# DH_live **Repository Path**: feed69/DH_live ## Basic Information - **Project Name**: DH_live - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-01-02 - **Last Updated**: 2025-01-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Mobile and Web Real-time Live Streaming Digital Human! # 实时直播数字人 DHLive_mini手机浏览器直接推理[bilibili video](https://www.bilibili.com/video/BV1pWkwYWEn4) DHLive GPU实时推理[bilibili video](https://www.bilibili.com/video/BV1Ppv1eEEgj) # 数字人方案对比 | 方案名称 | 单帧算力(Mflops) | 使用方式 | 脸部分辨率 | 适用设备 | |------------------------------|-------------------|------------|------------|------------------------------------| | Ultralight-Digital-Human(mobile) | 1100 | 单人训练 | 160 | 中高端手机APP | | DH_live_mini | 39 | 无须训练 | 128 | 所有设备,网页&APP&小程序 | | DH_live | 55046 | 无须训练 | 256 | 30系以上显卡 | | duix.ai | 1200 | 单人训练 | 160 | 中高端手机APP | ### News ## Fastest model released! More demos joins me through the contact information at the bottom! All checkpoint files are moved to [baiduNetDisk](https://pan.baidu.com/s/1jH3WrIAfwI3U5awtnt9KPQ?pwd=ynd7) ## Training Details on the render model training can be found [here](https://github.com/kleinlee/DH_live/tree/master/train). Audio Model training Details can be found [here](https://github.com/kleinlee/DH_live/tree/master/train_audio). ### Video Example https://github.com/user-attachments/assets/7e0b5bc2-067b-4048-9f88-961afed12478 ## Overview This project is a real-time live streaming digital human powered by few-shot learning. It is designed to run smoothly on all 30 and 40 series graphics cards, ensuring a seamless and interactive live streaming experience. ### Key Features - **Real-time Performance**: The digital human can interact in real-time with 25+ fps for common NVIDIA 30 and 40 series GPUs - **Few-shot Learning**: The system is capable of learning from a few examples to generate realistic responses. ## Usage ### Create Environment and Unzip the Model File First, navigate to the `checkpoint` directory and unzip the model file: ```bash conda create -n dh_live python=3.12 conda activate dh_live pip install torch --index-url https://download.pytorch.org/whl/cu124 pip install -r requirements.txt cd checkpoint ``` unzip checkpoint files from [baiduNetDisk](https://pan.baidu.com/s/1jH3WrIAfwI3U5awtnt9KPQ?pwd=ynd7) ### Prepare Your Video Next, prepare your video using the data_preparation script. Replace YOUR_VIDEO_PATH with the path to your video: ```bash python data_preparation.py YOUR_VIDEO_PATH ``` The result (video_info) will be stored in the ./video_data directory. ### Run with Audio File Run the demo script with an audio file. Make sure the audio file is in .wav format with a sample rate of 16kHz and 16-bit single channel. Replace video_data/test with the path to your video_info file, video_data/audio0.wav with the path to your audio file, and 1.mp4 with the desired output video path: ```bash python demo.py video_data/test video_data/audio0.wav 1.mp4 ``` ### Real-Time Run with Microphone For real-time operation using a microphone, simply run the following command: ```bash python demo_avatar.py ``` ## Acknowledgements We would like to thank the contributors of [Wav2Lip](https://github.com/Rudrabha/Wav2Lip), [DINet](https://github.com/MRzzm/DINet), [LiveSpeechPortrait](https://github.com/YuanxunLu/LiveSpeechPortraits) repositories, for their open research and contributions. ## License DH_live is licensed under the MIT License. DH_live_mini is licensed under the Apache 2.0. ## 联系 | 进入QQ群聊,分享看法和最新咨询。 | 加我好友,请备注“进群”,拉你进去微信交流群。 | |-------------------|----------------------| | ![QQ群聊](https://github.com/user-attachments/assets/29bfef3f-438a-4b9f-ba09-e1926d1669cb) | ![微信交流群](https://github.com/user-attachments/assets/b1f24ebb-153b-44b1-b522-14f765154110) |