeid conda install pytorch==1.1.0 torchvision==0.3.0 -c pytorch # GPU Memory >= 10G, Memory >= 20G ``` ### Preparation * Dataset: Occluded DukeMTMC-reID ([Project](https://github.com/lightas/Occluded-DukeMTMC-Dataset)) * Pre-trained Pose Model ([pose_hrnet_w48_256x192.pth](https://drive.google.com/drive/folders/1hOTihvbyIxsm5ygDpbUuJ7O_tzv4oXjC), please download it to path ```./core/models/model_keypoints/pose_hrnet_w48_256x192.pth```) ### Trained Model * [BaiDuDisk](https://pan.baidu.com/s/10TQ221aPz5-FMaW2YP2NJw) (pwd:fgit) * Google Drive (comming soon) ### Train ``` python main.py --mode train \ --dataset_path path/to/occluded/duke \ --output_path ./results ``` ### Test with Trained Model ``` python main.py --mode test \ --resume_test_path path/to/pretrained/model --resume_test_epoch 119 \ --dataset_path path/to/occluded/duke --output_path ./results ``` ## License This repo is released under the MIT License. ## Contacts If you have any question about the project, please feel free to contact me. E-mail: guan.wang0706@gmail.com